• Login
    View Item 
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Schwann cell precursors in health and disease.

    Thumbnail
    View/Open
    IA - Aquino (86.26Kb)
    Date
    2017-11-10
    Author
    Aquino, Jorge.
    Sierra, Romina.
    Metadata
    Show full item record
    Abstract
    Schwann cell precursors (SCPs) are frequently regarded as neural crest-derived cells (NCDCs) found in contact with axons during nerve formation. Nevertheless, cells with SCPs properties can be found up to the adulthood. They are well characterized with regard to both gene expression profile and cellular behavior -for instance, proliferation, migratory capabilities and survival requirements-. They differ in origin regarding their anatomic location: even though most of them are derived from migratory NCCs, there is also contribution of the boundary cap neural crest cells (bNCCs) to the skin and other tissues. Many functions are known for SCPs in normal development, including nerve fasciculation and target innervation, arterial branching patterning and differentiation, and other morphogenetic processes. In addition, SCPs are now known to be a source of many neural (glia, endoneural fibroblasts, melanocytes, visceral neurons, and chromaffin cells) and non-neural-like (mesenchymal stromal cells, able e.g., to generate dentine-producing odontoblasts) cell types. Until now no reports of endoderm-like derivatives were reported so far. Interestingly, in the Schwann cell lineage only early SCPs are likely able to differentiate into melanocytes and bone marrow mesenchymal stromal cells. We have also herein discussed the literature regarding their role in repair as well as in disease mechanisms, such as in diverse cancers. Moreover, many caveats in our knowledge of SCPs biology are highlighted all through this article. Future research should expand more into the relevance of SCPs in pathologies and in other regenerative mechanisms which might bring new unexpected clinically-relevant knowledge.
    URI
    https://riu.austral.edu.ar/handle/123456789/867
    Collections
    • Investigación Aplicada

    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2
     

     


    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2