• Login
    View Item 
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Electrical approach to improve left ventricular activation during right ventricle stimulation.

    Thumbnail
    View/Open
    IA - Bonomini (643.5Kb)
    Date
    2017-01-01
    Author
    Beroni, Maria.
    Ortega, Daniel.
    Barja, Luis.
    Mangani, Nicolasa.
    Paolucci, Analía.
    Logarzo, Emilio.
    Metadata
    Show full item record
    Abstract
    Coronary sinus mapping is commonly used to evaluate left atrial activation. Herein, we propose to use it to assess which right ventricular pacing modality produces the shortest left ventricular activation times (R-LVtime) and the narrowest QRS widths. Three study groups were defined: 54 controls without intraventricular conduction disturbances; 15 patients with left bundle branch block, and other 15 with right bundle branch block. Left ventricular activation times and QRS widths were evaluated among groups under sinus rhythm, right ventricular apex, right ventricular outflow tract and high output septal zone (SEPHO). Left ventricular activation time was measured as the time elapsed from the surface QRS onset to the most distal left ventricular deflection recorded at coronary sinus. During the above stimulation modalities, coronary sinus mapping reproduced electrical differences that followed mechanical differences measured by tissue doppler imaging. Surprisingly, 33% of the patients with left bundle branch block displayed an early left ventricular activation time, suggesting that these patients would not benefit from resynchronization therapy. SEPHO improved QRS widths and left ventricular activation times in all groups, especially in patients with left bundle branch block, in whom these variables became similar to controls. Left ventricular activation time could be useful to search the optimum pacing site and would also enable detection of non-responders to cardiac resynchronization therapy. Finally, SEPHO resulted the best pacing modality, because it narrowed QRS-complexes and shortened left ventricular activations of patients with left bundle branch block and preserved the physiological depolarization of controls.
    URI
    https://riu.austral.edu.ar/handle/123456789/805
    Collections
    • Investigación Aplicada

    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2
     

     


    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2