• Login
    View Item 
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    •   DSpace Home
    • Centro Académico de Salud (CAS)
    • Hospital Universitario Austral -HUA-
    • Investigación Aplicada
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: Implications for Age-related Macular Degeneration

    Thumbnail
    View/Open
    IA - Marazita (7.018Mb)
    Date
    2016-04-01
    Author
    Marazita, Mariela.
    Dugour, Andrea
    Marquioni-Ramella, Melisa D.
    Figueroa, Juan M.
    Suburo, Angela.
    Metadata
    Show full item record
    Abstract
    Oxidative stress has a critical role in the pathogenesis of Age-related Macular Degeneration (AMD), a multifactorial disease that includes age, gene variants of complement regulatory proteins and smoking as the main risk factors. Stress-induced premature cellular senescence (SIPS) is postulated to contribute to this condition. In this study, we hypothesized that oxidative damage, promoted by endogenous or exogenous sources, could elicit a senescence response in RPE cells, which would in turn dysregulate the expression of major players in AMD pathogenic mechanisms. We showed that exposure of a human RPE cell line (ARPE-19) to a cigarette smoke concentrate (CSC), not only enhanced Reactive Oxygen Species (ROS) levels, but also induced 8-Hydroxydeoxyguanosine-immunoreactive (8-OHdG) DNA lesions and phosphorylated-Histone 2AX-immunoreactive (p-H2AX) nuclear foci. CSC-nuclear damage was followed by premature senescence as shown by positive senescence associated-β-galactosidase (SA-β-Gal) staining, and p16INK4a and p21Waf-Cip1 protein upregulation. N-acetylcysteine (NAC) treatment, a ROS scavenger, decreased senescence markers, thus supporting the role of oxidative damage in CSC-induced senescence activation. ARPE-19 senescent cultures were also established by exposure to hydrogen peroxide (H2O2), which is an endogenous stress source produced in the retina under photo-oxidation conditions. Senescent cells upregulated the proinflammatory cytokines IL-6 and IL-8, the main markers of the senescence-associated secretory phenotype (SASP). Most important, we show for the first time that senescent ARPE-19 cells upregulated vascular endothelial growth factor (VEGF) and simultaneously downregulated complement factor H (CFH) expression. Since both phenomena are involved in AMD pathogenesis, our results support the hypothesis that SIPS could be a principal player in the induction and progression of AMD. Moreover, they would also explain the striking association of this disease with cigarette smoking.
    URI
    https://riu.austral.edu.ar/handle/123456789/744
    Collections
    • Investigación Aplicada

    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2
     

     


    xmlui.dri2xhtml.structural.info-link
    Licencia Creative Commons
    xmlui.dri2xhtml.structural.contact-link1 - xmlui.dri2xhtml.structural.contact-link2
    xmlui.dri2xhtml.structural.info-link2