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Biophysics, Kazan, Russia; 524Institute of Biomedical Investigation (INIBIC), Aging, Inflamation and Regenerative Medicine, Coru~na, Spain; 525Institute of
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technology of the Austrian Academy of Sciences (IMBA), Vienna, Austria; 531Institute of Molecular Genetics, National Research Council, Pavia, Italy;
532Institute of Molecular Pathology and Biology, FMHS UO, Hradec Kralove, Czech Republic; 533Institute of Nuclear Chemistry and Technology, Centre
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537Instituto de Investigaciones Biom�edicas Alberto Sols, CSIC/UAM, Madrid, Spain; 538Instituto de Investigaciones Biomedicas de Barcelona, CSIC-IDI-
BAPS and Centro de Investigacion en Red en enfermedades hep�aticas y digestivas, CIBEREHD, ISCIII, Barcelona, Spain; 539Instituto de Parasitolog�ıa y
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Parasitic and Immunomediated Diseases, Rome, Italy; 575Istituto Superiore di Sanit�a, Department of Therapeutic Research and Medicine, Evaluation
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Italy; 578Italian National Institute of Health, Department of Technology and Health, Rome, Italy; 579IUF-Leibniz Research Institute for Environmental
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Zhenjiang, Jiangsu, China; 590Jiangsu University, School of Pharmacy, Zhenjiang, Jiangsu, China; 591Jikei University School of Medicine, Divison of Respi-
ratory Disease, Department of Internal Medicine, Tokyo, Japan; 592Jikei University School of Medicine, Research Center for Medical Sciences, Division of
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sity, Department of Urology, Shanghai, China; 599Johannes Gutenberg University Mainz, University Medical Center, Department of Medical
Microbiology and Hygiene, Mainz, Germany; 600John Wayne Cancer Institute, Department of Neurosciences, Santa Monica, CA, USA; 601Johns Hopkins
University, Bloomberg School of Public Health, Malaria Research Institute, Department of Molecular Microbiology and Immunology, Baltimore, MD,
USA; 602Johns Hopkins University, School of Medicine, Baltimore, MD, USA; 603Johns Hopkins University, School of Medicine, Department of Physiology
and Center for Metabolism and Obesity Research, Baltimore, MD, USA; 604Johns Hopkins University, School of Medicine, Departments of Neurology,
Neuroscience and Pharmacology and Molecular Sciences; Neuroregeneration Program, Institute for Cell Engineering, Baltimore, MD, USA; 605Johns
Hopkins University, School of Medicine, Institute for Cell Engineering and McKusick-Nathans Institute of Genetic Medicine, Baltimore, MD, USA;
606Johns Hopkins University, School of Medicine, Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology,
Department of Physiology, Baltimore, MD, USA; 607Johns Hopkins University, School of Medicine, Wilmer Eye Institute, Baltimore, MD, USA; 608Johns
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more, MD, USA; 609Johns Hopkins, School of Medicine, Wilmer Eye Institute, Baltimore, MD, USA; 610Juntendo University, Department of Research for
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Laboratory of Proteomics and Biomolecular Science, Tokyo, Japan; 615Juntendo University, School of Medicine, Department of Cell Biology and Neuro-
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maceutical Sciences, Department of Biochemistry, Tokyo, Japan; 641Keio University, School of Medicine, Medical Education Center, Tokyo, Japan;
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School of Health Sciences, Laboratory of Pathology, Division of Medical Biophysics, Hyogo, Japan; 648Kobe University, Graduate School of Medicine,
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sian Federation; 650Konkuk University, Department of Animal Biotechnology, Seoul, Korea; 651Konkuk University, Department of Veterinary Medicine,
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Department of Abdominal Transplant Surgery, Leuven, Belgium; 662KU Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium;
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Cellular and Molecular Medicine, Leuven, Belgium; 666Kumamoto University, Institute of Resource Development and Analysis, Kumamoto, Japan;
667Kunming University of Science and Technology, Medical School, Kunmimg, Yunnan, China; 668Kyoto Prefectural University of Medicine, Department
of Basic Geriatrics, Kyoto, Japan; 669Kyoto Prefectural University of Medicine, Department of Cardiovascular Medicine, Graduate School of Medical Sci-
ence, Kyoto, Japan; 670Kyoto Prefectural University of Medicine, Department of Basic Geriatrics, Kyoto, Japan; 671Kyoto Sangyo University, Department
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Seoul, Korea; 677Kyungpook National University, Department of Physiology, School of Medicine, Jung-gu, Daegu, Korea; 678Kyushu University, Depart-
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690Medical University of Silesia, ENT Department, School of Medicine, Katowice, Poland; 691Link€oping University, Department of Clinical and Experi-
mental Medicine, Link€oping, Sweden; 692Link€oping University, Department of Medical and Health Sciences, Link€oping, Sweden; 693Link€oping Univer-
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Luxembourg; 708Luxembourg Institute of Health, Department of Oncology, Luxembourg City, Luxembourg; 709Maastricht University, Maastricht Radia-
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Centre, NUTRIM, Department of Molecular Genetics, Maastricht, The Netherlands; 711Macau University of Science and Technology, State Key Laboratory
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Canada; 742McGill University, Goodman Cancer Research Centre and Department of Biochemistry, Montreal, Quebec, Canada; 743McGill University,
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sity of Silesia, Department of Pharmacology, Katowice, Poland; 762Medical University of South Carolina, Biochemistry and Molecular Biology, Charleston,
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and Systems Therapeutics, New York, NY, USA; 786Icahn School of Medicine at Mount Sinai, Division of Hematology and Oncology, Department of Med-
icine, New York, NY, USA; 787Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY, USA; 788MRC Cancer Unit, University of
Cambridge, Hutchison/MRC Research Centre, Cambridge, UK; 789MRC Harwell, Mammalian Genetics Unit, Oxfordshire, UK; 790MRC Human Immunology
Unit, Weatherall Institute of Molecular Medicine and BRC Translational Immunology Lab, NDM, Oxford, UK; 791MRC Laboratory of Molecular Biology,
Cambridge, UK; 792MRC Mitochondrial Biology Unit, Cambridge, UK; 793MRC Toxicology Unit, Leicester, UK; 794Nagasaki University Graduate School of
Biomedical Sciences, Department of Molecular Microbiology and Immunology, Nagasaki, Japan; 795Nagasaki University, Department of Molecular
Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki, Japan; 796Nagasaki University, Division of Dental Pharmacology,
Graduate School of Biomedical Sciences, Nagasaki, Japan; 797Nagoya University School of Medicine, Nagoya, Japan; 798Nagoya University, Research
Institute of Environmental Medicine, Nagoya, Aichi, Japan; 799Nanchang University, Institute of Life Science, Nanchang, China; 800Nanjing Medical Uni-
versity, Center for Kidney Disease, 2nd Affiliated Hospital, Jiangsu, China; 801Nanjing Medical University, Department of Neurology, Nanjing First Hospi-
tal, Nanjing, China; 802Nanjing University School of Medicine, Jinling Hospital, Department of Neurology, Nanjing, China; 803Nanjing University, Jiangsu
Key Laboratory of Molecular Medicine, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, Jiangsu Province,
China; 804Nanjing University, School of Life Sciences, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing, Jiangsu, China; 805Nankai Univer-
sity, College of Life Sciences, Tianjin, China; 806Nanyang Technological University, School of Biological Sciences, Singapore; 807NARO Institute of Flori-
cultural Science, Tsukuba, Japan; 808NAS of Ukraine, Department of Molecular Genetics and Biotechnology, Institute of Cell Biology, Lviv, Ukraine;
809Nasonova Research Institute of Rheumatology, Immunology and Molecular Biology Laboratory, Moscow, Russia; 810National Academy of Sciences of
Ukraine, Department of Biotechnology and Microbiology, Lviv, Ukraine; 811National and Kapodistrian University of Athens, Department of Cell Biology
and Biophysics, Faculty of Biology, Athens, Greece; 812National Brain Research Centre, Manesar, Gurgaon, India; 813National Cancer Center, Cancer Cell
and Molecular Biology Branch, Division of Cancer Biology, Research Institute, Goyang, Korea; 814National Cancer Center, Division of Cancer Biology,
Research Institute, Gyeonggi, Korea; 815National Center of Neurology and Psychiatry, Department of Degenerative Neurological Diseases, Kodaira,
Tokyo, Japan; 816National Center of Neurology and Psychiatry, Department of Neuromuscular Research, National Institute of Neuroscience, Tokyo,
Japan; 817National Cheng Kung University, College of Medicine, Department of Pharmacology and Institute of Basic Medical Sciences, Tainan, Taiwan;
818National Cheng Kung University, Department of Microbiology and Immunology, College of Medicine, Tainan, Taiwan; 819National Cheng Kung Uni-
versity, Department of Pharmacology, Tainan, Taiwan; 820National Cheng Kung University, Institute of Clinical Medicine, Tainan, Taiwan; 821National
Cheng Kung University, Medical College, Department of Environmental and Occupational Health, Tainan, Taiwan; 822National Chung Hsing University,
Graduate Institute of Biomedical Sciences, Taichung, Taiwan; 823National Chung Hsing University, Institute of Molecular Biology, Taichung, Taiwan;
824National Chung-Hsing University, Institute of Biomedical Sciences, College of Life Sciences, Taichung, Taiwan; 825National Fisheries Research and
Development Institute (NFRDI), Busan, Korea; 826National Health Research Institutes, Institute of Molecular and Genomic Medicine, Miaoli, Taiwan;
827National Health Research Institutes, Immunology Research Center, Miaoli, Taiwan; 828National Health Research Institutes, Institute of Biotechnology
and Pharmaceutical Research, Miaoli County, Taiwan; 829National Ilan University, Department of Biotechnology and Animal Science, Yilan City, Taiwan;
830National Institute for Basic Biology, Department of Cell Biology, Okazaki, Japan; 831National Institute for Basic Biology, Sokendai, Okazaki, Japan;
832National Institute for Infectious Diseases “L. Spallanzani” IRCCS, Rome, Italy; 833National Institute for Infectious Diseases, Department of Epidemiol-
ogy and Preclinical Research, Translational Research Unit, Rome, Italy; 834National Institute of Biological Sciences, Beijing, China; 835National Institute of

16 D. J. KLIONSKY ET AL.



Gastoenterology, Laboratory of Experimental Immunopathology, Castellana Grotte (BA), Italy; 836National Institute of Infectious Diseases, Department
of Bacteriology I, Tokyo, Japan; 837National Institute of Neuroscience, National Center of Neurology and Psychiatry, Department of Degenerative Neuro-
logical Diseases, Tokyo, Japan; 838National Institute of Technology Rourkela, Department of Life Science, Rourkela, Odisha, India; 839National Institute
on Aging, Intramural Research Program, Laboratory of Neurosciences, Baltimore, MD, USA; 840National Institute on Aging, National Institutes of Health,
Biomedical Research Center, RNA Regulation Section, Laboratory of Genetics, Baltimore, MD, USA; 841National Institutes of Health, Cardiovascular
Branch, NHLB, Bethesda, MD, USA; 842National Institutes of Health, Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute,
Bethesda, MD, USA; 843National Institutes of Health, Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke,
Bethesda, MD, USA; 844National Institutes of Health, Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD,
USA; 845National Institutes of Health, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA;
846National Institutes of Health, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA; 847National
Institutes of Health, National Cancer Institute, Urologic Oncology Branch, Bethesda, MD, USA; 848National Institutes of Health, National Heart, Lung, and
Blood Institute, Bethesda, MD, USA; 849National Institutes of Health, National Institute of Allergy and Infectious Disease, Cytokine Biology Section,
Bethesda, MD, USA; 850National Institutes of Health, National Institute of Environmental Health Sciences, Clinical Research Program, Research Triangle
Park, NC, USA; 851National Institutes of Health, National Institute on Aging, Biomedical Research Center, Laboratory of Neurosciences, Baltimore, MD,
USA; 852National Institutes of Health, NIAID, Laboratory of Systems Biology, Bethesda, MD, USA; 853National Institutes of Health, NIAMS, Laboratory of
Muscle Stem Cells and Gene Regulation, Bethesda, MD, USA; 854National Institutes of Health, NIDDK, Genetics of Development and Disease Branch,
Bethesda, MD, USA; 855National Institutes of Health, NIDDK, LCMB, Bethesda, MD, USA; 856National Institutes of Health, Rocky Mountain Laboratories,
NIAID, Coxiella Pathogenesis Section, Hamilton, MT, USA; 857National Jewish Health, Denver, CO, USA; 858Freiburg Institute for Advanced Studies
(FRIAS), University of Freiburg, Germany; 859National Neuroscience Institute, Singapore; 860National Research Council (CNR), Institute of Translational
Pharmacology (IFT), Rome, Italy; 861National Research Council, Institute of Food Sciences, Avellino, Italy; 862National Sun Yat-Sen University, Department
of Biological Sciences, Kaohsiung, Taiwan; 863National Taiwan University, Department of Life Science and Center for Biotechnology, Taipei, Taiwan;
864National Taiwan University, Department of Life Science, Institute of Molecular and Cellular Biology, Taipei, Taiwan; 865National Taiwan University,
Department of Life Science, Taipei, Taiwan; 866National Taiwan University, Department of Pharmacology, College of Medicine, Taipei, Taiwan;
867National Taiwan University, Department of Urology, College of Medicine, Taipei, Taiwan; 868National Taiwan University, Graduate Institute of Brain
and Mind Sciences, College of Medicine, Taipei, Taiwan; 869National Taiwan University, Institute of Molecular Medicine, College of Medicine, Taipei, Tai-
wan; 870Department of Cardiology, Nanhai Hospital Affiliated to Southern Medical University, Foshan, Guangdong Province, China; 871National Tsing
Hua University, Department of Chemical Engineering, Hsinchu, Taiwan; 872National Tsing Hua University, Institute of Biotechnology, Institute of Sys-
tems Neuroscience, and Department of Life Science, HsinChu City, Taiwan; 873National University Cancer Institute, National University Health System,
Singapore; 874National University of Ireland, Apoptosis Research Centre, Galway, Ireland; 875National University of Ireland, Pharmacology and Therapeu-
tics, Galway, Ireland; 876National University of Ireland, Regenerative Medicine Institute, Galway, Ireland; 877National University of Singapore, Depart-
ment of Biological Sciences, Singapore; 878National University of Singapore, Department of Pharmacy, Singapore; 879National University of Singapore,
Department of Physiology, Singapore; 880National University of Singapore, Department of Physiology, Yong Loo Lin School of Medicine, Singapore;
881National University of Singapore, Yong Loo Lin School of Medicine, Department of Biochemistry, Singapore; 882National University of Singapore,
Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), Singapore; 883Nationwide
Children’s Hospital, Center for Microbial Pathogenesis, Columbus, OH, USA; 884INCI, CNRS UPR3212, Institut des Neurosciences Cellulaires and
Int�egratives, Strasbourg, France; 885NCI/CCR, Basic Research Laboratory, Frederick, MD, USA; 886Nencki Institute of Experimental Biology, Neurobiology
Center, Laboratory of Molecular Neurobiology, Warsaw, Poland; 887Neurodegenerative Diseases Research Group, Vall d’Hebron Research Institute-
CIBERNED, Barcelona, Spain; 888Neurogenomiks, Neurosciences Department, Faculty of Medicine and Odontology, University of Basque, Leioa, Spain;
889Neuroscience Research Institute, Santa Barbara, CA, USA; 890Neurounion Biomedical Foundation, Santiago, Chile; 891New York Blood Center, Lindsley
F. Kimball Research Institute, New York, NY, USA; 892New York Institute of Technology, Department of Biomedical Sciences, College of Osteopathic
Medicine, Old Westbury, NY, USA; 893New York Medical College, Department of Medicine, Pharmacology, and Physiology, Valhalla, NY, USA; 894New
York University Langone Medical Center, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; 895New York University School of Medi-
cine, Departments of Neuroscience and Physiology, and Psychiatry, New York, NY, USA; 896New York University School of Medicine, Skirball Institute,
Department of Microbiology, New York, NY, USA; 897New York University, Department of Psychiatry, New York NY; and Center for Dementia Research,
Nathan S. Kline Institute, Orangeburg, NY, USA; 898New York University, Department of Psychiatry, New York, NY, USA; 899New York University, Nathan
Kline Institute, Orangeburg, NY, USA; 900Newcastle University, Campus for Ageing and Vitality, Institute for Cell and Molecular Biosciences and Institute
for Ageing, Newcastle upon Tyne, UK; 901Newcastle University, The Medical School, Institute of Cellular Medicine, Newcastle upon Tyne, UK; 902New
York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY, USA; 903Niigata University Graduate School of Medical and Dental Sciences,
Laboratory of Biosignaling, Niigata, Japan; 904Niigata University, School of Medicine, Department of Biochemistry, Niigata, Japan; 905NINDS, National
Institutes of Health, Synaptic Function Section, Bethesda, MD, USA; 906Nippon Medical School, Department of Cardiovascular Medicine, Tokyo, Japan;
907North Dakota State University, Department of Chemistry and Biochemistry, Fargo, ND, USA; 908North Shore University Hospital, Department of Emer-
gency Medicine, Manhasset, NY, USA; 909Northeastern University, Department of Bioengineering, Boston, MA, USA; 910Northern Illinois University,
Department of Biological Sciences, DeKalb, IL, USA; 911Northwestern University, Department of Cell and Molecular Biology, Feinberg School of Medi-
cine, Chicago, IL, USA; 912Northwestern University, Department of Neurology, Feinberg School of Medicine, Chicago, IL, USA; 913Northwestern Univer-
sity, Division of Hematology/Oncology, Chicago, IL, USA; 914Northwestern University, Feinberg School of Medicine, Department of Neurology, Chicago,
IL, USA; 915Northwestern University, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA; 916Norwegian Veterinary Institute, Oslo, Norway;
917Obihiro University of Agriculture and Veterinary Medicine, National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan; 918Ohio State
University, Department of Microbial Infection and Immunity, Columbus, OH, USA; 919Ohio State University, Department of Molecular and Cellular Bio-
chemistry, Columbus, OH, USA; 920Ohio State University, Department of Molecular Genetics, Columbus, OH, USA; 921Ohio State University, Department
of Surgery, Davis Heart and Lung Research Institute, Columbus, OH, USA; 922Ohio State University, Department of Veterinary Biosciences, College of
Veterinary Medicine, Columbus, OH, USA; 923Ohio State University, DHLRI, Department of Medicine, Columbus, OH, USA; 924Ohio State University, The
James Comprehensive Cancer Center. Department of Molecular Virology, Immunology and Medical Genetics and Department of Surgery, Division of
Surgical Oncology, Columbus, OH, USA; 925Ohio University, Division of Physical Therapy, Athens, OH, USA; 926Oregon Health and Science University,
Casey Eye Institute, Portland, OR, USA; 927Oregon Health and Science University, Knight Cardiovascular Institute, Portland, OR, USA; 928Oregon State
University, Department of Pharmaceutical Sciences, College of Pharmacy, Corvallis, OR, USA; 929Osaka Prefecture University, Graduate School of Life
and Environmental Science, Osaka, Japan; 930Osaka University Graduate School of Dentistry, Department of Preventive Dentistry, Osaka, Japan;
931Osaka University Graduate School of Medicine, Department of Nephrology, Osaka, Japan; 932Osaka University Graduate School of Medicine, Depart-
ment of Pediatrics, Osaka, Japan; 933Osaka University, Department of Genetics, Graduate School of Medicine, Laboratory of Intracellular Membrane
Dynamics, Graduate School of Frontier Biosciences, Osaka, Japan; 934Osaka University, Department of Genetics, Graduate School of Medicine, Osaka,
Japan; 935Osaka University, Graduate School of Dentistry, Osaka, Japan; 936Osaka University, Graduate School of Frontier Biosciences, Osaka, Japan;

AUTOPHAGY 17



937Oslo University Hospital, Center for Eye Research, Oslo, Norway; 938Oslo University Hospital, Centre for Cancer Biomedicine, Oslo, Norway; 939Oslo
University Hospital, Centre for Immune Regulation, Oslo, Norway; 940Oslo University Hospital, Department of Biochemistry, Institute for Cancer
Research, Oslo, Norway; 941Oslo University Hospital, Department of Molecular Cell Biology, Institute for Cancer Research, Oslo, Norway; 942Oslo Univer-
sity Hospital, Institute for Microbiology, Oslo, Norway; 943University of Oslo and Oslo University Hospital, Prostate Cancer Research Group, Centre for
Molecular Medicine (Norway), Oslo, Norway; 944Otto-von-Guericke-University Magdeburg, Department of General, Visceral and Vascular Surgery, Mag-
deburg, Germany; 945Otto-von-Guericke-University Magdeburg, Institute of Molecular and Clinical Immunology, Magdeburg, Germany; 946Oviedo Uni-
versity, Morphology and Cellular Biology Department, Oviedo, Spain; 947Oxford University, Department of Oncology, Weatherall Institute of Molecular
Medicine, John Radcliffe Hospital, Molecular Oncology Laboratories, Oxford, UK; 948Paris Cardiovascular Research Center - PARCC, Clichy, France;
949Paris Descartes University–Sorbonne Paris Cit�e, Imagine Institute, Paris, France; 950Paris Diderot University, Sorbonne Paris Cit�e, INSERM, CNRS, Paris,
France; 951Peking University First Hospital, Department of Internal Medicine, Beijing, China; 952Peking University First Hospital, Renal Division, Beijing,
China; 953Peking University, Department of Immunology, Beijing, China; 954Peking University, Department of Medicine, Beijing, China; 955Peking Uni-
versity, Health Science Center, Center for Human Disease Genomics, Beijing, China; 956Peking University, Health Science Center, Department of Bio-
chemistry and Molecular Biology, Beijing, China; 957Peking University, Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of
China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education, Beijing, China; 958Pennsylvania State University, Col-
lege of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA, USA; 959Pennsylvania State University, College of Medicine, Depart-
ment of Pediatrics, Hershey, PA, USA; 960Pennsylvania State University, College of Medicine, Department of Pharmacology, Hershey, PA, USA;
961Pennsylvania State University, College of Medicine, Department of Pharmacology, Pennsylvania State University Hershey Cancer Institute, Hershey,
PA, USA; 962Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology and Molecular Thera-
peutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA; 963Pennsylvania State University, College of Medicine, Hershey Cancer Institute and
Department of Pediatrics, Hershey, PA, USA; 964Pennsylvania State University, Department of Biochemistry and Molecular Biology, Center for Eukaryotic
Gene Regulation, University Park, PA, USA; 965Perelman School of Medicine at the University of Pennsylvania, Department of Genetics, Philadelphia, PA,
USA; 966Perelman School of Medicine at the University of Pennsylvania, Departments of Pediatrics and Systems Pharmacology and Translational Thera-
peutics, Philadelphia, PA, USA; 967Pfizer Inc., Drug Safety Research and Development, San Diego, CA, USA; 968Plymouth University, Peninsula School of
Medicine and Dentistry, Plymouth, UK; 969Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland; 970Polytechnic Univer-
sity of Marche, Department of Clinical Science, Faculty of Medicine, Ancona, Italy; 971Polytechnic University of Marche, Department of Life and Environ-
mental Sciences, Ancona, Italy; 972Pontificia Universidad Cat�olica de Chile, Physiology Department, Santiago, Chile; 973Post Graduate Institute of
Medical Education and Research (PGIMER), Department of Biophysics, Chandigarh, India; 974Post Graduate Institute of Medical Education and Research
(PGIMER), Department of Urology, Chandigarh, India; 975Program in Rare and Genetic Diseases, Centro de Investigaci�on Pr�ıncipe Felipe (CIPF), IBV/CSIC
Associated Unit at CIPF, Valencia, Spain; 976Providence Portland Medical Center, Earle A. Chiles Research Institute, Portland, OR, USA; 977Public Health
England, Health Protection Services, Modelling and Economics Unit, Colindale, London, UK; 978Pusan National University, Department of Biological Sci-
ences, Busan, Korea; 979Qilu Hospital of Shandong University, Cardiology, Jinan, Shandong, China; 980Qilu Hospital of Shandong University, Department
of Traditional Chinese Medicine, Jinan, China; 981Qingdao University, Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qing-
dao, Shandong Province, China; 982Queen Elizabeth Hospital, Department of Clinical Oncology, Kowloon, Hong Kong; 983Queen Mary University of Lon-
don, Blizard Institute, Centre for Cell Biology and Cutaneous Research, London, UK; 984Queen Mary University of London, Barts Cancer Institute, Center
for Molecular Oncology, London, UK; 985Queen Mary University of London, Blizard Institute, Department of Neuroscience and Trauma, London, UK;
986Queen Mary University of London, Blizard Institute, Flow Cytometry Core Facility, London, UK; 987Queen Mary University of London, Centre for Hae-
mato-Oncology, Barts Cancer Institute, London, UK; 988Queens College of the City University of New York, Department of Biology, Flushing, NY, USA;
989Queen’s University of Belfast, Centre for Experimental Medicine, Belfast, UK; 990Radboud University Nijmegen Medical Center, Department of Inter-
nal Medicine, Division of Endocrinology, Nijmegen, The Netherlands; 991Radboud University Nijmegen Medical Center, Department of Internal Medi-
cine, Nijmegen, The Netherlands; 992Radboud University Nijmegen Medical Center, Department of Radiation Oncology, Nijmegen, The Netherlands;
993Radboud University, Institute for Molecules and Materials, Department of Molecular Materials, Nijmegen, The Netherlands; 994Regina Elena National
Cancer Institute, Experimental Chemotherapy Laboratory, Rome, Italy; 995Research Center Borstel, Borstel, Germany; 996Rice University, Chemical and
Biomolecular Engineering, Houston, TX, USA; 997Rice University, Department of BioSciences, Houston, TX, USA; 998RIKEN Brain Science Institute, Labora-
tory for Developmental Neurobiology, Saitama, Japan; 999RIKEN Global Research Cluster, Glycometabolome Team, Systems Glycobiology Research
Group, Saitama, Japan; 1000Rio de Janeiro Federal University, Instituto de Biof�ısica Carlos Chagas Filho, Rio de Janeiro, Brazil; 1001Ritsumeikan University,
Department of Biotechnology, Shiga, Japan; 1002Rockefeller University, New York, NY, USA; 1003Roswell Park Cancer Institute, Department of Pharmacol-
ogy and Therapeutics, Buffalo, NY, USA; 1004Royal College of Surgeons in Ireland, Department of Physiology and Medical Physics, Dublin, Ireland;
1005Royal Military College, Chemistry and Chemical Engineering, Kingston, ON, Canada; 1006Royal North Shore Hospital, Cardiovascular and Hormonal
Research Laboratory, Royal North Shore Hospital and Kolling Institute, Sydney, NSW, Australia; 1007Ruhr University Bochum, Biochemie Intrazellul€arer
Transportprozesse, Bochum, Germany; 1008Ruhr University Bochum, Department of Molecular Cell Biology, Institute of Biochemistry and Pathobio-
chemistry, Bochum, Germany; 1009Ruhr University Bochum, Medical Faculty, System Biochemistry, Bochum, Germany; 1010Ruhr University Bochum, Uni-
versity Hospital Bergmannsheil, Department of Neurology, Heimer Institute for Muscle Research, Bochum, Germany; 1011Ruprecht-Karls-University
Heidelberg, Division of Pediatric Neurology, Department of Pediatrics, Heidelberg University Hospital, Heidelberg, Germany; 1012Rush University Medi-
cal Center, Department of Anatomy and Cell Biology, Chicago, IL, USA; 1013Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophys-
ics, Kazan, Tatarstan, Russia; 1014Rutgers New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, NJ, USA; 1015Rutgers
University, Department of Cell Biology and Neuroscience, Piscataway, NJ, USA; 1016Rutgers University, Molecular Biology and Biochemistry, Piscataway,
NJ, USA; 1017Rutgers University, New Jersey Medical School, Department of Cell Biology and Molecular Medicine, Newark, NJ, USA; 1018Rutgers Univer-
sity, The State University of New Jersey, Department of Cell Biology and Neuroscience, Piscataway, NJ, USA; 1019Rutgers University, The State University
of New Jersey, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA; 1020Rutgers University-Robert Wood Johnson Medical School, Pharma-
cology Department, Piscataway, NJ, USA; 1021Rutgers University-Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, Piscat-
away, NJ, USA; 1022Sabanci University, Molecular Biology, Genetics and Bioengineering Program, Istanbul, Turkey; 1023SaBio, Instituto de Investigaci�on
en Recursos Cineg�eticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain; 1024Saint Louis University School of Medicine, Department of Molecular Microbiol-
ogy and Immunology, St. Louis, MO, USA; 1025Saitama Medical University, Saitama Medical Center, Department of General Thoracic Surgery, Saitama,
Japan; 1026Saitama University, Graduate School of Science and Engineering, Saitama, Japan; 1027San Diego State University, Department of Biology and
Center for Microbial Sciences, San Diego, CA, USA; 1028San Diego State University, Department of Biology, San Diego, CA, USA; 1029San Paolo Hospital
Medical School, Unit of Obstetrics and Gynecology, Milano, Italy; 1030San Raffaele Institute, Dept. of Therapeutic Research and Medicine Evaluation, Sul-
mona, L’Aquila, Italy; 1031Sanford Burnham Prebys NCI-Cancer Center, Cell Death and Survival Networks Program, La Jolla, CA, USA; 1032Sanford Consor-
tium for Regenerative Medicine, La Jolla, CA, USA; 1033Sanford Burnham Medical Research Institute, Cell Death and Survival Networks Program, La Jolla,
CA, USA; 1034Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; 1035Sangamo Biosciences, Richmond, CA, USA; 1036Sanofi, Vitry Sur
Seine, France; 1037S~ao Paulo University, Biochemistry Department; and Santo Amaro University, Life Sciences, S~ao Paulo, Brazil; 1038Sapienza University

18 D. J. KLIONSKY ET AL.



of Rome, DAHFMO-Section of Histology, Rome, Italy; 1039Sapienza University of Rome, DAHFMO-Section of Anatomy, Rome, Italy; 1040Sapienza Univer-
sity of Rome, Department of Biochemical Sciences “A. Rossi Fanelli”, Rome, Italy; 1041Sapienza University of Rome, Department of Clinical and Molecular
Medicine, Rome, Italy; 1042Sapienza University of Rome, Department of Experimental Medicine, Rome, Italy; 1043Sapienza University of Rome, Depart-
ment of Molecular Medicine, Rome, Italy; 1044Sapporo Medical University School of Medicine, Department of Pharmacology, Sapporo, Japan; 1045Scien-
tific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy; 1046Scientific Institute IRCCS Eugenio Medea, Laboratory of Molecular Biology, Bosisio Parini,
Lecco, Italy; 1047Second Hospital of Lanzhou University, Key Laboratory of Digestive System Tumors, Gansu, China; 1048Second Military Medical Univer-
sity, Department of Cardiothoracic Surgery, Changzheng Hospital, Shanghai, China; 1049Second Military Medical University, Department of Pharmacol-
ogy, Shanghai, China; 1050Second University of Naples, Department of Biochemistry and Biophysics, Naples, Italy; 1051Second University of Naples,
Department of Biochemistry, Biophysics and General Pathology, Naples, Italy; 1052Semmelweis University, Department of Medical Chemistry, Molecular
Biology and Pathobiochemistry, Budapest, Hungary; 1053Semmelweis University, Institute of Human Physiology and Clinical Experimental Research,
Budapest, Hungary; 1054Seoul National University College of Medicine, Department of Advanced Education for Clinician-Scientists (AECS), Seoul, Korea;
1055Seoul National University College of Medicine, Department of Ophthalmology, Seoul, Korea; 1056Seoul National University College of Medicine,
Department of Physiology and Biomedical Sciences, Seoul, Korea; 1057Seoul National University College of Medicine, Neuroscience Research Institute,
Department of Medicine, Seoul, Korea; 1058Seoul National University Hospital, Department of Internal Medicine, Seoul, Korea; 1059Seoul National Uni-
versity, College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul, Korea; 1060Seoul National University, Department of Biological
Sciences, Seoul, Korea; 1061Seoul National University, College of Pharmacy, Seoul, Korea; 1062Seoul National University, Department of Plant Science,
Seoul, Korea; 1063Seoul National University, Protein Metabolism Medical Research Center and Department of Biomedical Sciences, College of Medicine,
Seoul, Korea; 1064Seoul St. Mary’s Hospital, Department of Internal Medicine, Seoul, Korea; 1065Shandong Agricultural University, State Key Laboratory
of Crop Science, Tai’an, China; 1066Shandong University, Department of Toxicology, Jinan, Shandong, China; 1067Shandong University, School of Chem-
istry and Chemical Engineering, Jinan, Shandong, China; 1068Shandong University, School of Life Sciences, Jinan, China; 1069Shandong University, School
of Medicine, Department of Pharmacology, Jinan, Shandong Province, China; 1070Shanghai Institute of Materia Medica, Division of Antitumor Pharma-
cology, Shanghai, China; 1071Shanghai Jiao Tong University, Bio-X Institutes, Shanghai, China; 1072Shanghai Jiao Tong University, Department of Endo-
crinology and Metabolism, Affiliated Sixth People’s Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai
Clinical Center for Diabetes, Shanghai, China; 1073Shanghai Jiao Tong University, School of Biomedical Engineering and Med-X Research Institute,
Shanghai, China; 1074Shanghai Jiao Tong University, School of Life Sciences and Biotechnology, Shanghai, China; 1075Shanghai Jiao Tong University,
School of Medicine, Center for Reproductive Medicine, Renji Hospital, Shanghai, China; 1076Shanghai Jiao Tong University, School of Medicine, Depart-
ment of Biochemistry and Molecular Biology, Shanghai, China; 1077Shanghai Jiao Tong University, School of Medicine, Department of Pharmacology
and Chemical Biology, Shanghai, China; 1078Shanghai Jiao Tong University, School of Medicine, Key Laboratory of Cell Differentiation and Apoptosis of
Chinese Ministry of Education, Shanghai, China; 1079Shanghai Jiao Tong University, School of Medicine, Renji Hospital, Shanghai, China; 1080Shanghai
Jiao Tong University, School of Medicine, Shanghai Institute of Hypertension, Shanghai, China; 1081Shanghai Jiao Tong University, School of Medicine,
Shanghai Institute of Immunology, Shanghai, China; 1082Shanghai Jiao Tong University, School of Medicine, State Key Laboratory of Medical Genomics;
Shanghai Institute of Hematology; Shanghai Rui Jin Hospital, Shanghai, China; 1083Shanghai Jiao Tong University, State Key Laboratory of Oncogenes
and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai, China; 1084University of Sharjah, Col-
lege of Medicine, United Arab Emirates; 1085Shanghai Jiao Tong University, School of Medicine, Renji Hospital, Shanghai, China; 1086Shanghai Medical
School of Fudan University, Department of Anatomy, Histology and Embryology, Shanghai, China; 1087Shanghai University of Traditional Chinese Medi-
cine, Department of Biochemistry, Shanghai, China; 1088Shanghai Veterinary Research Institute, Shanghai, China; 1089Shantou University Medical Col-
lege, Cancer Research Center, Shantou, Guangdong, China; 1090Shantou University Medical College, Department of Biochemistry and Molecular
Biology, Shantou, China; 1091Shin Kong Wu Ho-Su Memorial Hospital, Department of Urology, Taipei, Taiwan; 1092Sichuan University, Aging Research
Group, State Key Lab for Biotherapy, West China Hospital, Chengdu, China; 1093Sichuan University, Key Laboratory of Bio-Resources and Eco-Environ-
ment of Ministry of Education, College of Life Science, Chengdu, Sichuan, China; 1094Sichuan University, State Key Laboratory of Biotherapy/Collabora-
tive Innovation Center of Biotherapy, West China Hospital, Chengdu, China; 1095Sichuan University, State Key Laboratory of Biotherapy/Collaborative
Innovation Center of Biotherapy; West China Hospital, Chengdu, China; 1096Sichuan University, West China Hospital, State Key Labortary of Biotherapy,
Sichuan, China; 1097Sidra Medical and Research Centre, Doha, Qatar; 1098Simon Fraser University, Department of Molecular Biology and Biochemistry,
Burnaby, BC, Canada; 1099Singapore Eye Research Institute, Singapore National Eye Center, Singapore; 1100Sir Runrun Shaw Hospital, Medical School of
Zhejiang University, Department of Medical Oncology, Hangzhou, China; 1101Sixth Affiliated Hospital of Sun Yat-Sen University, Gastrointestinal Insti-
tute, Department of Radiation Oncology, Guangzhou, Guangdong, China; 1102Soochow University, College of Pharmaceutical Sciences, Jiangsu, China;
1103Soochow University, Department of Neurology, Second Affiliated Hospital of Soochow University and Institute of Neuroscience, Suzhou, China;
1104Soochow University, Department of Pathogenic Biology, Suzhou, Jiangsu, China; 1105Soochow University, School of Pharmaceutical Science, Depart-
ment of Pharmacology and Laboratory of Aging and Nervous Diseases, Suzhou, China; 1106Soochow University, School of Pharmaceutical Science,
Department of Pharmacology, Laboratory of Aging and Nervous Diseases, Su Zhou, Jiangsu Province, China; 1107Soochow University, School of Pharma-
ceutical Science, Department of Pharmacology, Suzhou, China; 1108Sorbonne Universit�es, CNRS, UPMC, Univ Paris 06, UMR 7622, IBPS, Paris, France;
1109Sorbonne Universit�es, UMR S1127, Paris, France; 1110Sorbonne Universit�es, University Pierre and Marie Curie, Paris 6, Brain and Spine Institute,
INSERM U1127, CNRS UMR722, Paris, France; 1111Sorbonne Universit�es, UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology
and Microbial Infections – CIMI-Paris, Paris, France; 1112Sorbonne Universit�es, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE 3617, Center for
Research in Myology, Paris, France; 1113South China Normal University, College of Biophotonics, Guangdong, China; 1114Southern Medical University,
Department of Cardiology, Nanfang Hospital, Guangzhou, China; 1115Southern Medical University, School of Pharmaceutical Sciences, Guangzhou,
Guangdong, China; 1116Spanish Council for Scientific Research, Institute for Advanced Chemistry of Catalonia, Department of Biomedicinal Chemistry,
Barcelona, Spain; 1117Spanish National Cancer Research Centre (CNIO), Cell Division and Cancer Group, Madrid, Spain; 1118St. Anna Kinderkrebsfor-
schung, Children’s Cancer Research Institute, Immunological Diagnostics, Vienna, Austria; 1119Howard Hughes Medical Institute, St. Jude Children’s
Research Hospital, Cell and Molecular Biology, Memphis, TN, USA; 1120St. Jude Children’s Research Hospital, Department of Immunology, Memphis, TN,
USA; 1121St. Jude Children’s Research Hospital, Department of Pathology, Memphis, TN, USA; 1122St. Jude Children’s Research Hospital, Department of
Structural Biology, Memphis, TN, USA; 1123St. Jude Children’s Research Hospital, Memphis, TN, USA; 1124St. Louis University School of Medicine, Depart-
ment of Biochemistry and Molecular Biology, St. Louis, MO, USA; 1125St. Marianna University School of Medicine, Department of Ophthalmology, Kawa-
saki, Kanagawa, Japan; 1126St. Marianna University School of Medicine, Department of Physiology, Kanagawa, Japan; 1127St. Paul’s Hospital, Centre for
Heart Lung Innovation, Vancouver, BC, Canada; 1128Stanford University, Department of Microbiology and Immunology, Stanford, CA, USA; 1129Stanford
University, Department of Radiation Oncology, Stanford, CA, USA; 1130Stanford University, School of Medicine, Department of Pathology, Stanford, CA,
USA; 1131Stanford University, School of Medicine, Departments of Radiation Oncology and Genetics, Stanford, CA, USA; 1132Stanford University, School
of Medicine, Stanford, CA, USA; 1133State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Department of
Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, Beijing, China; 1134State University of New York, College of Medicine,
Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, Syracuse, NY, USA; 1135State University of New York,

AUTOPHAGY 19



College of Nanoscale Science and Engineering, Albany, NY, USA; 1136Stellenbosch University, Department of Physiological Sciences, Stellenbosch, South
Africa; 1137Stephen A. Wynn Institute for Vision Research, Iowa City, IA, USA; 1138Stockholm University, Department of Neurochemistry, Stockholm, Swe-
den; 1139Stony Brook University, Department of Molecular Genetics and Microbiology, Stony Brook, NY, USA; 1140Stony Brook University, Department of
Pathology, Stony Brook, NY, USA; 1141Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Department of Chemistry and
Biotechnology, Uppsala BioCenter, Uppsala, Sweden; 1142Strathclyde Institute of Pharmacy and Biomedical Sciences, Glasgow, UK; 1143Sun Yat-Sen Uni-
versity, Department of Neurology and Stroke Center, The First Affiliated Hospital, Guangzhou, China; 1144Sun Yat-Sen University, Department of Phar-
macology and Toxicology, School of Pharmaceutical Sciences, Guangzhou, China; 1145Sun Yat-Sen University, Key Laboratory of Gene Engineering of
the Ministry of Education, School of Life Science, Guangzhou, China; 1146Sun Yat-Sen University, School of Chemistry and Chemical Engineering,
Guangzhou, China; 1147Sun Yat-Sen University, School of Life Sciences, Guangzhou, China; 1148Sun Yat-Sen University, State Key Laboratory of Biocon-
trol, School of Life Sciences, Guangzhou, China; 1149Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Cancer Center, Guangz-
hou, China; 1150Yonsei University College of Medicine, Severans Biomedical Science Institute and Department of Internal Medicine, Seoul, Korea;
1151Sunnybrook Research Institute; and University of Toronto, Department of Biochemistry, Toronto, Ontario, Canada; 1152Swedish University of Agricul-
tural Sciences and Linnean Center for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Uppsala, Sweden; 1153Taichung Veterans General
Hospital, Department of Medical Research, Taichung City, Taiwan; 1154Taipei Medical University, Department of Biochemistry, College of Medicine, Tai-
pei City, Taiwan; 1155Taipei Medical University, Department of Microbiology and Immunology, Institute of Medical Sciences, Taipei, Taiwan; 1156Taipei
Medical University, Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei, Taiwan; 1157Tamkang
University, Department of Chemistry, Tamsui, New Taipei City, Taiwan; 1158Tampere University Hospital, Department of Gastroenterology and Alimen-
tary Tract Surgery, Tampere, Finland; 1159Technical University Munich, Institute of Human Genetics, Munich, Bavaria, Germany; 1160Technion-Israel Insti-
tute of Technology, The Rappaport Faculty of Medicine and Research Institute, Department of Biochemistry, Haifa, Israel; 1161Technion-Israel Institute of
Technology, Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; 1162Technische Universit€at Braunsch-
weig, Biozentrum, Braunschweig, Germany; 1163Technische Universit€at M€unchen, Department of Neurology, Munich, Germany; 1164Technische Uni-
versit€at M€unchen, II. Medizinische Klinik, Klinikum rechts der Isar, Munich, Germany; 1165Technische Universit€at M€unchen, Plant Systems Biology,
Freising, Germany; 1166Tel Aviv University, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv, Israel;
1167Tel Aviv University, Department of Neurobiology, Tel-Aviv, Israel; 1168Tel Aviv University, Oncogenetic Laboratory, Meir Medical Center, Kfar Saba
and Sackler Faculty of Medicine, Tel Aviv, Israel; 1169Tel Aviv University, Sackler Faculty of Medicine, Department of Cell and Developmental Biology, Tel
Aviv, Israel; 1170Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel; 1171Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli,
Naples, Italy; 1172Temasek Life Sciences Laboratory, Singapore; 1173Temple University, Sbarro Institute for Cancer Research and Molecular Medicine,
Center for Biotechnology, College of Science and Technology, Philadelphia, PA, USA; 1174Temple University, School of Medicine, Department of Bio-
chemistry; and Center for Translational Medicine, Philadelphia, PA, USA; 1175Texas A&M Health Science Center, Center for Cancer and Stem Cell Biology,
Institute of Biosciences and Technology, Houston, TX, USA; 1176Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX,
USA; 1177Texas A&M University Health Science Center, Center for Translational Cancer Research, Institute of Bioscience and Technology, Houston, TX,
USA; 1178Texas A&M University Health Science Center, Center for Translational Cancer Research, Institute of Biosciences and Technology, Houston, TX,
USA; 1179Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX, USA; 1180Texas A&M University, Department of Micro-
bial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX, USA; 1181Texas A&M University, Texas A&M Health Science Center,
College of Medicine, Institute of Biosciences and Technology, Houston, TX, USA; 1182Texas A&M University, The Norman Borlaug Center, College Station,
TX, USA; 1183The Feinstein Institute for Medical Research, Laboratory of Developmental Erythropoiesis, Manhasset, NY; 1184The Feinstein Institute for
Medical Research, North Shore LIJ Health System, Litwin-Zucker Research Center for the Study of Alzheimer’s Disease, New York, NY, USA; 1185The First
Affiliated Hospital of Anhui Medical University, Department of Pulmonary, Anhui Geriatric Institute, Anhui, China; 1186The First Affiliated Hospital of
Harbin Medical University, Department of General Surgery, Harbin, Heilongjiang Province, China; 1187The First Affiliated Hospital of Harbin Medical Uni-
versity, Key Laboratory of Hepatosplenic Surgery, Department of General Surgery, Harbin, China; 1188The Fourth Military Medical University, Institute of
Orthopaedics, Xijing Hospital, Xi’an, Shanxi, China; 1189The Fourth Military Medical University, School of Basic Medical Sciences, Department of Physiol-
ogy, Xi’an, China; 1190The Fourth Military Medical University, Xi’an, China; 1191The Genome Analysis Centre (TGAC), Institute of Food Research, Gut
Health and Food Safety Programme, Norwich, UK; 1192The Helen F. Graham Cancer Center, Newark, DE, USA; 1193The Hospital for Sick Children, Depart-
ment of Paediatrics, Toronto, Ontario, Canada; 1194The Institute of Cancer Research, Cancer Research UK Cancer Imaging Centre, Division of Radiother-
apy and Imaging, Sutton, Surrey, UK; 1195The Norwegian Radium Hospital, Faculty of Medicine, Oslo, Norway; 1196The People’s Hospital of Guangxi
Zhuang Autonomous Region, Department of Gastroenterology, Nanning, Guangxi, China; 1197The People’s Hospital of Hainan Province, Medical Care
Center, Haikou, Hainan, China; 1198The Scripps Research Institute, Department of Immunology and Microbial Science, La Jolla, CA, USA; 1199The Scripps
Research Institute, Department of Metabolism and Aging, Jupiter, FL, USA; 1200The Scripps Research Institute, Department of Neuroscience, Jupiter, FL,
USA; 1201The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease, Guangzhou, Guangdong
Province, China; 1202The Third Affiliated Hospital of Guangzhou Medical University, Department of Clinical Laboratory Medicine, Guangzhou, Guang-
dong, China; 1203The Walter and Eliza Hall Institute of Medical Research, Development and Cancer Division, Parkville, VIC, Australia; 1204The Weizmann
Institute of Science, Department of Plant Sciences, Rehovot, Israel; 1205The Wistar Institute, Philadelphia, PA, USA; 1206The Wistar Institute, Program in
Molecular and Cellular Oncogenesis, Philadelphia, PA, USA; 1207Third Military Medical University, Department of Biochemistry and Molecular Biology,
Chongqing, China; 1208Third Military Medical University, Department of Neurosurgery, Southwest Hospital, Shapingba District, Chongqing, China;
1209Third Military Medical University, Department of Occupational Health, Chongqing, China; 1210Third Military Medical University, Research Center for
Nutrition and Food Safety, Institute of Military Preventive Medicine, Chongqing, China; 1211Thomas Jefferson University Hospitals, Department of Radi-
ation Oncology, Philadelphia, PA, USA; 1212Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, PA, USA;
1213Thomas Jefferson University, Department of Pathology, Anatomy and Cell Biology, Philadelphia, PA, USA; 1214Thomas Jefferson University, Depart-
ment of Pathology, Anatomy, and Cell Biology, Sydney Kimmel Medical College, Philadelphia, PA, USA; 1215Thomas Jefferson University, Philadelphia,
PA, USA; 1216Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA; 1217Tianjin Medical University, Department of Bio-
chemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China; 1218Tianjin Medical
University, Department of Immunology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin, China; 1219Tianjin Medical University, School of Pharma-
ceutical Sciences, Tianjin, China; 1220Toho University, School of Medicine, Department of Biochemistry, Tokyo, Japan; 1221Tohoku University, Depart-
ment of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Sendai, Miyagi, Japan; 1222Tohoku University, Department of
Neurology, Sendai, Japan; 1223Tohoku University, Division of Biomedical Engineering for Health and Welfare, Sendai, Japan; 1224Tohoku University,
Graduate School of Agricultural Sciences, Sendai, Japan; 1225Tohoku University, Graduate School of Life Sciences, Sendai, Miyagi, Japan; 1226Tohoku
University, Laboratory of Bioindustrial Genomics, Graduate School of Agricultural Science, Miyagi, Japan; 1227Tohoku University School of Medicine,
Department of Orthopaedic Surgery, Miyagi, Japan; 1228Tokai University School of Medicine, Department of Molecular Life Sciences, Kanagawa, Japan;
1229Tokushima Bunri University, Faculty of Pharmaceutical Sciences at Kagawa Campus, Sanuki City, Kagawa, Japan; 1230Tokushima University, Division
of Molecular Genetics, Institute for Enzyme Research, Tokushima, Japan; 1231Tokyo Denki University, Division of Life Science and Engineering,

20 D. J. KLIONSKY ET AL.



Hatoyama, Hiki-gun, Saitama, Japan; 1232Tokyo Institute of Technology, Frontier Research Center, Yokohama, Japan; 1233Tokyo Institute of Technology,
Graduate School of Bioscience and Biotechnology, Tokyo, Japan; 1234Tokyo Medical and Dental University, Center for Brain Integration Research, Bun-
kyo, Tokyo, Japan; 1235Tokyo Medical and Dental University, Department of Gastroenterology and Hepatology, Tokyo, Japan; 1236Tokyo Medical and
Dental University, Medical Research Institute, Pathological Cell Biology, Tokyo, Japan; 1237Tokyo Medical University, Department of Biochemistry, Tokyo,
Japan; 1238Tokyo Metropolitan Institute of Medical Science, Laboratory of Protein Metabolism, Tokyo, Japan; 1239Tokyo University of Science, Depart-
ment of Applied Biological Science and Imaging Frontier Center, Noda, Chiba, Japan; 1240Tokyo Women’s Medical University, Department of Endocri-
nology and Hypertension, Tokyo, Japan; 1241Tongji University School of Medicine, Department of Gastroenterology, Shanghai Tenth People’s Hospital,
Shanghai, China; 1242Tongji University, School of Life Science and Technology, Shanghai, China; 1243Toronto General Research Institute - University
Health Network, Division of Advanced Diagnostics, Toronto, Ontario, Canada; 1244Tottori University, Research Center for Bioscience and Technology,
Yonago, Japan; 1245Translational Health Science and Technology Institute, Vaccine and Infectious Disease Research Centre, Faridabad, India; 1246Trev
and Joyce Deeley Research Centre; and University of Victoria, BC Cancer Agency; and Department of Biochemistry and Microbiology, Victoria, BC, Can-
ada; 1247Trinity College Dublin, Department of Genetics, The Smurfit Institute, Dublin, Ireland; 1248Trinity College Dublin, School of Biochemistry and
Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland; 1249Trinity College Dublin, Smurfit Institute of Genetics, Dublin, Ireland; 1250Tsinghua
University, School of Life Sciences, Beijing, China; 1251Tsinghua University, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsing-
hua University-Peking University Joint Center for Life Sciences, School of Life Science, Beijing, China; 1252Tsinghua University, Zhou Pei-Yuan Center for
Applied Mathematics, Beijing, China; 1253Tufts University, USDA Human Nutrition Research Center on Aging, Boston, MA, USA; 1254Tulane University
Health Sciences Center, Department of Pathology and Laboratory Medicine, New Orleans, LA, USA; 1255U.S. Food and Drug Administration, Center for
Biologics Evaluation and Research, Silver Spring, MD, USA; 1256U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Silver
Spring, MD, USA; 1257UAE University, Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, Al Ain, Abu
Dhabi, UAE; 1258UCL Cancer Institute, London, UK; 1259UCL Cancer Institute, Samantha Dickson Brain Cancer Unit, London, UK; 1260UCL Institute of Child
Health and Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; 1261UCL Institute of Neurology, Department of Molecular
Neuroscience, London, UK; 1262UCL Institute of Neurology, London, UK; 1263UCL Institute of Ophthalmology, London, UK; 1264UCLA David Geffen School
of Medicine, Brain Research Institute, Los Angeles, CA, USA; 1265UFRJ, Instituto de Biofisica Carlos Chagas Filho, Rio de Janeiro, Brazil; 1266Ulm University,
Institute of Pharmacology of Natural Compounds and Clinical Pharmacology, Ulm, Germany; 1267Umea

�
University, Department of Medical Biochemistry

and Biophysics, Umea
�
, Sweden; 1268UMR 1280, Nantes, France; 1269UMR CNRS 5286, INSERM 1052, Cancer Research Center of Lyon, Lyon, France;

1270UMRS 1138, Centre de Recherche des Cordeliers, Paris, France; 1271Uniformed Services University of the Health Sciences, Department of Anesthesi-
ology, Bethesda, MD, USA; 1272Uniformed Services University of the Health Sciences, Radiation Combined Injury Program, Armed Forces Radiobiology
Research Institute, Bethesda, MD, USA; 1273University of Texas, MD Anderson Cancer Center, Department of Experimental Therapeutics, Houston, TX,
USA; 1274Universidad Austral de Chile, Department of Physiology, Valdivia, Chile; 1275Universidad Aut�onoma de Madrid, Centro de Biolog�ıa Molecular
Severo Ochoa, CIBERER, Madrid, Spain; 1276Universidad Aut�onoma de Madrid, Centro Nacional de Biotecnolog�ıa (CNB-CSIC), Centro de Biolog�ıa Molecu-
lar Severo Ochoa, Departamento de Biolog�ıa Molecular, Madrid, Spain; 1277Universidad Autonoma de Madrid, Departamento de Biologia Molecular,
Madrid, Spain; 1278Universidad Aut�onoma de Madrid, Departamento de Biolog�ıa, Madrid, Spain; 1279Universidad Complutense, School of Pharmacy,
Madrid, Spain; and CIBER de Diabetes y Enfermedades Metab olicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; 1280Universidad
de Buenos Aires, Inmunolog�ıa, Facultad de Farmacia y Bioqu�ımica, Buenos Aires, Argentina; 1281Universidad de Castilla-La Mancha, Albacete, Spain;
1282Universidad de Castilla-La Mancha, Facultad de Medicina, Departamento Ciencias Medicas, Albacete, Spain; 1283Universidad de Castilla-La Mancha,
Laboratorio de Oncolog�ıa Molecular, Centro Regional de Investigaciones Biom�edicas, Albacete, Spain; 1284Universidad de Chile, Advanced Center for
Chronic Diseases (ACCDiS), Facultad de Ciencias Qu�ımicas y Farmac�euticas, Santiago, Chile; 1285Universidad de Chile, Advanced Center for Chronic Dis-
eases (ACCDiS), Santiago, Chile; 1286Universidad de Chile, Facultad de Ciencias Qu�ımicas y Farmac�euticas, Santos Dumont, Santiago de Chile; 1287Uni-
versidad de Chile, Facultad de Ciencias, Departamento de Biolog�ıa, Centro de Regulaci�on del Genoma, Santiago, Chile; 1288Universidad de Chile,
Instituto de Nutrici�on y Tecnolog�ıa de los Alimentos (INTA), Santiago, Chile; 1289Universidad de C�ordoba, Campus de Excelencia Agroalimentario
(ceiA3), Departamento de Gen�etica, C�ordoba, Spain; 1290Universidad de Costa Rica, CIET, San Jos�e, Costa Rica; 1291Universidad de Extremadura, Centro
de Investigaci�on Biom�edica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Departamento de Bioqu�ımica y Biolog�ıa Molecular y Gen�e-
tica, Facultad de Enfermer�ıa y Terapia Ocupacional, C�aceres, Spain; 1292Universidad de Le�on, �Area de Biolog�ıa Celular, Instituto de Biomedicina, Le�on,
Spain; 1293Universidad de Navarra, Centro de Investigacion Medica Aplicada, Pamplona, Spain; 1294Universidad de Oviedo, Departamento de Biolog�ıa
Funcional, Oviedo, Spain; 1295Universidad de Oviedo, Instituto Universitario de Oncolog�ıa, Departamento de Bioqu�ımica y Biolog�ıa Molecular, Oviedo,
Spain; 1296Universidad de Salamanca, Campus Miguel de Unamuno, Departamento de Microbiolog�ıa y Gen�etica, Salamanca, Spain; 1297Universidad de
Salamanca, Campus Unamuno, Instituto de Biologia Molecular y Celular del Cancer (IBMCC), Centro de Investigacion del Cancer, Salamanca, Spain;
1298Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Roc�ıo, Consejo Superior de Investigaciones Cient�ıficas, Universidad de Sevilla,
Sevilla, Spain; 1299Universidad de Sevilla, Instituto de Biomedicina de Sevilla, Sevilla, Spain; 1300Universidad de Sevilla, Instituto de Bioqu�ımica Vegetal y
Fotos�ıntesis, CSIC, Sevilla, Spain; 1301Universidad de Valpara�ıso, Instituto de Biolog�ıa, Facultad de Ciencias, Valpara�ıso, Chile; 1302IIS Aragon, Universidad
de Zaragoza/Araid, Centro de Investigaci�on Biom�edica de Arag�on, Zaragoza, Spain; 1303Universidad Federal do Rio Grande do Sul (UFRGS), Department
of Biophysics and Center of Biotechnology, Porto Alegre, Brazil; 1304Universidad Nacional de Cuyo (FCM-UNCUYO), Instituto de Histologia y Embriologia
(IHEM-CONICET), Facultad de Ciencias Medicas, Mendoza, Argentina; 1305Universidad Pablo de Olavide, Centro Andaluz de Biolog�ıa del Desarrollo
(CABD), Consejo Superior de Investigaciones Cient�ıficas-Junta de Andaluc�ıa, Sevilla, Spain; 1306Universidade de Bras�ılia, Departamento de Biologia Celu-
lar, Bras�ılia, DF, Brazil; 1307Universidade de Lisboa, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Lisboa, Portugal; 1308Universi-
dade de Santiago de Compostela, Departamento Farmacolox�ıa, Facultade de Veterinaria, Lugo, Spain; 1309Faculdade de Ciências Farmacêuticas de
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In 2008 we published the first set of guidelines for standardiz-
ing research in autophagy. Since then, research on this topic
has continued to accelerate, and many new scientists have
entered the field. Our knowledge base and relevant new tech-
nologies have also been expanding. Accordingly, it is important
to update these guidelines for monitoring autophagy in differ-
ent organisms. Various reviews have described the range of
assays that have been used for this purpose. Nevertheless, there
continues to be confusion regarding acceptable methods to
measure autophagy, especially in multicellular eukaryotes.

For example, a key point that needs to be emphasized is that
there is a difference between measurements that monitor the num-
bers or volume of autophagic elements (e.g., autophagosomes or
autolysosomes) at any stage of the autophagic process versus those
that measure flux through the autophagy pathway (i.e., the com-
plete process including the amount and rate of cargo sequestered
and degraded). In particular, a block in macroautophagy that
results in autophagosome accumulation must be differentiated
from stimuli that increase autophagic activity, defined as increased
autophagy induction coupledwith increased delivery to, and degra-
dationwithin, lysosomes (inmost higher eukaryotes and some pro-
tists such as Dictyostelium) or the vacuole (in plants and fungi). In
other words, it is especially important that investigators new to the
field understand that the appearance of more autophagosomes
does not necessarily equate with more autophagy. In fact, in many
cases, autophagosomes accumulate because of a block in trafficking
to lysosomes without a concomitant change in autophagosome

biogenesis, whereas an increase in autolysosomes may reflect a
reduction in degradative activity. It is worth emphasizing here that
lysosomal digestion is a stage of autophagy and evaluating its com-
petence is a crucial part of the evaluation of autophagic flux, or
complete autophagy.

Here, we present a set of guidelines for the selection and
interpretation of methods for use by investigators who aim to
examine macroautophagy and related processes, as well as for
reviewers who need to provide realistic and reasonable critiques
of papers that are focused on these processes. These guidelines
are not meant to be a formulaic set of rules, because the appro-
priate assays depend in part on the question being asked and
the system being used. In addition, we emphasize that no indi-
vidual assay is guaranteed to be the most appropriate one in
every situation, and we strongly recommend the use of multiple
assays to monitor autophagy. Along these lines, because of the
potential for pleiotropic effects due to blocking autophagy
through genetic manipulation, it is imperative to target by gene
knockout or RNA interference more than one autophagy-
related protein. In addition, some individual Atg proteins, or
groups of proteins, are involved in other cellular pathways
implying that not all Atg proteins can be used as a specific
marker for an autophagic process. In these guidelines, we con-
sider these various methods of assessing autophagy and what
information can, or cannot, be obtained from them. Finally, by
discussing the merits and limits of particular assays, we hope to
encourage technical innovation in the field.
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Introduction

Many researchers, especially those new to the field, need to
determine which criteria are essential for demonstrating
autophagy, either for the purposes of their own research, or in
the capacity of a manuscript or grant review.1 Acceptable
standards are an important issue, particularly considering that
each of us may have his/her own opinion regarding the answer.
Unfortunately, the answer is in part a “moving target” as the
field evolves.2 This can be extremely frustrating for researchers
who may think they have met those criteria, only to find out
that the reviewers of their papers have different ideas. Con-
versely, as a reviewer, it is tiresome to raise the same objections

repeatedly, wondering why researchers have not fulfilled some
of the basic requirements for establishing the occurrence of an
autophagic process. In addition, drugs that potentially modu-
late autophagy are increasingly being used in clinical trials, and
screens are being carried out for new drugs that can modulate
autophagy for therapeutic purposes. Clearly it is important to
determine whether these drugs are truly affecting autophagy,
and which step(s) of the process is affected, based on a set of
accepted criteria. Accordingly, we describe here a basic set of
contemporary guidelines that can be used by researchers to
plan and interpret their experiments, by clinicians to evaluate
the literature with regard to autophagy-modulating therapies,
and by both authors and reviewers to justify or criticize an
experimental approach.

Several fundamental points must be kept in mind as we
establish guidelines for the selection of appropriate methods to
monitor autophagy.2 Importantly, there are no absolute criteria
for determining autophagic status that are applicable in every
biological or experimental context. This is because some assays
are inappropriate, problematic or may not work at all in partic-
ular cells, tissues or organisms.3-6 For example, autophagic
responses to drugs may be different in transformed versus non-
transformed cells, and in confluent versus nonconfluent cells,
or in cells grown with or without glucose.4 In addition, these
guidelines are likely to evolve as new methodologies are devel-
oped and current assays are superseded. Nonetheless, it is use-
ful to establish guidelines for acceptable assays that can reliably
monitor autophagy in many experimental systems. It is impor-
tant to note that in this set of guidelines the term “autophagy”
generally refers to macroautophagy; other autophagy-related
processes are specifically designated when appropriate.

For the purposes of this review, the autophagic compart-
ments (Fig. 1) are referred to as the sequestering (pre-autopha-
gosomal) phagophore (PG; previously called the isolation or
sequestration membrane5,6),7 the autophagosome (AP),8 the
amphisome (AM; generated by the fusion of autophagosomes
with endosomes),9 the lysosome, the autolysosome (AL; gener-
ated by fusion of autophagosomes or amphisomes with a lyso-
some), and the autophagic body (AB; generated by fusion and
release of the internal autophagosomal compartment into the
vacuole in fungi and plants). Except for cases of highly stimu-
lated autophagic sequestration (Fig. 2), autophagic bodies are

Figure 1. Schematic model demonstrating the induction of autophagosome for-
mation when turnover is blocked versus normal autophagic flux, and illustrating
the morphological intermediates of macroautophagy. (A) The initiation of auto-
phagy includes the formation of the phagophore, the initial sequestering compart-
ment, which expands into an autophagosome. Completion of the autophagosome
is followed by fusion with lysosomes and degradation of the contents, allowing
complete flux, or flow, through the entire pathway. This is a different outcome
than the situation shown in (B) where induction results in the initiation of auto-
phagy, but a defect in autophagosome turnover due, for example, to a block in
fusion with lysosomes or disruption of lysosomal functions will result in an
increased number of autophagosomes. In this scenario, autophagy has been
induced, but there is no or limited autophagic flux. (C) An autophagosome can
fuse with an endosome to generate an amphisome, prior to fusion with the lyso-
some. (D) Schematic drawing showing the formation of an autophagic body in
fungi. The large size of the fungal vacuole relative to autophagosomes allows the
release of the single-membrane autophagic body within the vacuole lumen. In
cells that lack vacuolar hydrolase activity, or in the presence of inhibitors that block
hydrolase activity, intact autophagic bodies accumulate within the vacuole lumen
and can be detected by light microscopy. The lysosome of most higher eukaryotes
is too small to allow the release of an autophagic body.
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not seen in animal cells, because lysosomes/autolysosomes are
typically smaller than autophagosomes.6,8,10 One critical point
is that autophagy is a highly dynamic, multi-step process. Like
other cellular pathways, it can be modulated at several steps,
both positively and negatively. An accumulation of autophago-
somes (measured by transmission electron microscopy [TEM]
image analysis,11 as green fluorescent protein [GFP]-MAP1LC3
[GFP-LC3] puncta, or as changes in the amount of lipidated
LC3 [LC3-II] on a western blot), could, for example, reflect a
reduction in autophagosome turnover,12-14 or the inability of
turnover to keep pace with increased autophagosome forma-
tion (Fig. 1B).15 For example, inefficient fusion with endosomes
and/or lysosomes, or perturbation of the transport machin-
ery,16 would inhibit autophagosome maturation to amphisomes
or autolysosomes (Fig. 1C), whereas decreased flux could also
be due to inefficient degradation of the cargo once fusion has
occurred.17 Moreover, GFP-LC3 puncta and LC3 lipidation can
reflect the induction of a different/modified pathway such as
LC3-associated phagocytosis (LAP),18 and the noncanonical
destruction pathway of the paternal mitochondria after
fertilization.19,20

Accordingly, the use of autophagy markers such as LC3-II
must be complemented by assays to estimate overall autophagic
flux, or flow, to permit a correct interpretation of the results.
That is, autophagic activity includes not just the increased syn-
thesis or lipidation of Atg8/LC3 (LC3 is the mammalian homo-
log of yeast Atg8), or an increase in the formation of
autophagosomes, but, most importantly, flux through the entire
system, including lysosomes or the vacuole, and the subsequent
release of the breakdown products. Therefore, autophagic sub-
strates need to be monitored dynamically over time to verify
that they have reached the lysosome/vacuole, and whether or
not they are degraded. By responding to perturbations in the
extracellular environment, cells tune the autophagic flux to

meet intracellular metabolic demands. The impact of autopha-
gic flux on cell death and human pathologies therefore
demands accurate tools to measure not only the current flux of
the system, but also its capacity,21 and its response time, when
exposed to a defined stress.22

One approach to evaluate autophagic flux is to measure the
rate of general protein breakdown by autophagy.6,23 It is possi-
ble to arrest the autophagic flux at a given point, and then
record the time-dependent accumulation of an organelle, an
organelle marker, a cargo marker, or the entire cargo at the
point of blockage; however, this approach, sometimes incor-
rectly referred to as autophagic flux, does not assess complete
autophagy because the experimental block is usually induced
(at least in part) by inhibiting lysosomal proteolysis, which pre-
cludes the evaluation of lysosomal functions. In addition, the
latter assumes there is no feedback of the accumulating struc-
ture on its own rate of formation.24 In an alternative approach,
one can follow the time-dependent decrease of an autophagy-
degradable marker (with the caveat that the potential contribu-
tion of other proteolytic systems and of new protein synthesis
need to be experimentally addressed). In theory, these nonauto-
phagic processes can be assessed by blocking autophagic
sequestration at specific steps of the pathway (e.g., blocking fur-
ther induction or nucleation of new phagophores) and by mea-
suring the decrease of markers distal to the block point.12,14,25

The key issue is to differentiate between the often transient
accumulation of autophagosomes due to increased induction,
and their accumulation due to inefficient clearance of seques-
tered cargos by both measuring the levels of autophagosomes
at static time points and by measuring changes in the rates of
autophagic degradation of cellular components.17 Both pro-
cesses have been used to estimate “autophagy,” but unless the
experiments can relate changes in autophagosome quantity to a
direct or indirect measurement for autophagic flux, the results
may be difficult to interpret.26 A general caution regarding the
use of the term “steady state” is warranted at this point. It
should not be assumed that an autophagic system is at steady
state in the strict biochemical meaning of this term, as this
implies that the level of autophagosomes does not change with
time, and the flux through the system is constant. In these
guidelines, we use steady state to refer to the baseline range of
autophagic flux in a system that is not subjected to specific per-
turbations that increase or decrease that flux.

Autophagic flux refers to the entire process of autophagy,
which encompasses the inclusion (or exclusion) of cargo within
the autophagosome, the delivery of cargo to lysosomes (via
fusion of the latter with autophagosomes or amphisomes) and
its subsequent breakdown and release of the resulting macro-
molecules back into the cytosol (this may be referred to as pro-
ductive or complete autophagy). Thus, increases in the level of
phosphatidylethanolamine (PE)-modified Atg8/LC3 (Atg8–PE/
LC3-II), or even the appearance of autophagosomes, are
not measures of autophagic flux per se, but can reflect the
induction of autophagic sequestration and/or inhibition of
autophagosome or amphisome clearance. Also, it is important
to realize that while formation of Atg8–PE/LC3-II appears to
correlate with the induction of autophagy, we do not know, at
present, the actual mechanistic relationship between Atg8–PE/
LC3-II formation and the rest of the autophagic process;

Figure 2. An autophagic body in a large lysosome of a mouse epithelial cell from a
seminal vesicle in vitro. The arrow shows the single limiting membrane covering
the sequestered rough ER. Image provided by A.L. Kov�acs.
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indeed, it may be possible to execute “self-eating” in the
absence of LC3-II.27

As a final note, we also recommend that researchers refrain
from the use of the expression “percent autophagy” when
describing experimental results, as in “The cells displayed a
25% increase in autophagy.” Instead, it is appropriate to indi-
cate that the average number of GFP-Atg8/LC3 puncta per cell
is increased or a certain percentage of cells displayed punctate
GFP-Atg8/LC3 that exceeds a particular threshold (and this
threshold should be clearly defined in the Methods section), or
that there is a particular increase or decrease in the rate of cargo
sequestration or the degradation of long-lived proteins, when
these are the actual measurements being quantified.

In a previous version of these guidelines,2 the methods were
separated into 2 main sections—steady state and flux. In some
instances, a lack of clear distinction between the actual method-
ologies and their potential uses made such a separation some-
what artificial. For example, fluorescence microscopy was
initially listed as a steady-state method, although this approach
can clearly be used to monitor flux as described in this article,
especially when considering the increasing availability of new
technologies such as microfluidic chambers. Furthermore, the
use of multiple time points and/or lysosomal fusion/degrada-
tion inhibitors can turn even a typically static method such as
TEM into one that monitors flux. Therefore, although we
maintain the importance of monitoring autophagic flux and
not just induction, this revised set of guidelines does not sepa-
rate the methods based on this criterion. Readers should be
aware that this article is not meant to present protocols, but
rather guidelines, including information that is typically not
presented in protocol papers. For detailed information on
experimental procedures we refer readers to various protocols
that have been published elsewhere.28-43,44 Finally, throughout
the guidelines we provide specific cautionary notes, and these
are important to consider when planning experiments and
interpreting data; however, these cautions are not meant to be a
deterrent to undertaking any of these experiments or a hin-
drance to data interpretation.

Collectively, we propose the following guidelines for mea-
suring various aspects of selective and nonselective autophagy
in eukaryotes.

A. Methods for monitoring autophagy

1. Transmission electron microscopy

Autophagy was first detected by TEM in the 1950s (reviewed in
ref. 6). It was originally observed as focal degradation of cyto-
plasmic areas performed by lysosomes, which remains the hall-
mark of this process. Later analyses revealed that it starts with
the sequestration of portions of the cytoplasm by a special
double-membrane structure (now termed the phagophore),
which matures into the autophagosome, still bordered by a
double membrane. Subsequent fusion events expose the cargo
to the lysosome (or the vacuole in fungi or plants) for enzy-
matic breakdown.

The importance of TEM in autophagy research lies in sev-
eral qualities. It is the only tool that reveals the morphology of
autophagic structures at a resolution in the nm range; shows

these structures in their natural environment and position
among all other cellular components; allows their exact identifi-
cation; and, in addition, it can support quantitative studies if
the rules of proper sampling are followed.11

Autophagy can be both selective and nonselective, and TEM
can be used to monitor both. In the case of selective autophagy,
the cargo is the specific substrate being targeted for sequestra-
tion—bulk cytoplasm is essentially excluded. In contrast, dur-
ing nonselective autophagy, the various cytoplasmic
constituents are sequestered randomly, resulting in autophago-
somes in the size range of normal mitochondria. Sequestration
of larger structures (such as big lipid droplets, extremely elon-
gated or branching mitochondria or the entire Golgi complex)
is rare, indicating an apparent upper size limit for individual
autophagosomes. However, it has been observed that under
special circumstances the potential exists for the formation of
huge autophagosomes, which can even engulf a complete
nucleus.25 Cellular components that form large confluent areas
excluding bulk cytoplasm, such as organized, functional myofi-
brillar structures, do not seem to be sequestered by macroau-
tophagy. The situation is less clear with regard to glycogen.45-47

After sequestration, the content of the autophagosome and
its bordering double membrane remain morphologically
unchanged, and clearly recognizable for a considerable time,
which can be measured for at least many minutes. During this
period, the membranes of the sequestered organelles (for exam-
ple, the ER or mitochondria) remain intact, and the density of
ribosomes is conserved at normal levels. Degradation of the
sequestered material and the corresponding deterioration of
ultrastructure commences and runs to completion within the
amphisome and the autolysosome after fusion with a late endo-
some and lysosome (the vacuole in fungi and plants), respec-
tively (Fig. 1).48 The sequential morphological changes during
the autophagic process can be followed by TEM. The matura-
tion from the phagophore through the autolysosome is a
dynamic and continuous process,49 and, thus, the classification
of compartments into discrete morphological subsets can be
problematic; therefore, some basic guidelines are offered below.

In the preceding sections the “autophagosome,” the “amphi-
some” and the “autolysosome” were terms used to describe or
indicate 3 basic stages and compartments of autophagy. It is
important to make it clear that for instances (which may be
many) when we cannot or do not want to differentiate among
the autophagosomal, amphisomal and autolysosomal stage we
use the general term “autophagic vacuole”. In the yeast autoph-
agy field the term “autophagic vesicle” is used to avoid confu-
sion with the primary vacuole, and by now the 2 terms are used
in parallel and can be considered synonyms. It is strongly rec-
ommended, however, to use only the term “autophagic vacu-
ole” when referring to macroautophagy in higher eukaryotic
cells. Autophagosomes, also referred to as initial autophagic
vacuoles (AVi), typically have a double membrane. This struc-
ture is usually distinctly visible by EM as 2 parallel membrane
layers (bilayers) separated by a relatively narrower or
wider electron-translucent cleft, even when applying the sim-
plest routine EM fixation procedure (Fig. 3A).50,51 This elec-
tron-translucent cleft, however, is less visible or not visible in
freeze-fixed samples, suggesting it is an artifact of sample prep-
aration (see ref. 25, 68 and Fig. S3 in ref. 52). In the case of
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nonselective autophagy, autophagosomes contain cytosol and/
or organelles appearing morphologically intact as also
described above.48,53 Amphisomes54 can sometimes be identi-
fied by the presence of small intralumenal vesicles.55 These
intralumenal vesicles are delivered into the lumen by fusion of
the autophagosome/autophagic vacuole (AV) limiting

membrane with multivesicular endosomes, and care should
therefore be taken in the identification of the organelles, espe-
cially in cells that produce large numbers of multivesicular
body (MVB)-derived exosomes (such as tumor or stem cells).56

Late/degradative autophagic vacuoles/autolysosomes (AVd or
AL) typically have only one limiting membrane; frequently
they contain electron dense cytoplasmic material and/or organ-
elles at various stages of degradation (Fig. 3A and B);48,53

although late in the digestion process, they may contain only a
few membrane fragments and be difficult to distinguish from
lysosomes, endosomes, or tubular smooth ER cut in cross-sec-
tion. Unequivocal identification of these structures and of lyso-
somes devoid of visible content requires immuno-EM
detection of a cathepsin or other lysosomal hydrolase (e.g.,
ACP2 [acid phosphatase 2, lysosomal]57,58) that is detected on
the limiting membrane of the lysosome.59 Smaller, often elec-
tron dense, lysosomes may predominate in some cells and
exhibit hydrolase immunoreactivity within the lumen and on
the limiting membrane.60

In addition, structural proteins of the lysosome/late endo-
some, such as LAMP1 and LAMP2 or SCARB2/LIMP-2, can be
used for confirmation. No single protein marker, however, has
been effective in discriminating autolysosomes from the com-
partments mentioned above, in part due to the dynamic fusion
and “kiss-and-run” events that promote interchange of compo-
nents that can occur between these organelle subtypes. Rigor-
ous further discrimination of these compartments from each
other and other vesicles ultimately requires demonstrating the
colocalization of a second marker indicating the presence of an
autophagic substrate (e.g., LC3-CTSD [cathepsin D] colocaliza-
tion) or the acidification of the compartment (e.g., mRFP/
mCherry-GFP-LC3 probes [see Tandem mRFP/mCherry-GFP
fluorescence microscopy], or Bodipy-pepstatin A detection of
CTSD in an activated form within an acidic compartment),
and, when appropriate, by excluding markers of other vesicular
components.57,61,62

The sequential deterioration of cytoplasmic structures being
digested can be used for identifying autolysosomes by TEM.
Even when the partially digested and destroyed structure can-
not be recognized in itself, it can be traced back to earlier forms
by identifying preceding stages of sequential morphological
deterioration. Degradation usually leads first to increased den-
sity of still recognizable organelles, then to vacuoles with heter-
ogenous density, which become more homogenous and
amorphous, mostly electron dense, but sometimes light (i.e.,
electron translucent). It should be noted that, in pathological
states, it is not uncommon that active autophagy of autolyso-
somes and damaged lysosomes (“lysosophagy”) may yield pop-
ulations of double-membrane limited autophagosomes
containing partially digested amorphous substrates in the
lumen. These structures, which are enriched in hydrolases, are
seen in swollen dystrophic neurites in some neurodegenerative
diseases,60 and in cerebellar slices cultured in vitro and infected
with prions.63

It must be emphasized that in addition to the autophagic
input, other processes (e.g., endosomal, phagosomal, chaper-
one-mediated) also carry cargo to the lysosomes,64,65 in some
cases through the intermediate step of direct endosome fusion
with an autophagosome to form an amphisome. This process is

Figure 3. TEM images of autophagic vacuoles in isolated mouse hepatocytes. (A)
One autophagosome or early initial autophagic vacuole (AVi) and one degradative
autophagic vacuole (AVd) are shown. The AVi can be identified by its contents
(morphologically intact cytoplasm, including ribosomes, and rough ER), and the
limiting membrane that is partially visible as 2 bilayers separated by a narrow elec-
tron-lucent cleft, i.e., as a double membrane (arrow). The AVd can be identified by
its contents, partially degraded, electron-dense rough ER. The vesicle next to the
AVd is an endosomal/lysosomal structure containing 5-nm gold particles that were
added to the culture medium to trace the endocytic pathway. (B) One AVi, contain-
ing rough ER and a mitochondrion, and one AVd, containing partially degraded
rough ER, are shown. Note that the limiting membrane of the AVi is not clearly vis-
ible, possibly because it is tangentially sectioned. However, the electron-lucent
cleft between the 2 limiting membranes is visible and helps in the identification of
the AVi. The AVd contains a region filled by small internal vesicles (asterisk), indi-
cating that the AVd has fused with a multivesicular endosome. mi, mitochondrion.
Image provided by E.-L. Eskelinen.
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exceptionally common in the axons of neurons.66 Therefore,
strictly speaking, we can only have a lytic compartment con-
taining cargos arriving from several possible sources; however,
we still may use the term “autolysosome” if the content appears
to be overwhelmingly autophagic. Note that the engulfment of
apoptotic cells via phagocytosis also produces lysosomes that
contain cytoplasmic structures, but in this case it originates
from the dying cell; hence the possibility of an extracellular ori-
gin for such content must be considered when monitoring
autophagy in settings where apoptotic cell death may be rea-
sonably expected or anticipated.

For many physiological and pathological situations, exami-
nation of both early and late autophagic vacuoles yields valu-
able data regarding the overall autophagy status in the cells.15

Along these lines, it is possible to use immunocytochemistry to
follow particular cytosolic proteins such as SOD1/CuZn super-
oxide dismutase and CA/carbonic anhydrase to determine the
stage of autophagy; the former is much more resistant to lyso-
somal degradation.67

In some autophagy-inducing conditions it is possible to
observe multi-lamellar membrane structures in addition to the
conventional double-membrane autophagosomes, although the
nature of these structures is not fully understood. These multi-
lamellar structures may indeed be multiple double layers of
phagophores68 and positive for LC3,69 they could be autolyso-
somes,70 or they may form artifactually during fixation.68

Special features of the autophagic process may be clarified by
immuno-TEM with gold-labeling,71,72 using antibodies, for
example, to cargo proteins of cytoplasmic origin and to LC3 to
verify the autophagic nature of the compartment. LC3 immu-
nogold labeling also makes it possible to detect novel degrada-
tive organelles within autophagy compartments. This is the
case with the autophagoproteasome73 where costaining for LC3
and ubiquitin-proteasome system (UPS) antigens occurs. The
autophagoproteasome consists of single-, double-, or multiple-
membrane LC3-positive autophagosomes costaining for spe-
cific components of the UPS. It may be that a rich multi-enzy-
matic (both autophagic and UPS) activity takes place within
these organelles instead of being segregated within different cell
domains.

Although labeling of LC3 can be difficult, an increasing
number of commercial antibodies are becoming available,
among them good ones to visualize the GFP moiety of GFP-
LC3 reporter constructs.74 It is important to keep in mind that
LC3 can be associated with nonautophagic structures (see Xen-
ophagy, and Noncanonical use of autophagy-related proteins).
LC3 is involved in specialized forms of endocytosis like LC3-
associated phagocytosis. In addition, LC3 can decorate vesicles
dedicated to exocytosis in nonconventional secretion systems
(reviewed in ref. 75,76). Antibodies against an abundant cyto-
solic protein will result in high labeling all over the cytoplasm;
however, organelle markers work well. Because there are very
few characterized proteins that remain associated with the
completed autophagosome, the choices for confirmation of its
autophagic nature are limited. Furthermore, autophagosome-
associated proteins may be cell type-specific. At any rate, the
success of this methodology depends on the quality of the anti-
bodies and also on the TEM preparation and fixation proce-
dures utilized. With immuno-TEM, authors should provide

controls showing that labeling is specific. This may require
quantitative comparison of labeling over different cellular com-
partments not expected to contain antigen and those contain-
ing the antigen of interest.

In clinical situations it is difficult to demonstrate autophagy
clearly in tissues of formalin-fixed and paraffin-embedded
biopsy samples retrospectively, because (1) tissues fixed in for-
malin have low or no LC3 detectable by routine immunostain-
ing, because phospholipids melt together with paraffin during
the sample preparation, and (2) immunogold electron micros-
copy of many tissues not optimally fixed for this purpose (e.g.,
using rapid fixation) produces low-quality images. Combining
antigen retrieval with the avidin-biotin peroxidase complex
(ABC) method may be quite useful for these situations. For
example, immunohistochemistry can be performed using an
antigen retrieval method, then tissues are stained by the ABC
technique using a labeled anti-human LC3 antibody. After
imaging by light microscopy, the same prepared slides can be
remade into sections for TEM examination, which can reveal
peroxidase reaction deposits in vacuoles within the region that
is LC3-immunopositive by light microscopy.77 In addition, sta-
tistical information should be provided due to the necessity of
showing only a selective number of sections in publications.

We note here again that for quantitative data it is necessary
to use proper volumetric analysis rather than just counting
numbers of sectioned objects. On the one hand, it must be kept
in mind that even volumetric morphometry/stereology only
shows either steady state levels, or a snapshot in a changing
dynamic process. Such data by themselves are not informative
regarding autophagic flux, unless carried out over multiple
time points. Alternatively, investigation in the presence and
absence of flux inhibitors can reveal the dynamic changes in
various stages of the autophagic process.12,21,78,79,42 On the
other hand, if the turnover of autolysosomes is very rapid, a
low number/volume will not necessarily be an accurate reflec-
tion of low autophagic activity. However, quantitative analyses
indicate that autophagosome volume in many cases does corre-
late with the rates of protein degradation.80-82 One potential
compromise is to perform whole cell quantification of autopha-
gosomes using fluorescence methods, with qualitative verifica-
tion by TEM,83 to show that the changes in fluorescent puncta
reflect corresponding changes in autophagic structures.

One additional caveat with TEM, and to some extent with
confocal fluorescence microscopy, is that the analysis of a single
plane within a cell can be misleading and may make the identi-
fication of autophagic structures difficult. Confocal microscopy
and fluorescence microscopy with deconvolution software (or
with much more work, 3-dimensional TEM) can be used to
generate multiple/serial sections of the same cell to reduce this
concern; however, in many cases where there is sufficient struc-
tural resolution, analysis of a single plane in a relatively large
cell population can suffice given practical limitations. Newer
EM technologies, including focused ion beam dual-beam EM,
should make it much easier to apply three-dimensional analy-
ses. An additional methodology to assess autophagosome accu-
mulation is correlative light and electron microscopy (CLEM),
which is helpful in confirming that fluorescent structures are
autophagosomes.84-86 Along these lines, it is important to note
that even though GFP fluorescence will be quenched in the
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acidic environment of the autolysosome, some of the GFP
puncta detected by light microscopy may correspond to early
autolysosomes prior to GFP quenching. The mini Singlet Oxy-
gen Generator (miniSOG) fluorescent flavoprotein, which is
less than half the size of GFP, provides an additional means to
genetically tag proteins for CLEM analysis under conditions
that are particularly suited to subsequent TEM analysis.87 Com-
binatorial assays using tandem monomeric red fluorescent pro-
tein (mRFP)-GFP-LC3 (see Tandem mRFP/mCherry-GFP
fluorescence microscopy) along with static TEM images should
help in the analysis of flux and the visualization of cargo
structures.88

Another technique that has proven quite useful for analyz-
ing the complex membrane structures that participate in
autophagy is 3-dimensional electron tomography,89,90 and cry-
oelectron microscopy (Fig. 4). More sophisticated, cryo-soft X-
ray tomography (cryo-SXT) is an emerging imaging technique
used to visualize autophagosomes.91 Cryo-SXT extracts ultra-
structural information from whole, unstained mammalian cells
as close to the “near-native” fully-hydrated (living) state as pos-
sible. Correlative studies combining cryo-fluorescence and
cryo-SXT workflow (cryo-CLXM) have been applied to capture
early autophagosomes.

Finally, although only as an indirect measurement, the com-
parison of the ratio of autophagosomes to autolysosomes by
TEM can support alterations in autophagy identified by other
procedures.92 In this case it is important to always compare
samples to the control of the same cell type and in the same
growth phase, and to acquire data at different time points, as
the autophagosome/autolysosome ratio varies in time in a cell
context-dependent fashion, depending on their clearance activ-
ity. It may also be necessary to distinguish autolysosomes from
telolysosomes/late secondary lysosomes (the former are actively
engaged in degradation, whereas the latter have reached an end
point in the breakdown of lumenal contents) because the lyso-
some number generally increases when autophagy is induced.

An additional category of lysosomal compartments, especially
common in disease states and aged postmitotic cells such as
neurons, is the residual body. This category includes ceroid and
lipofuscin, lobulated vesicular compartments of varying size
composed of highly indigestible complexes of protein and lipid
and abundant, mostly inactive, acid hydrolases. Reflecting
end-stage unsuccessful incomplete autolysosomal digestion,
lipofuscin is fairly easily distinguished from AVs and lysosomes
by TEM but can be easily confused with autolysosomes in
immunocytochemistry studies at the light microscopy level.57

TEM observations of platinum-carbon replicas obtained by
the freeze fracture technique can also supply useful ultrastructural
information on the autophagic process. In quickly frozen and
fractured cells the fracture runs preferentially along the hydro-
phobic plane of the membranes, allowing characterization of the
limiting membranes of the different types of autophagic vacuoles
and visualization of their limited protein intramembrane particles
(IMPs, or integral membrane proteins). Several studies have been
carried out using this technique on yeast,93 as well as onmamma-
lian cells or tissues; first on mouse exocrine pancreas,94 then on
mouse and rat liver,95,96 mouse seminal vesicle epithelium,25,68 rat
tumor and heart,97 or cancer cell lines (e.g., breast cancer MDA-
MB-231)98 to investigate the various phases of autophagosome
maturation, and to reveal useful details about the origin and evo-
lution of their limiting membranes.6,99-102

The phagophore and the limiting membranes of autophago-
somes contain few, or no detectable, IMPs (Fig. 5A, B), when
compared to other cellular membranes and to the membranes of
lysosomes. In subsequent stages of the autophagic process the
fusion of the autophagosome with an endosome and a lysosome
results in increased density of IMPs in the membrane of the
formed autophagic compartments (amphisomes, autolysosomes;
Fig. 5C).6,25,93-96,103,104 Autolysosomes are delimited by a single
membrane because, in addition to the engulfed material, the
inner membrane is also degraded by the lytic enzymes. Similarly,
the limiting membrane of autophagic bodies in yeast (and

Figure 4. Cryoelectron microscopy can be used as a three-dimensional approach to monitor the autophagic process. Two computed sections of an electron tomogram of
the autophagic vacuole-rich cytoplasm in a hemophagocyte of a semi-thin section after high-pressure freezing preparation. The dashed area is membrane-free (A) but
tomography reveals newly formed or degrading membranes with a parallel stretch (B). Image published previously2185 and provided by M. Schneider and P. Walter.
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presumably plants) is also quickly broken down under normal
conditions. Autophagic bodies can be stabilized, however, by the
addition of phenylmethylsulfonylfluoride (PMSF) or genetically
by the deletion of the yeast PEP4 gene (see The Cvt pathway,
mitophagy, pexophagy, piecemeal microautophagy of the nucleus
and late nucleophagy in yeast and filamentous fungi.). Thus,
another method to consider for monitoring autophagy in yeast
(and potentially in plants) is to count autophagic bodies by TEM
using at least 2 time points.105 The advantage of this approach is
that it can provide accurate information on flux even when the
autophagosomes are abnormally small.106,107 Thus, although a
high frequency of “abnormal” structures presents a challenge,
TEM is still very helpful in analyzing autophagy.

Cautionary notes: Despite the introduction of many new
methods TEMmaintains its special role in autophagy research.
There are, however, difficulties in utilizing TEM. It is relatively
time consuming, and needs technical expertise to ensure
proper handling of samples in all stages of preparation from
fixation to sectioning and staining (contrasting). After all these
criteria are met, we face the most important problem of proper
identification of autophagic structures. This is crucial for both
qualitative and quantitative characterization, and needs con-
siderable experience, even in the case of one cell type. The diffi-
culty lies in the fact that many subcellular components may be
mistaken for autophagic structures. For example, some authors
(or reviewers of manuscripts) assume that almost all cyto-
plasmic structures that, in the section plane, are surrounded by
2 (more or less) parallel membranes are autophagosomes.
Structures appearing to be limited by a double membrane,
however, may include swollen mitochondria, plastids in plant
cells, cellular interdigitations, endocytosed apoptotic bodies,
circular structures of lamellar smooth endoplasmic reticulum
(ER), and even areas surrounded by rough ER. Endosomes,
phagosomes and secretory vacuoles may have heterogenous
content that makes it possible to confuse them with autolyso-
somes. Additional identification problems may arise from
damage caused by improper sample taking or fixation
artifacts.50,51,108,109

Whereas fixation of in vitro samples is relatively straight-
forward, fixation of excised tissues requires care to avoid sam-
pling a nonrepresentative, uninformative, or damaged part of

the tissue. For instance, if 95% of a tumor is necrotic, TEM
analysis of the necrotic core may not be informative, and if
the sampling is from the viable rim, this needs to be specified
when reported. Clearly this introduces the potential for sub-
jectivity because reviewers of a paper cannot request multiple
images with a careful statistical analysis with these types of
samples. In addition, ex vivo samples are not typically ran-
domized during processing, further complicating the possibil-
ity of valid statistical analyses. Ex vivo tissue should be fixed
immediately and systematically across samples to avoid
changes in autophagy that may occur simply due to the
elapsed time ex vivo. It is recommended that for tissue sam-
ples, perfusion fixation should be used when possible. For
yeast, rapid freezing techniques such as high pressure freezing
followed by freeze substitution (i.e., dehydration at low tem-
perature) may be particularly useful.

Quantification of autophagy by TEM morphometry has
been rather controversial, and unreliable procedures still
continue to be used. For the principles of reliable quantifi-
cation and to avoid misleading results, excellent reviews are
available.11,110-112 In line with the basic principles of mor-
phometry we find it necessary to emphasize here some
common problems with regard to quantification. Counting
autophagic vacuole profiles in sections of cells (i.e., number
of autophagic profiles per cell profile) may give unreliable
results, partly because both cell areas and profile areas are
variable and also because the frequency of section profiles
depends on the size of the vacuoles. However, estimation of
the number of autophagic profiles per cell area is more reli-
able and correlates well with the volume fraction mentioned
below.53 There are morphometric procedures to measure or
estimate the size range and the number of spherical objects
by profiles in sections;111 however, such methods have been
used in autophagy research only a few times.32,107,113,114

Proper morphometry described in the cited reviews will
give us data expressed in mm3 autophagic vacuole/mm3

cytoplasm for relative volume (also called volume fraction
or volume density), or mm2 autophagic vacuole surface/mm3

cytoplasm for relative surface (surface density). Examples of
actual morphometric measurements for the characterization
of autophagic processes can be found in several

Figure 5. Different autophagic vacuoles observed after freeze fracturing in cultured osteosarcoma cells after treatment with the autophagy inducer voacamine.101 (A)
Early autophagosome delimited by a double membrane. (B) Inner monolayer of an autophagosome membrane deprived of protein particles. (C) Autolysosome delimited
by a single membrane rich in protein particles. In the cross-fractured portion (on the right) the profile of the single membrane and the inner digested material are easily
visible. Images provided by S. Meschini, M. Condello and A. Giuseppe.
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articles.21,108,111,115,116 It is appropriate to note here that a
change in the volume fraction of the autophagic compart-
ment may come from 2 sources; from the real growth of its
size in a given cytoplasmic volume, or from the decrease of
the cytoplasmic volume itself. To avoid this so-called “refer-
ence trap,” the reference space volume can be determined
by different methods.112,117 If different magnifications are
used for measuring the autophagic vacuoles and the cyto-
plasm (which may be practical when autophagy is less
intense) correction factors should always be used.

In some cases, it may be prudent to employ tomo-
graphic reconstructions of the TEM images to confirm that
the autophagic compartments are spherical and are not
being confused with interdigitations observed between
neighboring cells, endomembrane cisternae or damaged
mitochondria with similar appearance in thin-sections (e.g.,
see ref. 118), but this is obviously a time-consuming
approach requiring sophisticated equipment. In addition,
interpretation of tomographic images can be problematic.
For example, starvation-induced autophagosomes should
contain cytoplasm (i.e., cytosol and possibly organelles),
but autophagosome-related structures involved in specific
types of autophagy should show the selective cytoplasmic
target, but may be relatively devoid of bulk cytoplasm.
Such processes include selective peroxisome or mitochon-
dria degradation (pexophagy or mitophagy, respec-
tively),119,120 targeted degradation of pathogenic microbes
(xenophagy),121-126 a combination of xenophagy and stress-
induced mitophagy,127 as well as the yeast biosynthetic
cytoplasm-to-vacuole targeting (Cvt) pathway.128 Further-
more, some pathogenic microbes express membrane-dis-
rupting factors during infection (e.g., phospholipases) that
disrupt the normal double-membrane architecture of auto-
phagosomes.129 It is not even clear if the sequestering com-
partments used for specific organelle degradation or
xenophagy should be termed autophagosomes or if alter-
nate terms such as pexophagosome,130 mitophagosome and
xenophagosome should be used, even though the mem-
brane and mechanisms involved in their formation may be
identical to those for starvation-induced autophagosomes;
for example, the double-membrane vesicle of the Cvt path-
way is referred to as a Cvt vesicle.131

The confusion of heterophagic structures with autophagic
ones is a major source of misinterpretation. A prominent
example of this is related to apoptosis. Apoptotic bodies
from neighboring cells are readily phagocytosed by surviv-
ing cells of the same tissue.132,133 Immediately after phago-
cytic uptake of apoptotic bodies, phagosomes may have
double limiting membranes. The inner one is the plasma
membrane of the apoptotic body and the outer one is that
of the phagocytizing cell. The early heterophagic vacuole
formed in this way may appear similar to an autophago-
some or, in a later stage, an early autolysosome in that it
contains recognizable or identifiable cytoplasmic material. A
major difference, however, is that the surrounding mem-
branes are the thicker plasma membrane type, rather than
the thinner sequestration membrane type (9–10 nm, versus
7–8 nm, respectively).109 A good feature to distinguish
between autophagosomes and double plasma membrane-

bound structures is the lack of the distended empty space
(characteristic for the sequestration membranes of autopha-
gosomes) between the 2 membranes of the phagocytic
vacuoles. In addition, engulfed apoptotic bodies usually
have a larger average size than autophagosomes.134,135 The
problem of heterophagic elements interfering with the iden-
tification of autophagic ones is most prominent in cell types
with particularly intense heterophagic activity (such as mac-
rophages, and amoeboid or ciliate protists). Special atten-
tion has to be paid to this problem in cell cultures or in
vivo treatments (e.g., with toxic or chemotherapeutic
agents) causing extensive apoptosis.

The most common organelles confused with autophagic
vacuoles are mitochondria, ER, endosomes, and also
(depending on their structure) plastids in plants. Due to the
cisternal structure of the ER, double-membrane-like struc-
tures surrounding mitochondria or other organelles are
often observed after sectioning,136 but these can also corre-
spond to cisternae of the ER coming into and out of the
section plane.50 If there are ribosomes associated with these
membranes they can help in distinguishing them from the
ribosome-free double-membrane of the phagophore and
autophagosome. Observation of a mixture of early and late
autophagic vacuoles that is modulated by the time point of
collection and/or brief pulses of bafilomycin A1 (a vacuolar-
type HC-ATPase [V-ATPase] inhibitor) to trap the cargo in
a recognizable early state42 increases the confidence that an
autophagic process is being observed. In these cases, how-
ever, the possibility that feedback activation of sequestration
gets involved in the autophagic process has to be carefully
considered. To minimize the impact of errors, exact catego-
rization of autophagic elements should be applied. Efforts
should be made to clarify the nature of questionable struc-
tures by extensive preliminary comparison in many test
areas. Elements that still remain questionable should be cat-
egorized into special groups and measured separately.
Should their later identification become possible, they can
be added to the proper category or, if not, kept separate.

For nonspecialists it can be particularly difficult to distin-
guish among amphisomes, autolysosomes and lysosomes,
which are all single-membrane compartments containing more
or less degraded material. Therefore, we suggest in general to
measure autophagosomes as a separate category for a start, and
to compile another category of degradative compartments
(including amphisomes, autolysosomes and lysosomes). All of
these compartments increase in quantity upon true autophagy
induction; however, in pathological states, it may be informa-
tive to discriminate among these different forms of degradative
compartments, which may be differentially affected by disease
factors.

In yeast, it is convenient to identify autophagic bodies
that reside within the vacuole lumen, and to quantify
them as an alternative to the direct examination of autopha-
gosomes. However, it is important to keep in mind that it
may not be possible to distinguish between autophagic bod-
ies that are derived from the fusion of autophagosomes
with the vacuole, and the single-membrane vesicles that are
generated during microautophagy-like processes such as
micropexophagy and micromitophagy.

40 D. J. KLIONSKY ET AL.



Conclusion: EM is an extremely informative and powerful
method for monitoring autophagy and remains the only technique
that shows autophagy in its complex cellular environment with
subcellular resolution. The cornerstone of successfully using TEM
is the proper identification of autophagic structures, which is also
the prerequisite to get reliable quantitative results by EM mor-
phometry. EM is best used in combination with other methods to
ensure the complex and holistic approach that is becoming
increasingly necessary for further progress in autophagy research.

2. Atg8/LC3 detection and quantification

Atg8/LC3 is the most widely monitored autophagy-related pro-
tein. In this section we describe multiple assays that utilize this
protein, separating the descriptions into several subsections for
ease of discussion.

a. Western blotting and ubiquitin-like protein conjugation
systems
The Atg8/LC3 protein is a ubiquitin-like protein that can be
conjugated to PE (and possibly to phosphatidylserine137). In
yeast and several other organisms, the conjugated form is
referred to as Atg8–PE. The mammalian homologs of Atg8
constitute a family of proteins subdivided in 2 major subfami-
lies: MAP1LC3/LC3 and GABARAP. The former consists of
LC3A, B, B2 and C, whereas the latter family includes
GABARAP, GABARAPL1 and GABARAPL2/GATE-16.138

After cleavage of the precursor protein mostly by the cysteine
protease ATG4B,139,140 the nonlipidated and lipidated forms
are usually referred to respectively as LC3-I and LC3-II, or
GABARAP and GABARAP–PE, etc. The PE-conjugated form
of Atg8/LC3, although larger in mass, shows faster electropho-
retic mobility in SDS-PAGE gels, probably as a consequence of
increased hydrophobicity. The positions of both Atg8/LC3-I
(approximately 16–18 kDa) and Atg8–PE/LC3-II (approxi-
mately 14–16 kDa) should be indicated on western blots when-
ever both are detectable. The differences among the LC3
proteins with regard to function and tissue-specific expression
are not known. Therefore, it is important to indicate the iso-
form being analyzed just as it is for the GABARAP subfamily.

The mammalian Atg8 homologs share from 29% to 94%
sequence identity with the yeast protein and have all, apart
from GABARAPL3, been demonstrated to be involved in auto-
phagosome biogenesis.141 The LC3 proteins are involved in
phagophore formation, with participation of GABARAP sub-
family members in later stages of autophagosome formation, in
particular phagophore elongation and closure.142 Some evi-
dence, however, suggests that at least in certain cell types the
LC3 subfamily may be dispensable for bulk autophagic seques-
tration of cytosolic proteins, whereas the GABARAP subfamily
is absolutely required.143 Due to unique features in their molec-
ular surface charge distribution,144 emerging evidence indicates
that LC3 and GABARAP proteins may be involved in recogniz-
ing distinct sets of cargoes for selective autophagy.145-147 Never-
theless, in most published studies, LC3 has been the primary
Atg8 homolog examined in mammalian cells and the one that
is typically characterized as an autophagosome marker per se.
Note that although this protein is referred to as “Atg8” in many
other systems, we primarily refer to it here as LC3 to

distinguish it from the yeast protein and from the GABARAP
subfamily. LC3, like the other Atg8 homologs, is initially syn-
thesized in an unprocessed form, proLC3, which is converted
into a proteolytically processed form lacking amino acids from
the C terminus, LC3-I, and is finally modified into the PE-con-
jugated form, LC3-II (Fig. 6). Atg8–PE/LC3-II is the only pro-
tein marker that is reliably associated with completed
autophagosomes, but is also localized to phagophores. In yeast,
Atg8 amounts increase at least 10-fold when autophagy is
induced.148 In mammalian cells, however, the total levels of
LC3 do not necessarily change in a predictable manner, as there
may be increases in the conversion of LC3-I to LC3-II, or a
decrease in LC3-II relative to LC3-I if degradation of LC3-II via
lysosomal turnover is particularly rapid (this can also be a con-
cern in yeast with regard to vacuolar turnover of Atg8–PE).
Both of these events can be seen sequentially in several cell
types as a response to total nutrient and serum starvation. In
cells of neuronal origin a high ratio of LC3-I to LC3-II is a com-
mon finding.149 For instance, SH-SY5Y neuroblastoma cell
lines display only a slight increase of LC3-II after nutrient dep-
rivation, whereas LC3-I is clearly reduced. This is likely related
to a high basal autophagic flux, as suggested by the higher
increase in LC3-II when cells are treated with NH4Cl,

150,151

although cell-specific differences in transcriptional regulation
of LC3 may also play a role. In fact stimuli or stress that inhibit
transcription or translation of LC3 might actually be misinter-
preted as inhibition of autophagy. Importantly, in brain tissue,
LC3-I is much more abundant than LC3-II and the latter form
is most easily discernable in enriched fractions of autophago-
somes, autolysosomes and ER, and may be more difficult to
detect in crude homogenate or cytosol.152 Indeed, when brain
crude homogenate is run in parallel to a crude liver fraction,
both LC3-I and LC3-II are observed in the liver, but only LC3-I
may be discernible in brain homogenate (L. Toker and G.
Agam, personal communication), depending on the LC3 anti-
body used.153 In studies of the brain, immunoblot analysis of
the membrane and cytosol fraction from a cell lysate, upon
appropriate loading of samples to achieve quantifiable and
comparative signals, can be useful to measure LC3 isoforms.

The pattern of LC3-I to LC3-II conversion seems not only
to be cell specific, but also related to the kind of stress to
which cells are subjected. For example, SH-SY5Y cells display
a strong increase of LC3-II when treated with the mitochon-
drial uncoupler CCCP, a well-known inducer of mitophagy
(although it has also been reported that CCCP may actually
inhibit mitophagy154). Thus, neither assessment of LC3-I con-
sumption nor the evaluation of LC3-II levels would necessarily
reveal a slight induction of autophagy (e.g., by rapamycin).
Also, there is not always a clear precursor/product relationship
between LC3-I and LC3-II, because the conversion of the for-
mer to the latter is cell type-specific and dependent on the
treatment used to induce autophagy. Accumulation of LC3-II
can be obtained by interrupting the autophagosome-lysosome
fusion step (e.g., by depolymerizing acetylated microtubules
with vinblastine), by inhibiting the ATP2A/SERCA Ca2C

pump, by specifically inhibiting the V-ATPase with bafilomy-
cin A1

155-157 or by raising the lysosomal pH by the addition of
chloroquine,158,159 although some of these treatments may
increase autophagosome numbers by disrupting the lysosome-
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dependent activation of MTOR (mechanistic target of rapamy-
cin [serine/threonine kinase] complex 1 [MTORC1; note that
the original term “mTOR” was named to distinguish the
“mammalian” target of rapamycin from the yeast proteins160],
a major suppressor of autophagy induction),161,162 or by

inhibiting lysosome-mediated proteolysis (e.g., with a cysteine
protease inhibitor such as E-64d, the aspartic protease inhibi-
tor pepstatin A, the cysteine, serine and threonine protease
inhibitor leupeptin or treatment with bafilomycin A1, NH4Cl
or chloroquine158,163,164). Western blotting can be used to

Figure 6. (For figure caption see page 43)
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monitor changes in LC3 amounts (Fig. 6);26,165 however, even
if the total amount of LC3 does increase, the magnitude of the
response is generally less than that documented in yeast. It is
worth noting that since the conjugated forms of the
GABARAP subfamily members are usually undetectable with-
out induction of autophagy in mammalian and other verte-
brate cells,166,167 these proteins might be more suitable than
LC3 to study and quantify subtle changes in autophagy
induction.

In most organisms, Atg8/LC3 is initially synthesized with a
C-terminal extension that is removed by the Atg4 protease.
Accordingly, it is possible to use this processing event to moni-
tor Atg4 activity. For example, when GFP is fused at the C ter-
minus of Atg8 (Atg8-GFP), the GFP moiety is removed in the
cytosol to generate free Atg8 and GFP. This processing can be
easily monitored by western blot.168 It is also possible to use
assays with an artificial fluorogenic substrate, or a fusion of
LC3B to phospholipase A2 that allows the release of the active
phospholipase for a subsequent fluorogenic assay,169 and there
is a fluorescence resonance energy transfer (FRET)-based assay
utilizing CFP and YFP tagged versions of LC3B and GABA-
RAPL2/GATE-16 that can be used for high-throughput screen-
ing.170 Another method to monitor ATG4 activity in vivo uses
the release of Gaussia luciferase from the C terminus of LC3
that is tethered to actin.171 Note that there are 4 Atg4 homologs
in mammals, and they have different activities with regard to
the Atg8 subfamilies of proteins.172 ATG4A is able to cleave the
GABARAP subfamily, but has very limited activity toward the
LC3 subfamily, whereas ATG4B is apparently active against
most or all of these proteins.139,140 The ATG4C and ATG4D
isoforms have minimal activity for any of the Atg8 homologs.
In particular because a C-terminal fusion will be cleaved imme-
diately by Atg4, researchers should be careful to specify
whether they are using GFP-Atg8/LC3 (an N-terminal fusion,
which can be used to monitor various steps of autophagy) or
Atg8/LC3-GFP (a C-terminal fusion, which can only be used to
monitor Atg4 activity).173

Cautionary notes: There are several important caveats to
using Atg8/LC3-II or GABARAP-II to visualize fluctuations in
autophagy. First, changes in LC3-II amounts are tissue- and
cell context-dependent.153,174 Indeed, in some cases, autopha-
gosome accumulation detected by TEM does not correlate well
with the amount of LC3-II (Z. Tall�oczy, R.L.A. de Vries, and

D. Sulzer, unpublished results; E.-L. Eskelinen, unpublished
results). This is particularly evident in those cells that show low
levels of LC3-II (based on western blotting) because of an
intense autophagic flux that consumes this protein,175 or in cell
lines having high levels of LC3-II that are tumor-derived, such
as MDA-MB-231.174 Conversely, without careful quantification
the detectable formation of LC3-II is not sufficient evidence for
autophagy. For example, homozygous deletion of Becn1 does
not prevent the formation of LC3-II in embryonic stem cells
even though autophagy is substantially reduced, whereas dele-
tion of Atg5 results in the complete absence of LC3-II (see
Fig. 5A and supplemental data in ref. 176). The same is true for
the generation of Atg8–PE in yeast in the absence of VPS30/
ATG6 (see Fig. 7 in ref. 177). Thus, it is important to remember
that not all of the autophagy-related proteins are required for
Atg8/LC3 processing, including lipidation.177 Vagaries in the
detection and amounts of LC3-I versus LC3-II present techni-
cal problems. For example, LC3-I is very abundant in brain tis-
sue, and the intensity of the LC3-I band may obscure detection
of LC3-II, unless the polyacrylamide crosslinking density is
optimized, or the membrane fraction of LC3 is first separated
from the cytosolic fraction.44 Conversely, certain cell lines have
much less visible LC3-I compared to LC3-II. In addition, tis-
sues may have asynchronous and heterogeneous cell popula-
tions, and this variability may present challenges when
analyzing LC3 by western blotting.

Second, LC3-II also associates with the membranes of non-
autophagic structures. For example, some members of the
PCDHGC/g-protocadherin family undergo clustering to form
intracellular tubules that emanate from lysosomes.178 LC3-II is
recruited to these tubules, where it appears to promote or sta-
bilize membrane expansion. Furthermore, LC3 can be
recruited directly to apoptotic cell-containing phagosome
membranes,179,180 macropinosomes,179 the parasitophorous
vacuole of Toxoplasma gondii,181 and single-membrane entotic
vacuoles,179 as well as to bacteria-containing phagosome mem-
branes under certain immune activating conditions, for exam-
ple, toll-like receptor (TLR)-mediated stimulation in
LC3-associated phagocytosis.182,183 Importantly, LC3 is
involved in secretory trafficking as it has been associated with
secretory granules in mast cells184 and PC12 hormone-secret-
ing cells.185 LC3 is also detected on secretory lysosomes in
osteoblasts186 and in amphisome-like structures involved in

Figure 6. (See previous page for Figure 6.) LC3-I conversion and LC3-II turnover. (A) Expression levels of LC3-I and LC3-II during starvation. Atg5C/C (wild-type) and
atg5-/- MEFs were cultured in DMEM without amino acids and serum for the indicated times, and then subjected to immunoblot analysis using anti-LC3 antibody and
anti-tubulin antibody. E-64d (10 mg/ml) and pepstatin A (10 mg/ml) were added to the medium where indicated. Positions of LC3-I and LC3-II are marked. The inclusion
of lysosomal protease inhibitors reveals that the apparent decrease in LC3-II is due to lysosomal degradation as easily seen by comparing samples with and without inhib-
itors at the same time points (the overall decrease seen in the presence of inhibitors may reflect decreasing effectiveness of the inhibitors over time). Monitoring auto-
phagy by following steady state amounts of LC3-II without including inhibitors in the analysis can result in an incorrect interpretation that autophagy is not taking place
(due to the apparent absence of LC3-II). Conversely, if there are high levels of LC3-II but there is no change in the presence of inhibitors, this may indicate that induction
has occurred but that the final steps of autophagy are blocked, resulting in stabilization of this protein. This figure was modified from data previously published in ref. 26,
and is reproduced by permission of Landes Bioscience, copyright 2007. (B) Lysates of 4 human adipose tissue biopsies were resolved on 2-12% polyacrylamide gels, as
described previously.217 Proteins were transferred in parallel to either a PVDF or a nitrocellulose membrane, and blotted with anti-LC3 antibody, and then identified by
reacting the membranes with an HRP-conjugated anti-rabbit IgG antibody, followed by ECL. The LC3-II/LC3-I ratio was calculated based on densitometry analysis of both
bands. �, P< 0.05. (C) HEK 293 and HeLa cells were cultured in nutrient-rich medium (DMEM containing 10% fetal calf serum) or incubated for 4 h in starvation conditions
(Krebs-Ringer medium) in the absence (¡) or presence (C) of E-64d and pepstatin at 10 mg/ml each (Inhibitors). Cells were then lysed and the proteins resolved by SDS-
PAGE. Endogenous LC3 was detected by immunoblotting. Positions of LC3-I and LC3-II are indicated. In the absence of lysosomal protease inhibitors, starvation results in
a modest increase (HEK 293 cells) or even a decrease (HeLa cells) in the amount of LC3-II. The use of inhibitors reveals that this apparent decrease is due to lysosome-
dependent degradation. This figure was modified from data previously published in ref. 174, and is reproduced by permission of Landes Bioscience, copyright 2005. (D)
Sequence and schematic representation of the different forms of LC3B. The sequence for the nascent (proLC3) from mouse is shown. The glycine at position 120 indicates
the cleavage site for ATG4. After this cleavage, the truncated LC3 is referred to as LC3-I, which is still a soluble form of the protein. Conjugation to PE generates the mem-
brane-associated LC3-II form (equivalent to Atg8–PE).
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mucin secretion by goblet cells.187 Therefore, in studies of
infection of mammalian cells by bacterial pathogens, the iden-
tity of the LC3-II labeled compartment as an autophagosome
should be confirmed by a second method, such as TEM. It is
also worth noting that autophagy induced in response to bac-
terial infection is not directed solely against the bacteria but
can also be a response to remnants of the phagocytic mem-
brane.188 Similar cautions apply with regard to viral infection.
For example, coronaviruses induce autophagosomes during
infection through the expression of nsp6; however, coronavi-
ruses also induce the formation of double-membrane vesicles
that are coated with LC3-I, the nonlipidated form of LC3 that
plays an autophagy-independent role in viral replication.189,190

Similarly, nonlipidated LC3 marks replication complexes in
flavivirus (Japanese encephalitis virus)-infected cells and is
essential for viral replication.191 Along these lines, during her-
pes simplex virus type 1 (HSV-1) infection, an LC3C autopha-
gosome-like organelle that is derived from nuclear membranes
and that contains viral proteins is observed,192 whereas influ-
enza A virus directs LC3 to the plasma membrane via a LC3-
interacting region (LIR) motif in its M2 protein.193 Moreover,
in vivo studies have shown that coxsackievirus (an enterovi-
rus) induces formation of autophagy-like vesicles in pancreatic
acinar cells, together with extremely large autophagy-related
compartments that have been termed megaphagosomes;194 the
absence of ATG5 disrupts viral replication and prevents the
formation of these structures.195

Third, caution must be exercised in general when evaluating
LC3 by western blotting, and appropriate standardization con-
trols are necessary. For example, LC3-I may be less sensitive to
detection by certain anti-LC3 antibodies. Moreover, LC3-I is
more labile than LC3-II, being more sensitive to freezing-thaw-
ing and to degradation in SDS sample buffer. Therefore, fresh
samples should be boiled and assessed as soon as possible and
should not be subjected to repeated freeze-thaw cycles. Alterna-
tively, trichloroacetic acid precipitation of protein from fresh
cell homogenates can be used to protect against degradation of
LC3 by proteases that may be present in the sample. A general
point to consider when examining transfected cells concerns
the efficiency of transfection. A western blot will detect LC3 in
the entire cell population, including those that are not trans-
fected. Thus, if transfection efficiency is too low, it may be nec-
essary to use methods, such as fluorescence microscopy, that
allow autophagy to be monitored in single cells. The critical
point is that the analysis of the gel shift of transfected LC3 or
GFP-LC3 can be employed to follow LC3 lipidation only in
highly transfectable cells.196

When dealing with animal tissues, western blotting of LC3
should be performed on frozen biopsy samples homogenized in
the presence of general protease inhibitors (C. Isidoro, personal
communication; see also Human).197 Caveats regarding detec-
tion of LC3 by western blotting have been covered in a review.26

For example, PVDF membranes may result in a stronger LC3-
II retention than nitrocellulose membranes, possibly due to a
higher affinity for hydrophobic proteins (Fig. 6B; J. Kovsan and
A. Rudich, personal communication), and Triton X-100 may
not efficiently solubilize LC3-II in some systems.198 Heating in
the presence of 1% SDS, or analysis of membrane fractions,44

may assist in the detection of the lipidated form of this protein.

This observation is particularly relevant for cells with a high
nucleocytoplasmic ratio, such as lymphocytes. Under these
constraints, direct lysis in Laemmli loading buffer, containing
SDS, just before heating, greatly improves LC3 detection on
PVDF membranes, especially when working with a small num-
ber of cells (F. Gros, unpublished observations).199 Analysis of
a membrane fraction is particularly useful for brain where lev-
els of soluble LC3-I greatly exceed the level of LC3-II.

One of the most important issues is the quantification of
changes in LC3-II, because this assay is one of the most widely
used in the field and is often prone to misinterpretation. Levels
of LC3-II should be compared to actin (e.g., ACTB), but not to
LC3-I (see the caveat in the next paragraph), and, ideally, to
more than one “housekeeping” protein (HKP). Actin and other
HKPs are usually abundant and can easily be overloaded on the
gel200 such that they are not detected within a linear range.
Moreover, actin levels may decrease when autophagy is induced
in many organisms from yeast to mammals. For any proteins
used as “loading controls” (including actin, tubulin and
GAPDH) multiple exposures of the western blot are generally
necessary to ensure that the signals are detected in the linear
range. An alternative approach is to stain for total cellular pro-
teins with Coomassie Brilliant Blue and Ponceau Red,201 but
these methods are generally less sensitive and may not reveal
small differences in protein loading. Stain-Free gels, which also
stain for total cellular proteins, have been shown to be an excel-
lent alternative to HKPs.202

It is important to realize that ignoring the level of LC3-I in
favor of LC3-II normalized to HKPs may not provide the full
picture of the cellular autophagic response.153,203 For example,
in aging skeletal muscle the increase in LC3-I is at least as
important as that for LC3-II.204,205 Quantification of both iso-
forms is therefore informative, but requires adequate condi-
tions of electrophoretic separation. This is particularly
important for samples where the amount of LC3-I is high rela-
tive to LC3-II (as in brain tissues, where the LC3-I signal can
be overwhelming). Under such a scenario, it may be helpful to
use gradient gels to increase the separation of LC3-I from LC3-
II and/or cut away the part of the blot with LC3-I prior to the
detection of LC3-II. Furthermore, since the dynamic range of
LC3 immunoblots is generally quite limited, it is imperative
that other assays be used in parallel in order to draw valid con-
clusions about changes in autophagy activity.

Fourth, in mammalian cells LC3 is expressed as multiple
isoforms (LC3A, LC3B, LC3B2 and LC3C206,207), which
exhibit different tissue distributions and whose functions
are still poorly understood. A point of caution along these
lines is that the increase in LC3A-II versus LC3B-II levels
may not display equivalent changes in all organisms under
autophagy-inducing conditions, and it should not be
assumed that LC3B is the optimal protein to monitor.208 A
key technical consideration is that the isoforms may exhibit
different specificities for antisera or antibodies. Thus, it is
highly recommended that investigators report exactly the
source and catalog number of the antibodies used to detect
LC3 as this might help avoid discrepancies between studies.
The commercialized anti-LC3B antibodies also recognize
LC3A, but do not recognize LC3C, which shares less
sequence homology. It is important to note that LC3C
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possesses in its primary amino acid sequence the DYKD
motif that is recognized with a high affinity by anti-FLAG
antibodies. Thus, the standard anti-FLAG M2 antibody can
detect and immunoprecipitate overexpressed LC3C, and
caution has to be taken in experiments using FLAG-tagged
proteins (M. Biard-Piechaczyk and L. Espert, personal com-
munication). Note that according to Ensembl there is no
LC3C in mouse or rat.

In addition, it is important to keep in mind the other sub-
family of Atg8 proteins, the GABARAP subfamily (see
above).141,209 Certain types of mitophagy induced by BNIP3L/
NIX are highly dependent on GABARAP and less dependent
on LC3 proteins.210,211 Furthermore, commercial antibodies for
GABARAPL1 also recognize GABARAP,138,143 which might
lead to misinterpretation of experiments, in particular those
using immunohistochemical techniques. Sometimes the prob-
lem with cross-reactivity of the anti-GABARAPL1 antibody
can be overcome when analyzing these proteins by western blot
because the isoforms can be resolved during SDS-PAGE using
high concentration (15%) gels, as GABARAP migrates faster
than GABARAPL1 (M. Boyer-Guittaut, personal communica-
tion; also see Fig. S4 in ref. 143). Because GABARAP and
GABARAPL1 can both be proteolytically processed and lipi-
dated, generating GABARAP-I or GABARAPL1-I and
GABARAP-II or GABARAPL1-II, respectively, this may lead
to a misassignment of the different bands. As soon as highly
specific antibodies that are able to discriminate between
GABARAP and GABARAPL1 become available, we strongly
advise their use; until then, we advise caution in interpreting
results based on the detection of these proteins by western blot.
Antibody specificity can be assessed after complete inhibition
of GABARAP (or any other Atg8 family protein) expression by
RNA interference.143,167 In general, we advise caution in choos-
ing antibodies for western blotting and immunofluorescence
experiments and in interpreting results based on stated affini-
ties of antibodies unless these have been clearly determined. As
with any western blot, proper methods of quantification must
be used, which are, unfortunately, often not well disseminated;
readers are referred to an excellent paper on this subject (see
ref. 212). Unlike the other members of the GABARAP family,
almost no information is available on GABARAPL3, perhaps
because it is not yet possible to differentiate between GABA-
RAPL1 and GABARAPL3 proteins, which have 94% identity.
As stated by the laboratory that described the cloning of the
human GABARAPL1 and GABARAPL3 genes,209 their expres-
sion patterns are apparently identical. It is worth noting that
GABARAPL3 is the only gene of the GABARAP subfamily that
seems to lack an ortholog in mice.209 GABARAPL3 might
therefore be considered as a pseudogene without an intron that
is derived from GABARAPL1. Hence, until new data are pub-
lished, GABARAPL3 should not be considered as the fourth
member of the GABARAP family.

Fifth, in non-mammalian species, the discrimination of
Atg8–PE from the nonlipidated form can be complicated by
their nearly identical SDS-PAGE mobilities and the presence of
multiple isoforms (e.g., there are 9 in Arabidopsis). In yeast, it
is possible to resolve Atg8 (the nonlipidated form) from Atg8–
PE by including 6 M urea in the SDS-PAGE separating gel,213

or by using a 15% resolving gel without urea (F. Reggiori,

personal communication). Similarly, urea combined with prior
treatment of the samples with (or without) phospholipase D
(that will remove the PE moiety) can often resolve the ATG8
species in plants.214,215 It is also possible to label cells with
radioactive ethanolamine, followed by autoradiography to iden-
tify Atg8–PE, and a C-terminal peptide can be analyzed by
mass spectrometry to identify the lipid modification at the ter-
minal glycine residue. Special treatments are not needed for the
separation of mammalian LC3-I from LC3-II.

Sixth, it is important to keep in mind that ATG8, and to a
lesser extent LC3, undergoes substantial transcriptional and
posttranscriptional regulation. Accordingly, to obtain an accu-
rate interpretation of Atg8/LC3 protein levels it is also neces-
sary to monitor the mRNA levels. Without analyzing the
corresponding mRNA it is not possible to discriminate between
changes that are strictly reflected in altered amounts of protein
versus those that are due to changes in transcription (e.g., the
rate of transcription, or the stability of the message). For exam-
ple, in cells treated with the calcium ionophore A23187 or the
ER calcium pump blocker thapsigargin, an obvious correlation
is found between the time-dependent increases in LC3B-I and
LC3B-II protein levels, as well as with the observed increase in
LC3B mRNA levels.216 Clinically, in human adipose tissue, pro-
tein and mRNA levels of LC3 in omental fat are similarly ele-
vated in obese compared to lean individuals.217

Seventh, LC3-I can be fully degraded by the 20S proteasome
or, more problematically, processed to a form appearing equal
in size to LC3-II on a western blot (LC3-T); LC3-T was identi-
fied in HeLa cells and is devoid of the ubiquitin conjugation
domain, thus lacking its adaptor function for autophagy.218

Eighth, a general issue when working with cell lines is that
we recommend that validation be performed to verify the cell
line(s) being used, and to verify the presence of genetic altera-
tions as appropriate. Depending on the goal (e.g., to indicate
general applicability of a particular treatment) it may be impor-
tant to use more than one cell line to confirm the results. It is
also critical to test for mycoplasma because the presence of this
contaminant can significantly alter the results with regard to
any autophagic response. For these reasons, we also recom-
mend the use of low passage numbers for nonprimary cells or
cell lines (no more than 40 passages or 6 months after thawing).

Finally, we would like to point out that one general issue
with regard to any assay is that experimental manipulation
could introduce some type of stress—for example, mechanical
stress due to lysis, temperature stress due to heating or cooling
a sample, or oxidative stress on a microscope slide, which
could lead to potential artifacts including the induction of
autophagy—even maintaining cells in higher than physiologi-
cally normal oxygen levels can be a stress condition.219 Special
care should be taken with cells in suspension, as the stress
resulting from centrifugation can induce autophagy. This point
is not intended to limit the use of any specific methodology,
but rather to note that there are no perfect assays. Therefore, it
is important to verify that the positive (e.g., treatment with
rapamycin, torin1 or other inducers) and negative (e.g., inhibi-
tor treatment) controls behave as expected in any assays being
utilized. Similarly, plasmid transfection or nucleofection can
result in the potent induction of autophagy (based on increases
in LC3-II or SQSTM1/p62 degradation). In some cell types, the
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amount of autophagy induced by transfection of a control
empty vector may be so high that it is virtually impossible to
examine the effect of enforced gene expression on autophagy
(B. Levine, personal communication). It is thus advisable to
perform time course experiments to determine when the trans-
fection effect returns to acceptably low levels and to use appro-
priate time-matched transfection controls (see also the
discussion in GFP-Atg8/LC3 fluorescence microscopy). This
effect is generally not observed with siRNA transfection; how-
ever, it is an issue for plasmid expression constructs including
those for shRNA and for viral delivery systems. The use of
endotoxin-free DNA reduces, but does not eliminate, this prob-
lem. In many cells the cationic polymers used for DNA trans-
fection, such as liposomes and polyplex, induce large
tubulovesicular autophagosomes (TVAs) in the absence of
DNA.220 These structures accumulate SQSTM1 and fuse slowly
with lysosomes. Interestingly, these TVAs appear to reduce
gene delivery, which increases 8–10 fold in cells that are unable
to make TVAs due to the absence of ATG5. Finally, the precise
composition of media components and the density of cells in
culture can have profound effects on basal autophagy levels
and may need to be modified empirically depending on the cell
lines being used. Along these lines various types of media, in
particular those with different serum levels (ranging from
0–15%), may have profound effects with regard to how cells
(or organs) perceive a fed versus starved state. For example,
normal serum contains significant levels of cytokines and hor-
mones that likely regulate the basal levels of autophagy;
thus, the use of dialyzed serum might be an alternative for these
studies. In addition, the amino acid composition of the
medium/assay buffer may have profound effects on initiation
or progression of autophagy. For example, in the protozoan
parasite Trypanosoma brucei starvation-induced autophagy
can be prevented by addition of histidine to the incubation
buffer.221 For these reasons, the cell culture conditions
should be fully described. It is also important to specify dura-
tion of autophagy stimulation, as long-term autophagy can
modify signal transduction pathways of importance in cell
survival.222

Conclusion: Atg8/LC3 is often an excellent marker for auto-
phagic structures; however, it must be kept in mind that there
are multiple LC3 isoforms, there is a second family of mamma-
lian Atg8-like proteins (GABARAPs), and antibody affinity
(for LC3-I versus LC3-II) and specificity (for example, for
LC3A versus LC3B) must be considered and/or determined.
Moreover, LC3 levels on their own do not address issues of
autophagic flux. Finally, even when flux assays are carried out,
there is a problem with the limited dynamic range of LC3
immunoblots; accordingly, this method should not be used by
itself to analyze changes in autophagy.

b. Turnover of LC3-II/Atg8–PE
Autophagic flux is often inferred on the basis of LC3-II turn-
over, measured by western blot (Fig. 6C)174 in the presence and
absence of lysosomal, or vacuolar degradation. However, it
should be cautioned that such LC3 assays are merely indicative
of autophagic “carrier flux”, not of actual autophagic cargo/sub-
strate flux. It has, in fact, been observed that in rat hepatocytes,
an autophagic-lysosomal flux of LC3-II can take place in the

absence of an accompanying flux of cytosolic bulk cargo.223

The relevant parameter in LC3 assays is the difference in the
amount of LC3-II in the presence and absence of saturating lev-
els of inhibitors, which can be used to examine the transit of
LC3-II through the autophagic pathway; if flux is occurring,
the amount of LC3-II will be higher in the presence of the
inhibitor.174 Lysosomal degradation can be prevented through
the use of protease inhibitors (e.g., pepstatin A, leupeptin and
E-64d), compounds that neutralize the lysosomal pH such as
bafilomycin A1, chloroquine or NH4Cl,

16,149,158,164,224,225 or by
treatment with agents that block the fusion of autophagosomes
with lysosomes (note that bafilomycin A1 will ultimately cause
a fusion block as well as neutralize the pH,156 but the inhibition
of fusion may be due to a block in ATP2A/SERCA activ-
ity226).155-157,227 Alternatively, knocking down or knocking out
LAMP2 (lysosomal-associated membrane protein 2) represents
a genetic approach to block the fusion of autophagosomes and
lysosomes (for example, inhibiting LAMP2 in myeloid leuke-
mic cells results in a marked increase of GFP-LC3 dots and
endogenous LC3-II protein compared to control cells upon
autophagy induction during myeloid differentiation [M.P.
Tschan, unpublished data]).228 This approach, however, is only
valid when the knockdown of LAMP2 is directed against the
mRNA region specific for the LAMP2B spliced variant, as tar-
geting the region common to the 3 variants would also inhibit
chaperone-mediated autophagy, which may result in the com-
pensatory upregulation of macroautophagy.92,229,230

Increased levels of LC3-II in the presence of lysosomal inhi-
bition or interfering with autophagosome-lysosome fusion
alone (e.g., with bafilomycin A1) may be indicative of auto-
phagic carrier flux (to the stage of cargo reaching the lyso-
some), but to assess whether a particular treatment alters
complete autophagic flux through substrate digestion, the treat-
ment plus bafilomycin A1 must be compared with results
obtained with treatment alone as well as with bafilomycin A1

alone. An additive or supra-additive effect in LC3-II levels may
indicate that the treatment enhances autophagic flux (Fig. 6C).
Moreover, higher LC3-II levels with treatment plus bafilomycin
A1 compared to bafilomycin A1 alone may indicate that the
treatment increases the synthesis of autophagy-related mem-
branes. If the treatment by itself increases LC3-II levels, but the
treatment plus bafilomycin A1 does not increase LC3-II levels
compared to bafilomycin A1 alone, this may indicate that the
treatment induced a partial block in autophagic flux. Thus, a
treatment condition increasing LC3-II on its own that has no
difference in LC3-II in the presence of bafilomycin A1 com-
pared to treatment alone may suggest a complete block in
autophagy at the terminal stages.231 This procedure has been
validated with several autophagy modulators.232 With each of
these techniques, it is essential to avoid assay saturation. The
duration of the bafilomycin A1 treatment (or any other inhibi-
tor of autophagic flux such as chloroquine) needs to be rela-
tively short (1–4 h)233 to allow comparisons of the amount of
LC3 that is lysosomally degraded over a given time frame under
one treatment condition to another treatment condition. A
dose-curve and time-course standardization for the use of auto-
phagic flux inhibitors is required for the initial optimization of
the conditions to detect LC3-II accumulation and avoid non-
specific or secondary effects. By using a rapid screening
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approach, such as a colorimetric-based platform method,234 it
is possible to monitor a long time frame for autolysosome accu-
mulation, which closely associates with autophagy efficiency.235

Positive control experiments using treatment with known
autophagy inducers, along with bafilomycin A1 versus vehicle,
are important to demonstrate the utility of this approach in
each experimental context. The same type of assay monitoring
the turnover of Atg8–PE can be used to monitor flux in yeast,
by comparing the amount of Atg8 present in a wild-type versus
a pep4D strain following autophagy induction;236 however, it is
important to be aware that the PEP4 knockout can influence
yeast cell physiology. PMSF, which inhibits the activity of Prb1,
can also be used to block Atg8–PE turnover.

An additional methodology for monitoring autophagy relies
on the observation that in some cell types a subpopulation of
LC3-II exists in a cytosolic form (LC3-IIs).237-239 The amount
of cytosolic LC3-IIs and the ratio between LC3-I and LC3-IIs
appears to correlate with changes in autophagy and may pro-
vide a more accurate measure of autophagic flux than ratios
based on the total level of LC3-II.239 The validity of this method
has been demonstrated by comparing autophagic proteolytic
flux in rat hepatocytes, hepatoma cells and myoblasts. One
advantage of this approach is that it does not require the pres-
ence of autophagic or lysosomal inhibitors to block the degra-
dation of LC3-II.

Due to the advances in time-lapse fluorescence microscopy
and the development of photoswitchable fluorescent proteins,
autophagic flux can also be monitored by assessing the half-life
of the LC3 protein240 post-photoactivation or by quantitatively
measuring the autophagosomal pool size and its transition
time.241 These approaches deliver invaluable information on
the kinetics of the system and the time required to clear a com-
plete autophagosomal pool. Nonetheless, care must be taken
for this type of analysis as changes in translational/transcrip-
tional regulation of LC3 might also affect the readout.

Finally, autophagic flux can be monitored based on the turn-
over of LC3-II, by utilizing a luminescence-based assay. For
example, a reporter assay based on the degradation of Renilla
reniformis luciferase (Rluc)-LC3 fusion proteins is well suited
for screening compounds affecting autophagic flux.242 In this
assay, Rluc is fused N-terminally to either wild-type LC3
(LC3WT) or a lipidation-deficient mutant of LC3 (G120A).
Since Rluc-LC3WT, in contrast to Rluc-LC3G120A, specifically
associates with the autophagosomal membranes, Rluc-LC3WT

is more sensitive to autophagic degradation. A change in
autophagy-dependent LC3 turnover can thus be estimated by
monitoring the change in the ratio of luciferase activities
between the 2 cell populations expressing either Rluc-LC3WT

or Rluc-LC3G120A. In its simplest form, the Rluc-LC3-assay can
be used to estimate autophagic flux at a single time point by
defining the luciferase activities in cell extracts. Moreover, the
use of a live cell luciferase substrate makes it possible to moni-
tor changes in autophagic activity in live cells in real time. This
method has been successfully used to identify positive and neg-
ative regulators of autophagy from cells treated with micro-
RNA, siRNA and small molecule libraries.242-248

Cautionary notes: The main caveat regarding the measure-
ment of LC3-IIs/LC3-I is that this method has only been tested
in isolated rat hepatocytes and H4-II-E cells. Thus, it is not yet

known whether it is generally applicable to other cell types.
Indeed, a soluble form of LC3-II (i.e., LC3-IIs) is not observed
in many standard cell types including HeLa, HEK 293 and
PC12. In addition, the same concerns apply regarding detection
of LC3-I by western blotting. It should be noted that the LC3-
IIs/LC3-I ratio must be analyzed using the cytosolic fractions
rather than the total homogenates. Furthermore, the same cav-
eats mentioned above regarding the use of LC3 for qualitatively
monitoring autophagy also apply to the use of this marker for
evaluating flux.

The use of a radioactive pulse-chase analysis, which
assesses complete autophagic flux, provides an alternative to
lysosomal protease inhibitors,148 although such inhibitors
should still be used to verify that degradation is lysosome-
dependent. In addition, drugs must be used at concentrations
and for time spans that are effective in inhibiting fusion or
degradation, but that do not provoke cell death. Thus, these
techniques may not be practical in all cell types or in tissues
from whole organisms where the use of protease inhibitors is
problematic, and where pulse labeling requires artificial short-
term culture conditions that may induce autophagy. Another
concern when monitoring flux via LC3-II turnover may be
seen in the case of a partial autophagy block; in this situation,
agents that disrupt autophagy (e.g., bafilomycin A1) will still
result in an increase in LC3-II. Thus, care is needed in inter-
pretation. For characterizing new autophagy modulators, it is
ideal to test autophagic flux at early (e.g., 4 h) and late (e.g.,
24 h) time-points, since in certain instances, such as with cal-
cium phosphate precipitates, a compound may increase or
decrease flux at these 2 time points, respectively.233 Moreover,
it is important to consider assaying autophagy modulators in
a long-term response in order to further understand their
effects. Finally, many of the chemicals used to inhibit auto-
phagy, such as bafilomycin A1, NH4Cl (see Autophagy inhibi-
tors and inducers) or chloroquine, also directly inhibit the
endocytosis/uncoating of viruses (D.R. Smith, personal com-
munication), and other endocytic events requiring low pH, as
well as exit from the Golgi (S. Tooze, personal communica-
tion). As such, agents that neutralize endosomal compart-
ments should be used only with extreme caution in studies
investigating autophagy-virus interactions.

One additional consideration is that it may not be absolutely
necessary to follow LC3-II turnover if other substrates are being
monitored simultaneously. For example, an increase in LC3-II
levels in combination with the lysosomal (or ideally autophagy-
specific) removal of an autophagic substrate (such as an organ-
elle249,250) that is not a good proteasomal substrate provides an
independent assessment of autophagic flux. However, it is
probably prudent to monitor both turnover of LC3-II and an
autophagosome substrate in parallel, due to the fact that LC3
might be coupled to endosomal membranes and not just auto-
phagosomes, and the levels of well-characterized autophago-
some substrates such as SQSTM1 can also be affected by
proteasome inhibitors.251

Another issue relates to the use of protease inhibitors (see
Autophagy inhibitors and inducers). When using lysosomal
protease inhibitors, it is of fundamental importance to assess
proper conditions of inhibitor concentration and time of pre-
incubation to ensure full inhibition of lysosomal cathepsins.
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In this respect, 1 h of pre-incubation with 10 mg/ml E-64d is
sufficient in most cases, since this inhibitor is membrane per-
meable and rapidly accumulates within lysosomes, but
another frequently used inhibitor, leupeptin, requires at least
6 h pre-incubation.59 Moreover, pepstatin A is membrane
impermeable (ethanol or preferably DMSO must be
employed as a vehicle) and requires a prolonged incubation
(>8 h) and a relatively high concentration (>50 mg/ml) to
fully inhibit lysosomal CTSD (Fig. 7). An incubation of this
duration, however, can be problematic due to indirect effects
(see GFP-Atg8/LC3 lysosomal delivery and proteolysis). At
least in neurons, pepstatin alone is a less effective lysosomal
proteolytic block, and combining a cysteine protease inhibitor
with it is most effective.59 Also, note that the relative amount
of lysosomal CTSB (cathepsin B) and CTSD is cell-specific
and changes with culture conditions. A possible alternative to
pepstatin A is the pepstatin A, BODIPY� FL conjugate,252,253

which is transported to lysosomes via endocytosis. In contrast
to the protease inhibitors, chloroquine (10–40 mM) or bafilo-
mycin A1 (1–100 nM) can be added to cells immediately
prior to autophagy induction. Because cysteine protease
inhibitors upregulate CTSD and have potential inhibitory
activity toward calpains and other cysteine proteases, whereas
bafilomycin A1 can have potential significant cytotoxicity,
especially in cultured neurons and pathological states, the use
of both methods may be important in some experiments to
exclude off-target effects of a single method.

Conclusion: It is important to be aware of the difference
between monitoring the steady-state level of Atg8/LC3 and
autophagic flux. The latter may be assessed by following Atg8/
LC3 in the absence and presence of autophagy inhibitors, and
by examining the autophagy-dependent degradation of appro-
priate substrates. In particular, if there is any evidence of an
increase in LC3-II (or autophagosomes), it is essential to deter-
mine whether this represents increased flux, or a block in
fusion or degradation through the use of inhibitors such as
chloroquine or bafilomycin A1. In the case of a suspected
impaired degradation, assessment of lysosomal function is then
required to validate the conclusion and to establish the basis.

c. GFP-Atg8/LC3 lysosomal delivery and partial proteolysis
GFP-LC3B (hereafter referred to as GFP-LC3) has also been
used to follow flux. It should be cautioned that, as with endoge-
nous LC3, an assessment of autophagic GFP-LC3 flux is a car-
rier flux that cannot be equated with, and is not necessarily
representative of, an autophagic cargo flux. When GFP-Atg8 or
GFP-LC3 is delivered to a lysosome/vacuole, the Atg8/LC3 part
of the chimera is sensitive to degradation, whereas the GFP
protein is relatively resistant to hydrolysis (note, however, that
GFP fluorescence is quenched by low pH; see GFP-Atg8/LC3
fluorescence microscopy and Tandem mRFP/mCherry-GFP fluo-
rescence microscopy). Therefore, the appearance of free GFP on
western blots can be used to monitor lysis of the inner autopha-
gosome membrane and breakdown of the cargo in metazoans
(Fig. 8A),236,254,255 or the delivery of autophagosomes to, and
the breakdown of autophagic bodies within, the fungal and
plant vacuole.214,215,236,256 Reports on Dictyostelium and mam-
malian cells highlight the importance of lysosomal pH as a crit-
ical factor in the detection of free GFP that results from the

degradation of fused proteins. In these cell types, free GFP frag-
ments are only detectable in the presence of nonsaturating lev-
els of lysosomotropic compounds (NH4Cl or choroquine) or
under conditions that attenuate lysosomal acidity; otherwise,

Figure 7. Effect of different inhibitors on LC3-II accumulation. SH-SY5Y human
neuroblastoma cells were plated and allowed to adhere for a minimum of 24 h,
then treated in fresh medium. Treatments were as follows: rapamycin (Rap), (A)
1 mM, 4 h or (B) 10 mM, 4 h; E-64d, final concentration 10 mg/ml from a 1 mg/ml
stock in ethanol (EtOH); NH4Cl (NH4

C), final concentration 10 mM from a 1 M stock
in water; pepstatin A (Pst), final concentration 10 mg/ml from a 1 mg/ml stock in
ethanol, or 68.6 mg/ml from a 6.86 mg/ml stock in DMSO; ethanol or DMSO, final
concentration 1%. Pre-incubations in (B) were for 1 or 4 h as indicated. 10 mM
NH4Cl (or 30 mM chloroquine, not shown) were the most effective compounds for
demonstrating the accumulation of LC3-II. E-64d was also effective in preventing
the degradation of LC3-II, with or without a preincubation, but ammomium chlo-
ride (or chloroquine) may be more effective. Pepstatin A at 10 mg/ml with a 1 h
pre-incubation was not effective at blocking degradation, whereas a 100 mM con-
centration with 4 h pre-incubation had a partial effect. Thus, alkalinizing com-
pounds are more effective in blocking LC3-II degradation, and pepstatin A must be
used at saturating conditions to have any noticeable effect. Images provided by C.
Isidoro. Note that the band running just below LC3-I at approximately 17.5 kDa
may be a processing intermediate of LC3-I; it is detectable in freshly prepared
homogenates, but is less visible after the sample is subjected to a freeze-thaw
cycle.
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the autophagic/degradative machinery appears to be too effi-
cient to allow the accumulation of the proteolytic fragment
(Fig. 8B,C).37,257 Hence, a reduction in the intensity of the free
GFP band may indicate reduced flux, but it may also be due to
efficient turnover. Using a range of concentrations and treat-
ment times of compounds that inhibit autophagy can be useful
in distinguishing between these possibilities.258 Since the pH in
the yeast vacuole is higher than that in mammalian or Dictyos-
telium lysosomes, the levels of free GFP fragments are detect-
able in yeast even in the absence of lysosomotropic
compounds.30 Additionally, in yeast the diffuse fluorescent
haze from the released GFP moiety within the vacuole lumen
can be observed by fluorescence microscopy.

The dynamic movement to lysosomes of GFP-LC3, or of its
associated cargo, also can be monitored by time-lapse fluores-
cence microscopy, although, as mentioned above, the GFP

fluorescent signal is more sensitive to acidic pH than other fluo-
rophores (see GFP-Atg8/LC3 fluorescence microscopy). A time-
course evaluation of the cell population showing GFP-LC3
puncta can serve to monitor the autophagic flux, since a constant
increase in the number of cells accumulating GFP-LC3 puncta is
suggestive of defective fusion of autophagosomes with lysosomes.
Conversely, a decline implies that GFP-LC3 is delivered to prop-
erly acidified lysosomes and may, in addition, reflect proteolytic
elimination within them, although the latter needs to be indepen-
dently established. In either case, it can be problematic to use
GFP fluorescence to follow flux, as new GFP-LC3 is continuously
being synthesized. A potential solution to this problem is to fol-
low the fluorescence of a photoactivatable version of the fluores-
cent protein,259 which allows this assay to be performed
essentially as a pulse-chase analysis. Another alternative to follow
flux is to monitor GFP-LC3 fluorescence by adding lysosomal

Figure 8. GFP-LC3 processing can be used to monitor delivery of autophagosomal membranes. (A) atg5-/- MEFs engineered to express Atg5 under the control of the Tet-
off promoter were grown in the presence of doxycyline (Dox; 10 ng/ml) for one week to suppress autophagy. Cells were then cultured in the absence of drug for the indi-
cated times, with or without a final 2 h starvation. Protein lysates were analyzed by western blot using anti-LC3 and anti-GFP antibodies. The positions of untagged and
GFP-tagged LC3-I and LC3-II, and free GFP are indicated. This figure was modified from data previously published in ref. 255, FEBS Letters, 580, Hosokawa N, Hara Y, Miz-
ushima N, Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size, pp. 2623–2629, copyright 2006, with permission
from Elsevier. (B) Differential role of unsaturating and saturating concentrations of lysosomal inhibitors on GFP-LC3 cleavage. HeLa cells stably transfected with GFP-LC3
were treated with various concentrations of chloroquine (CQ) for 6 h. Total lysates were prepared and subjected to immunoblot analysis. (C) CQ-induced free GFP frag-
ments require classical autophagy machinery. Wild-type and atg5-/- MEFs were first infected with adenovirus GFP-LC3 (100 viral particles per cell) for 24 h. The cells were
then either cultured in regular culture medium with or without CQ (10 mM), or subjected to starvation in EBSS in the absence or presence of CQ for 6 h. Total lysates
were prepared and subjected to immunoblot analysis. Panel (B) and (C) are modified from the data previously published in ref. 257.

AUTOPHAGY 49



protease or fusion inhibitors to cells expressing GFP-LC3 and
monitoring changes in the number of puncta. In this case, the
presence of lysosomal inhibitors should increase the number of
GFP-LC3-positive structures, and the absence of an effect on the
total number of GFP-LC3 puncta or on the percentage of cells
displaying numerous puncta is indicative of a defect(s) in auto-
phagic flux.260 The combination of protease inhibitors (to prevent
the degradation of GFP) or compounds that modify lysosomal
pH such as NH4Cl or chloroquine, or compounds that block
fusion of autophagosomes with lysosomes such as bafilomycin
A1 or others (e.g., vinblastine) may be most effective in prevent-
ing lysosome-dependent decreases in GFP-LC3 puncta. How-
ever, because the stability of GFP is affected by lysosomal pH,
researchers may also consider the use of protease inhibitors
whether or not lysosomotropic compounds or fusion inhibitors
are included.

Cautionary notes: The GFP-Atg8 processing assay is used
routinely to monitor autophagy in yeast. One caveat, however, is
that this assay is not always carried out in a quantitative manner.
For example, western blot exposures need to be in the linear
range. Accordingly, an enzymatic assay such as the Pho8D60
assay may be preferred (see Autophagic protein degrada-
tion),261,262 especially when the differences in autophagic activity
need to be determined precisely (note that an equivalent assay
has not been developed for higher eukaryotic cells); however, as
with any enzyme assay, appropriate caution must be used regard-
ing, for example, substrate concentrations and linearity. The
Pho8D60 assay also requires a control to verify equal Pho8D60
expression in the different genetic backgrounds or conditions to
be tested;261 differences in Pho8D60 expression potentially affect
its activity and may thus cause misinterpretation of results.
Another issue to keep inmind is that GFP-Atg8 processing corre-
lates with the surface area of the inner sphere of the autophago-
some, and thus provides a smaller signal than assays that
measure the volume of the autophagosome. Therefore, Pgk1-
GFP processing30 or the Pho8D60 assay are generally more sensi-
tive assays.

The main limitation of the GFP-LC3 processing assay in
mammalian cells is that it seems to depend on cell type and
culture conditions (N. Hosokawa and N. Mizushima,
unpublished data). Apparently, GFP is more sensitive to
mammalian lysosomal hydrolases than to the degradative
milieu of the yeast vacuole or the lysosomes in Drosophila.
Alternatively, the lower pH of mammalian lysosomes rela-
tive to that of the yeast vacuole may contribute to differen-
ces in detecting free GFP. Under certain conditions (such
as Earle’s balanced salt solution [EBSS]-induced starvation)
in some cell lines, when the lysosomal pH becomes particu-
larly low, free GFP is undetectable because both the LC3-II
and free GFP fragments are quickly degraded.257 Therefore,
if this method is used it should be accompanied by immu-
noblotting and include controls to address the stability of
nonlysosomal GFP such as GFP-LC3-I. It should also be
noted that free GFP can be detected when cells are treated
with nonsaturating doses of inhibitors such as chloroquine,
E-64d and bafilomycin A1. The saturating concentrations of
these lysosomal inhibitors vary in different cell lines, and it
would be better to use a saturating concentration of lyso-
somal inhibitors when performing an autophagic flux

assay.257 Therefore, caution must be exercised in interpret-
ing the data using this assay; it would be helpful to combine
an analysis of GFP-LC3 processing with other assays, such
as the monitoring of endogenous LC3-II by western blot.

Along these lines, a caution concerning the use of the EGFP
fluorescent protein for microscopy is that this fluorophore has
a relatively neutral pH optimum for fluorescence,263 and its sig-
nal diminishes quickly during live cell imaging due to the acidic
environment of the lysosome. It is possible to circumvent this
latter problem by imaging paraformaldehyde-fixed cultures
that are maintained in a neutral pH buffer, which retains EGFP
fluorescence (M. Kleinman and J.J. Reiners, personal communi-
cation). Alternatively, it may be preferable to use a different flu-
orophore such as mRFP or mCherry, which retain fluorescence
even at acidic pH.264 On the one hand, a putative advantage of
mCherry over mRFP is its enhanced photostability and inten-
sity, which are an order of magnitude higher (and comparable
to GFP), enabling acquisition of images at similar exposure set-
tings as are used for GFP, thus minimizing potential bias in
interpretation.265 On the other hand, caution is required when
evaluating the localization of mCherry fusion proteins during
autophagy due to the persistence of the mCherry signal in
acidic environments; all tagged proteins are prone to show
enrichment in lysosomes during nonselective autophagy of the
cytoplasm, especially at higher expression levels. In addition,
red fluorescent proteins (even the monomeric forms) can be
toxic due to oligomer formation.266 Dendra2 is an improved
version of the green-to-red photoswitchable fluorescent protein
Dendra, which is derived from the octocoral Dendronephthya
sp.267 Dendra2 is capable of irreversible photoconversion from
a green to a red fluorescent form, but can be used also as a nor-
mal GFP or RFP vector. This modified version of the fluoro-
phore has certain properties including a monomeric state, low
phototoxic activation and efficient chromophore maturation,
which make it suitable for real-time tracking of LC3 and
SQSTM1 (Fig. 9; K. Kaarniranta, personal communication).
Another alternative to mRFP or mCherry is to use the Venus
variant of YFP, which is brighter than mRFP and less sensitive
to pH than GFP.268

Figure 9. Movement of activated pDendra2-hp62 (SQSTM1; orange) from the
nucleus (middle) to an aggregate in ARPE-19 cells, revealed by confocal micros-
copy. Cells were exposed to 5 mM MG132 for 24 h to induce the formation of peri-
nuclear aggregates.2186 The cells were then exposed to a UV pulse (the UV-
induced area is shown by red lines that are inside of the nucleus) that converts
Dendra2 from green to red, and the time shown after the pulse is indicated.
SQSTM1 is present in a small nuclear aggregrate, and is shuttled from the nucleus
to a perinuclear large protein aggregate (detected as red). Scale bar: 5 mm. Image
provided by K. Kaarniranta.
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The pH optimum of EGFP is important to consider when
using GFP-LC3 constructs, as the original GFP-LC3 marker269

uses the EGFP variant, which may result in a reduced signal
upon the formation of amphisomes or autolysosomes. An addi-
tional caveat when using the photoactivatable construct PA-
GFP263 is that the process of activation by photons may induce
DNA damage, which could, in turn, induce autophagy. Also,
GFP is relatively resistant to denaturation, and boiling for
5 min may be needed to prevent the folded protein from being
trapped in the stacking gel during SDS-PAGE.

As noted above (see Western blotting and ubiquitin-like pro-
tein conjugation systems), Atg4/ATG4 cleaves the residue(s)
that follow the C-terminal glycine of Atg8/LC3 that will be con-
jugated to PE. Accordingly, it is critical that any chimeras be
constructed with the fluorescent tag at the amino terminus of
Atg8/LC3 (unless the goal is to monitor Atg4/ATG4 activity).

Finally, lysosomal inhibition needs to be carefully con-
trolled. Prolonged inhibition of lysosomal hydrolases (>6 h) is
likely to induce a secondary autophagic response triggered by
the accumulated undigested autophagy cargo. This secondary
autophagic response can complicate the analysis of the auto-
phagic flux, making it appear more vigorous than it would in
the absence of the lysosomal inhibitors.

Conclusion: The GFP-Atg8/LC3 processing assay, which
monitors free GFP generated within the vacuole/lysosome, is a
convenient way to follow autophagy, but it does not work in all
cell types, and is not as easy to quantify as enzyme-based assays.
Furthermore, the assay measures the flux of an autophagic car-
rier, which may not necessarily be equivalent to autophagic
cargo flux.

d. GFP-Atg8/LC3 fluorescence microscopy
LC3B, or the protein tagged at its N terminus with a fluorescent
protein such as GFP (GFP-LC3), has been used to monitor
autophagy through indirect immunofluorescence or direct fluo-
rescence microscopy (Fig. 10), measured as an increase in
punctate LC3 or GFP-LC3.269,270 The detection of GFP-LC3/
Atg8 is also useful for in vivo studies using transgenic organ-
isms such as Caenorhabditis elegans,271 Dictyostelium discoi-
deum,272 filamentous ascomycetes,273-277 Ciona intestinalis,278

Drosophila melanogaster,279-281 Arabidopsis thaliana,282 Zea
mays,283 Trypanosoma brucei,221,284,285 Leishmania major286-288

and mice.153 It is also possible to use anti-LC3/Atg8 antibodies

for immunocytochemistry or immunohistochemistry
(IHC),197,289-294 procedures that have the advantages of detect-
ing the endogenous protein, obviating the need for transfection
and/or the generation of a transgenic organism, as well as
avoiding potential artifacts resulting from overexpression. For
example, high levels of overexpressed GFP-LC3 can result in its
nuclear localization, although the protein can still relocate to
the cytosol upon starvation. The use of imaging cytometry
allows rapid and quantitative measures of the number of LC3
puncta and their relative number in individual or mixed cell
types, using computerized assessment, enumeration, and data
display (e.g., see refs. 44, 295). In this respect, the alternative
use of an automated counting system may be helpful for
obtaining an objective number of puncta per cell. For this pur-
pose, the WatershedCounting3D plug-in for ImageJ may be
useful.296,297 Changes in the number of GFP-Atg8 puncta can
also be monitored using flow cytometry (see Autophagic
flux determination using flow and multispectral imaging
cytometry).221

Monitoring the endogenous Atg8/LC3 protein obviously
depends on the ability to detect it in the system of interest,
which is not always possible. If the endogenous amount is
below the level of detection, the use of an exogenous construct
is warranted. In this case, it is important to consider the use of
stable transformants versus transient transfections. On the one
hand, stable transformants may have reduced background
resulting from the lower gene expression, and artifacts resulting
from recent exposure to transfection reagents (see below) are
eliminated. Furthermore, with stable transformants more cells
can be easily analyzed because nearly 100% of the population
will express tagged LC3. On the other hand, a disadvantage of
stable transfectants is that the integration sites cannot always
be predicted, and expression levels may not be optimal. There-
fore, it is worth considering the use of stable episomal plasmids
that avoid the problem of unsuitable integration.264 An impor-
tant advantage of transient transfection is that this approach is
better for examining the immediate effects of the transfected
protein on autophagy; however, the transient transfection
approach restricts the length of time that the analysis can be
performed, and consideration must be given to the induction
of autophagy resulting from exposure to the transfection
reagents (see below). One word of caution is that optimizing
the time of transient expression of GFP-LC3 is necessary, as

Figure 10. Changes in the detection and localization of GFP-LC3 upon the induction of autophagy. U87 cells stably expressing GFP-LC3 were treated with PBS, rapamycin
(200 nM), or rapamycin in combination with 3-MA (2 mM) for 24 h. Representative fluorescence images of cells counterstained with DAPI (nuclei) are shown. Scale bar:
10 mm. This figure was modified from Figure 6 published in ref. 270, Badr et al. Lanatoside C sensitizes glioblastoma cells to tumor necrosis factor–related apoptosis-
inducing ligand and induces an alternative cell death pathway. Neuro-Oncology, 13:1213–24, 2011, by permission of Oxford University Press.
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some cell types (e.g., HeLa cells) may require 1 day for achiev-
ing optimal expression to visualize GFP-LC3 puncta, whereas
neuronal cell lines such as SH-SY5Y cells typically need at least
48 h of expression prior to performing GFP-LC3 puncta analy-
ses. In addition, a double transfection can be used (e.g., with
GFP-LC3 and the protein of interest) to visually tag the cells
that express the protein being examined.

A disadvantage of transfecting GFP-LC3 with liposomes is
that frequently it leads to an unstable efficiency of transfection,
causing a reduction in the number of cells effectively expressing
GFP-LC3, and degradation of the plasmid, thus decreasing the
numbers of GFP-LC3 puncta. Stable cell lines expressing GFP-
LC3 can be generated using lentiviral systems and efficiently
selected through antibiotic resistance leading to uniform and
prolonged expression levels. These stable cell lines are sensitive
to autophagy inducers as measured by the LC3-II/LC3-I
ratio by western blot, and also show increased numbers of
cytoplasmic GFP-LC3 puncta upon autophagic stimuli
(R. Mu~noz-Moreno, R. I. Galindo, L. Barrado-Gil and C.
Alonso, unpublished results).

In conclusion, there is no simple rule for the use of stable
versus transient transfections. When stable transfections are
utilized through a nonlentiviral system, it is worthwhile screen-
ing for stable clones that give the best signal-to-noise ratio;
when transient transfections are used, it is worthwhile optimiz-
ing the GFP-LC3 DNA concentration to give the best signal-to-
noise ratio. In clones, the uniformity of expression of GFP-LC3
facilitates “thresholding” when scoring puncta-positive cells
(see below). However, there is also a need to be aware that a
single cell clone may not be representative of the overall pool.
Using a pool of multiple selected clones may reduce artifacts
that can arise from the selection and propagation of individual
clones from a single transfected cell (although the use of a pool
is also problematic as its composition will change over time).
Another possibility is using fluorescence-activated cell sorter
(FACS) sorting to select a mixed stable population with uni-
form GFP-LC3 expression levels.298 Optimization, together
with including the appropriate controls (e.g., transfecting GFP-
LC3G120A as a negative control), will help overcome the effects
of the inherent variability in these analyses. For accurate inter-
pretations, it is also important to assess the level of overexpres-
sion of the GFP-LC3 constructs relative to endogenous LC3 by
western blot.

An additional use of GFP-LC3 is to monitor colocalization
with a target during autophagy-related processes such as organ-
elle degradation or the sequestration of pathogenic
microbes.299-302 Preincubation of cells stably expressing GFP-
LC3 with leupeptin can help stabilize the GFP-LC3 signal dur-
ing fluorescence microscopy, especially under conditions of
induced autophagic flux. Leupeptin is an inhibitor of lysosomal
cysteine and serine proteases and will therefore inhibit degrada-
tion of membrane-conjugated GFP-LC3 that is present within
autolysosomes.

Cautionary notes: Quantification of autophagy by measur-
ing GFP-LC3 puncta (or LC3 by immunofluorescence) can,
depending on the method used, be more tedious than monitor-
ing LC3-II by western blot; however, the former may be more
sensitive and quantitative. Ideally, it is preferable to include
both assays and to compare the 2 sets of results. In addition, if

GFP-LC3 is being quantified, it is better to determine the num-
ber of puncta corresponding to GFP-LC3 on a per cell basis (or
per cell area basis) rather than simply the total number (or per-
centage) of cells displaying puncta. This latter point is critical
because, even in nutrient-rich conditions, cells display some
basal level of GFP-LC3 puncta. There are, however, practical
issues with counting puncta manually and reliably, especially if
there are large numbers per cell. Nevertheless, manual scoring
may be more accurate than relying on a software program, in
which case it is important to ensure that only appropriate
puncta are being counted (applicable programs include ImageJ,
Imaris, and the open-source software CellProfiler303). More-
over, when autophagosome-lysosome fusion is blocked, larger
autophagosomes are detected, possibly due to autophagosome-
autophagosome fusion, or to an inability to resolve individual
autophagosomes when they are present in large numbers.
Although it is possible to detect changes in the size of GFP-
Atg8/LC3 puncta by fluorescence microscopy, it is not possible
to correlate size with autophagy activity without additional
assay methods. Size determinations can be problematic by fluo-
rescence microscopy unless careful standardization is carried
out,304 and size estimation on its own without considering
puncta number per cell is not recommended as a method for
monitoring autophagy; however, it is possible to quantify the
fluorescence intensity of GFP-Atg8/LC3 at specific puncta,
which does provide a valid measure of protein recruitment.305

In addition to autophagosome size, the number of puncta
visible to the eye will also be influenced by both the level of
expression of GFP-LC3 in a given cell (an issue that can be
avoided by analyzing endogenous LC3 by immunofluores-
cence) and by the exposure time of the microscope, if using
widefield microscopy. Another way to account for differential
GFP-LC3 expression levels and/or exposure is to normalize the
intensity of GFP-LC3 present in the puncta to the total GFP-
LC3 intensity in the cell. This can be done either on the popula-
tion level306 or individual cell level.298 In many cell types it may
be possible to establish a threshold value for the number of
puncta per cell in conditions of “low” and “high” autophagy.307

This can be tested empirically by exposing cells to autophagy-
inducing and -blocking agents. Thus, cell populations showing
significantly greater proportions of cells with autophagosome
numbers higher than the threshold in perturbation conditions
compared to the control cells could provide quantitative evi-
dence of altered autophagy. It is then possible to score the pop-
ulation as the percentage of cells displaying numerous
autophagosomes. This approach will only be feasible if the
background number of puncta is relatively low. For this
method, it is particularly important to count a large number of
cells and multiple representative sections of the sample. Typi-
cally, it is appropriate to score on the order of 50 or more cells,
preferably in at least 3 different trials, depending on the partic-
ular system and experiment, but the critical point is that this
determination should be based on statistical power analysis.
Accordingly, high-content imaging analysis methods enable
quantification of GFP-LC3 puncta (or overall fluorescence
intensity) in thousands of cells per sample (e.g., see refs. 243,
258, 308). When using automated analysis methods, care must
be taken to manually evaluate parameters used to establish
background threshold values for different treatment conditions
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and cell types, particularly as many systems image at lower
magnifications that may be insufficient to resolve individual
puncta. Another note of caution is that treatments affecting cell
morphology, leading to the “rounding up” of cells, for example,
can result in apparent changes in the number of GFP-LC3
puncta per cell. To avoid misinterpretation of results due to
such potential artifacts, manual review of cell images is highly
recommended. If cells are rounding up due to apoptosis or
mitosis, it is easy to automatically remove them from analysis
based on nuclear morphology (using DAPI or Hoechst stain-
ing) or cell roundness. If levels of autophagy in the rounded up
cells are of particular interest, images can be acquired as z-
stacks and either analyzed as a z-series or processed to generate
maximum projection or extended depth-of-field images and
than analyzed.309

To allow comparisons by other researchers attempting to
repeat these experiments, it is critical that the authors also spec-
ify the baseline number of puncta that are used to define “nor-
mal” or “low” autophagy. Furthermore, the cells should be
counted using unbiased procedures (e.g., using a random start
point followed by inclusion of all cells at regular intervals), and
statistical information should be provided for both baseline
and altered conditions, as these assays can be highly variable.
One possible method to obtain unbiased counting of GFP-LC3
puncta in a large number of cells is to perform multispectral
imaging flow cytometry (see Autophagic flux determination
using flow and multispectral imaging cytometry).310 Multispec-
tral imaging flow cytometry allows characterization of single
cells within a population by assessing a combination of mor-
phology and immunofluorescence patterns, thereby providing
statistically meaningful data.311 This method can also be used
for endogenous LC3, and, therefore, is useful for nontrans-
fected primary cells.312 For adherent cell cultures, one caution
for flow cytometry is that the techniques necessary to produce
single cell suspensions can cause significant injury to the cells,
leading to secondary changes in autophagy. Therefore, staining
for plasma membrane permeabilization (e.g., cell death) before
versus after isolation is an important control, and allowing a
period of recovery between harvesting the culture and staining
is also advisable.313

An important caveat in the use of GFP-LC3 is that this chi-
mera can associate with aggregates, especially when expressed
at high levels in the presence of aggregate-prone proteins,
which can lead to a misinterpretation of the results.314 Of note,
GFP-LC3 can associate with ubiquitinated protein aggre-
gates;315 however, this does not occur if the GFP-LC3 is
expressed at low levels (D.C. Rubinsztein, unpublished observa-
tions). These aggregates have been described in many systems
and are also referred to as aggresome-like induced structures
(ALIS),315-317 dendritic cell ALIS,318 SQSTM1/p62 bodies/
sequestosomes319 and inclusions. Indeed, many pathogen-asso-
ciated molecular patterns (PAMPs) described to induce the for-
mation of autophagosomes in fact trigger massive formation of
SQSTM1 bodies (L.H. Travassos, unpublished observations).
Inhibition of autophagy in vitro and in vivo leads to the accu-
mulation of these aggregates, suggesting a role for autophagy in
mediating their clearance.315,316,320-322 One way to control for
background levels of puncta is to determine fluorescence from
untagged GFP.

The receptor protein SQSTM1 is required for the formation
of ubiquitinated protein aggregates in vitro (see SQSTM1 and
related LC3 binding protein turnover assays).319 In this case, the
interaction of SQSTM1 with both ubiquitinated proteins and
LC3 is thought to mediate delivery of these aggregates to the
autophagy system.323,324 Many cellular stresses can induce the
formation of aggregates, including transfection reagents,315 or
foreign DNA (especially if the DNA is not extracted endotoxin
free). SQSTM1-positive aggregates are also formed by protea-
some inhibition or puromycin treatment and can be found in
cells exposed to rapamycin for extended periods where the rates
of autophagy are elevated.325 Calcium phosphate transfection of
COS7 cells or lipofectamine transfection of MEFs (R. Pinkas-
Kramarski, personal communication), primary neurons (A.R.
La Spada, personal communication) or neuronal cells (C.T.
Chu, personal communication) transiently increases basal lev-
els of GFP-LC3 puncta and/or the amount of LC3-II. One solu-
tion to this artifact is to examine GFP-LC3 puncta in cells
stably expressing GFP-LC3; however, as transfection-induced
increases in GFP-LC3 puncta and LC3-II are often transient,
another approach is to use cells transfected with GFP, with cells
subjected to a mock time-matched transfection as the back-
ground (negative) control. A lipidation-defective LC3 mutant
where glycine 120 is mutated to alanine is targeted to these
aggregates independently of autophagy (likely via its interaction
with SQSTM1, see above); as a result, this mutant can serve as
another specificity control.315 When carrying out transfections
it may be necessary to alter the protocol depending on the level
of background fluorescence. For example, changing the
medium and waiting 24 to 48 h after the transfection can help
to reduce the background level of GFP-LC3 puncta that is due
to the transfection reagent (M. I. Colombo, personal communi-
cation). Similarly, when using an mCherry-GFP-SQSTM1 dou-
ble tag (see Tandem mRFP/mCherry-GFP fluorescence
microscopy) in transient transfections it is best to wait 48 h after
transfection to reduce the level of aggregate formation and
potential inhibition of autophagy (T. Johansen, personal com-
munication). An additional consideration is that, in addition to
transfection, viral infection can activate stress pathways in
some cells and possibly induce autophagy, again emphasizing
the importance of appropriate controls, such as control viruses
expressing GFP.326

Ubiquitinated protein aggregate formation and clearance
appear to represent a cellular recycling process. Aggregate for-
mation can occur when autophagy is either inhibited or when
its capacity for degradation is exceeded by the formation of
proteins delivered to the aggregates. In principle, formation of
GFP-LC3-positive aggregates represents a component of the
autophagy process. However, the formation of GFP-LC3-posi-
tive ubiquitinated protein aggregates does not directly reflect
either the induction of autophagy (or autophagosome forma-
tion) or flux through the system. Indeed, formation of ubiquiti-
nated protein aggregates that are GFP-LC3 positive can occur
in autophagy-deficient cells.315 Therefore, it should be remem-
bered that GFP-LC3 puncta likely represent a mix of ubiquiti-
nated protein aggregates in the cytosol, ubiquitinated protein
aggregates within autophagosomes and/or more “conventional”
phagophores and autophagosomes bearing other cytoplasmic
cargo (this is one example where CLEM could help in resolving
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this question84). In Dictyostelium, inhibition of autophagy leads
to huge ubiquitinated protein aggregates containing SQSTM1
and GFP-Atg8, when the latter is co-expressed; the large size of
the aggregates makes them easily distinguishable from auto-
phagosomes. Saponin treatment has been used to reduce back-
ground fluorescence under conditions where no aggregation of
GFP-LC3 is detected in hepatocytes, GFP-LC3 stably-trans-
fected HEK 293326 and human osteosarcoma cells, and in non-
transfected cells;327 however, because treatment with saponin
and other detergents can provoke artifactual GFP-LC3 puncta
formation,328 specificity controls need to be included in such
experiments. In general, it is preferable to include additional
assays that measure autophagy rather than relying solely on
monitoring GFP-LC3. In addition, we recommend that
researchers validate their assays by demonstrating the absence
or reversal of GFP-LC3 puncta formation in cells treated with
pharmacological or RNA interference-based autophagy inhibi-
tors (Table 1). For example, 3-MA is commonly used to inhibit
starvation- or rapamycin-induced autophagy,329 but it has no
effect on BECN1-independent forms of autophagy,83,151 and
some data indicate that this compound can also have stimula-
tory effects on autophagy (see Autophagy inhibitors and
inducers).330

Another general limitation of the GFP-LC3 assay is that
it requires a system amenable to the introduction of an
exogenous gene. Accordingly, the use of GFP-LC3 in pri-
mary nontransgenic cells is more challenging. Here again,
controls need to be included to verify that the transfection
protocol itself does not artifactually induce GFP-LC3 puncta
or cause LC3 aggregation. Furthermore, transfection should
be performed with low levels of constructs, and the trans-
fected cells should be followed to determine 1) when suffi-
cient expression for detection is achieved, and 2) that,
during the time frame of the assay, basal GFP-LC3 puncta
remain appropriately low. In addition, the demonstration of
a reduction in the number of induced GFP-LC3 puncta
under conditions of autophagy inhibition is helpful. For
some primary cells, delivering GFP-LC3 to precursor cells
by infection with recombinant lentivirus, retrovirus or ade-
novirus,331 and subsequent differentiation into the cell type
of interest, is a powerful alternative to transfection of the
already differentiated cell type.74

To implement the scoring of autophagy via fluorescence
microscopy, one option is to measure pixel intensity. Since
the expression of GFP-LC3 may not be the same in all cells—
as discussed above—it is possible to use specific imaging soft-
ware to calculate the standard deviation (SD) of pixel intensity
within the fluorescence image and divide this by the mean
intensity of the pixels within the area of analysis. This will
provide a ratio useful for establishing differences in the degree
of autophagy between cells. Cells with increased levels of
autophagic activity, and hence a greater number of autopha-
gosomes in their cytosol, are associated with a greater variabil-
ity in pixel intensity (i.e., a high SD). Conversely, in cells
where autophagy is not occurring, GFP-LC3 is uniformly dis-
tributed throughout the cytosol and a variation in pixel inten-
sity is not observed (i.e., a low SD; M. Campanella, personal
communication).

Although LC3-II is primarily membrane-associated, it is not
necessarily associated with autophagosomes as is often
assumed; the protein is also found on phagophores, the precur-
sors to autophagosomes, as well as on amphisomes and phago-
somes (see Western blotting and ubiquitin-like protein
conjugation systems).183,332,333 Along these lines, yeast Atg8 can
associate with the vacuole membrane independent of lipidation,
so that a punctate pattern does not necessarily correspond to
autophagic compartments.334 Thus, the use of additional
markers is necessary to specify the identity of an LC3-positive
structure; for example, ATG12–ATG5-ATG16L1 would be
present on a phagophore, but not an autophagosome, and thus
colocalization of LC3 with any of these proteins would indicate
the former structure. In addition, the site(s) of LC3 conjugation
to PE is not definitively known, and levels of Atg8–PE/LC3-II
can increase even in autophagy mutants that cannot form auto-
phagosomes.335 One method that can be used to examine LC3-
II membrane association is differential extraction in Triton X-
114, which can be used with mammalian cells,331 or western
blot analysis of total membrane fractions following solubiliza-
tion with Triton X-100, which is helpful in plants.214,215 Impor-
tantly, we stress again that numbers of GFP-LC3 puncta,
similar to steady state LC3-II levels, reflect only a snapshot of
the numbers of autophagy-related structures (e.g., autophago-
somes) in a cell at one time, not autophagic flux.

Finally, we offer a general note of caution with regard to
using GFP. First, the GFP tag is large, in particular relative to
the size of LC3; therefore, it is possible that a chimera may
behave differently from the native protein in some respects.
Second, GFP is not native to most systems, and as such it may
be recognized as an aberrant protein and targeted for degrada-
tion, which has obvious implications when studying autophagy.
Third, some forms of GFP tend to oligomerize, which may
interfere with protein function and/or localization. Fourth,
EGFP inhibits polyubiquitination336 and may cause defects in
other cellular processes. Fifth, not all LC3 puncta represent
LC3-II and correspond to autophagosomes.190,191,337,338

Accordingly it would be prudent to complement any assays
that rely on GFP fusions (to Atg8/LC3 or any protein) with
additional methods that avoid the use of this fluorophore. Simi-
larly, with the emergence of “super-resolution” microscopy
methods such as photoactivated localization microscopy
(PALM), new tags are being used (e.g., the EosFP green to red
photoconvertible fluorescent protein, or the Dronpa GFP-like
protein) that will need to be tested and validated.339

Conclusion: GFP-LC3 provides a marker that is relatively
easy to use for monitoring autophagy induction (based on the
appearance of puncta), or colocalization with cargo; however,
monitoring this chimera does not determine flux unless utilized
in conjunction with inhibitors of lysosomal fusion and/or deg-
radation. In addition, it is recommended that results obtained
by GFP-LC3 fluorescence microscopy be verified by additional
assays.

e. Tandem mRFP/mCherry-GFP fluorescence microscopy
A fluorescence assay that is designed to monitor flux relies
on the use of a tandem monomeric RFP-GFP-tagged LC3
(tfLC3; Fig. 11).264 The GFP signal is sensitive to the acidic
and/or proteolytic conditions of the lysosome lumen,
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Table 1. Genetic and pharmacological regulation of autophagy.1

Method Comments

1. 3-methyladenine A PtdIns3K inhibitor that effectively blocks an early stage of autophagy by inhibiting the class III PtdIns3K, but not a specific autophagy
inhibitor. 3-MA also inhibits the class I PI3K and can thus, at suboptimal concentrations in long-term experiments, promote
autophagy in some systems, as well as affect cell survival through AKT and other kinases. 3-MA does not inhibit BECN1-independent
autophagy.

2. 10-NCP 10-(40-N-diethylamino)butyl)-2-chlorophenoxazine; an AKT inhibitor that induces autophagy in neurons.1200

3. 17-AAG An inhibitor of the HSP90-CDC37 chaperone complex; induces autophagy in certain systems (e.g., neurons), but impairs starvation-
induced autophagy and mitophagy in others by promoting the turnover of ULK1.458

4. Akti-1/2 An allosteric inhibitor of AKT1 and AKT2 that promotes autophagy in B-cell lymphoma.1495

5. AR7 AR7 was developed as a highly potent and selective enhancer of CMA through antagonizing RARA/RARa; AR7 is the first small molecule
developed to selectively stimulate CMA without affecting macroautophagy.1496

6. ARN5187 Lysosomotropic compound with a dual inhibitory activity against the circadian regulator NR1D2/REV-ERBb and autophagy.1497

7. ATG4C74A An active site mutant of ATG4 that is defective for autophagy.1498

8. Bafilomycin A1 A V-ATPase inhibitor that causes an increase in lysosomal/vacuolar pH, and, ultimately, blocks fusion of autophagosomes with the
vacuole; the latter may result from inhibition of ATP2A/SERCA.226

9. Betulinic acid A pentacyclic triterpenoid that promotes paralell damage in mitochondrial and lysosomal compartments, and, ultimately, jeopardizes
lysosomal degradative capacity.235

10. Calcium An autophagy activator that can be released from ER or lysosomal stores under stress conditions; however, calcium can also inhibit
autophagy.216,1245

11. Chloroquine, NH4Cl Lysosomotropic compounds that elevate/neutralize the lysosomal/vacuolar pH.163

12. DFMO a-difluoromethylornithine, an irreversible inhibitor of ODC1 (ornithine decarboxylase 1) that blocks spermidine synthesis and ATG gene
expression.1499

13. E-64d A membrane-permeable cysteine protease inhibitor that can block the activity of a subset of lysosomal hydrolases; should be used in
combination with pepstatin A to inhibit lysosomal protein degradation.

14. ESC8 A cationic estradiol derivative that induces autophagy and apoptosis simultaneously by downregulating the MTOR kinase pathway in
breast cancer cells.

15. Everolimus An inhibitor of MTORC1 that induces both autophagy and apoptosis in B-cell lymphoma primary cultures.1495

16. Fumonisin B1 An inhibitor of ceramide synthesis that interferes with macroautophagy.
17. Gene deletion This method provides the most direct evidence for the role of an autophagic component; however, more than one gene involved in

autophagy should be targeted to avoid indirect effects.
18. HMOX1 induction Mitophagy and the formation of iron-containing cytoplasmic inclusions and corpora amylacea are accelerated in HMOX1-transfected rat

astroglia and astrocytes of GFAP-HMOX1 transgenic mice. Heme derived ferrous iron and carbon monoxide, products of the HMOX1
reaction, promote macroautophagy in these cells.1500-1502

19. Knockdown This method (including miRNA, RNAi, shRNA and siRNA) can be used to inhibit gene expression and provides relatively direct evidence
for the role of an autophagic component. However, the efficiency of knockdown varies, as does the stability of the targeted protein.
In addition, more than one gene involved in autophagy should be targeted to avoid misinterpreting indirect effects.

20. KU-0063794 An MTOR inhibitor that binds the catalytic site and activates autophagy.341,1503

21. Leupeptin An inhibitor of cysteine, serine and threonine proteases that can be used in combination with pepstatin A and/or E-64d to block
lysosomal protein degradation. Leupeptin is not membrane permeable, so its effect on cathepsins may depend on endocytic activity.

22. microRNA Can be used to reduce the levels of target mRNA(s) or block translation.
23. MLN4924 A small molecule inhibitor of NAE (NEDD8 activating enzyme);1504 induces autophagy by blockage of MTOR signals via DEPTOR and the

HIF1A-DDIT4/REDD1-TSC1/2 axis as a result of inactivation of CUL/cullin-RING ligases.1505-1507

24. NAADP-AM Activates the lysosomal TPCN/two-pore channel and induces autophagy.1225

25. NED-19 Inhibits the lysosomal TPCN and NAADP-induced autophagy.1225

26. NVP-BEZ235 A dual inhibitor of PIK3CA/p110 and the MTOR catalytic site that activates autophagy.1508,1509

27. Pathogen-derived Virally-encoded autophagy inhibitors including HSV-1 ICP34.5, Kaposi sarcoma-associated herpesvirus vBCL2, g-herpesvirus 68 M11,
ASFV vBCL2, HIV-1 Nef and influenza A virus M2.566,892,896,897,902

28. Pepstatin A An aspartyl protease inhibitor that can be used to partially block lysosomal degradation; should be used in combination with other
inhibitors such as E-64d. Pepstatin A is not membrane permeable.

29. Protease inhibitors These chemicals inhibit the degradation of autophagic substrates within the lysosome/vacuole lumen. A combination of inhibitors (e.g.,
leupeptin, pepstatin A and E-64d) is needed for complete blockage of degradation.

30. PMI p62 (SQSTM1)-mediated mitophagy inducer is a pharmacological activator of autophagic selection of mitochondria that operates
without collapsing the mitochondrial membrane potential (DCm) and hence by exploiting the autophagic component of the
process.713

31. Rapamycin Binds to FKBP1A/FKBP12 and inhibits MTORC1; the complex binds to the FRB domain of MTOR and limits its interaction with RPTOR,
thus inducing autophagy, but only providing partial MTORC1 inhibition. Rapamycin also inhibits yeast TOR.

32. Resveratrol A natural polyphenol that affects many proteins1510 and induces autophagy via activation of AMPK.1511,1512

33. RNAi Can be used to inhibit gene expression.
34. RSVAs Synthetic small-molecule analogs of resveratrol that potently activate AMPK and induce autophagy.1513

35. Saikosaponin-d A natural small-molecule inhibitor of ATP2A/SERCA that induces autophagy and autophagy-dependent cell death in apoptosis-resistant
cells.1514

36. Tat-Beclin 1 A cell penetrating peptide that potently induces macroautophagy.1080,1226

37. Thapsigargin An inhibitor of ATP2A/SERCA that inhibits autophagic sequestration through the depletion of intracellular Ca2C stores;216,1515 however,
thapsigargin may also block fusion of autophagosomes with endosomes by interfering with recruitment of RAB7, resulting in
autophagosome accumulation.1516

38 TMS Trans-3,5,4-trimethoxystilbene upregulates the expression of TRPC4, resulting in MTOR inhibition.1517

39. Torin1 A catalytic MTOR inhibitor that induces autophagy and provides more complete inhibition than rapamycin (it inhibits all forms of
MTOR).1193

40. Trehalose An inducer of autophagy that may be relevant for the treatment of different neurodegenerative diseases.1241,1518,1519

41. Tunicamycin A glycosylation inhibitor that induces autophagy due to ER stress.1520

42. Vacuolin-1 A RAB5A activator that reversibly blocks autophagosome-lysosome fusion.1521

43. Vinblastine A depolymerizer of both normal and acetylated microtubules that interferes with autophagosome-lysosome fusion.227

44. Wortmannin An inhibitor of PI3K and PtdIns3K that blocks autophagy, but not a specific inhibitor (see 3-MA above).

1This table is not meant to be complete, as there are many compounds and genetic methods that regulate autophagy, and new ones are being discovered routinely.
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whereas mRFP is more stable. Therefore, colocalization of
both GFP and mRFP fluorescence indicates a compartment
that has not fused with a lysosome, such as the phagophore
or an autophagosome. In contrast, a mRFP signal without

GFP corresponds to an amphisome or autolysosome. Other
fluorophores such as mCherry are also suitable instead of
mRFP,319 and an image-recognition algorithm has been
developed to quantify flux of the reporter to acidified

Figure 11. The GFP and mRFP signals of tandem fluorescent LC3 (tfLC3, mRFP-GFP-LC3) show different localization patterns. HeLa cells were cotransfected with plasmids
expressing either tfLC3 or LAMP1-CFP. Twenty-four h after transfection, the cells were starved in Hanks balanced salt solution for 2 h, fixed and analyzed by microscopy.
The lower panels are a higher magnification of the upper panels. Bar: 10 mm in the upper panels and 2 mm in the lower panels. Arrows in the lower panels point to (or
mark the location of) typical examples of colocalized signals of mRFP and LAMP1. Arrowheads point to (or mark the location of) typical examples of colocalized particles
of GFP and mRFP signals. This figure was previously published in ref. 264, and is reproduced by permission of Landes Bioscience, copyright 2007.
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compartments.340-342 One of the major advantages of the
tandem mRFP/mCherry-GFP reporter method is that it
enables simultaneous estimation of both the induction of
autophagy and flux through autophagic compartments with-
out requiring the use of any lysosomal inhibitors. The com-
petence of lysosomal digestion of the substrate requires
additional analysis using methods described above. The use
of more than one time point allows visualization of
increased early autophagosomes followed by increases in
late autophagosomes as an additional assurance that flux
has been maintained.343 In addition, this method can be
used to monitor autophagy in high-throughput drug screen-
ing studies.341 The quantification of “yellow only” (where
the yellow signal results from merging the red and green
channels) and “red only” dots in a stable tandem-fluores-
cent LC3-reporter cell line can be automated by a Cellomics
microscope that can be used to assess a huge population of
cells (1,000 or more) over a large number of random fields
of view.233,344 Notably, organelle-specific variations of the
tandem mRFP/mCherry-GFP reporter system have success-
fully been used to analyze selective types of autophagy, such
as pexophagy345 and mitophagy346,347 in mammalian cells.

An alternative dual fluorescence assay involves the Rosella
pH biosensor. This assay monitors the uptake of material to the
lysosome/vacuole and complements the use of the tandem
mRFP/mCherry-GFP reporter. The assay is based upon the
genetically encoded dual color-emission biosensor Rosella, a
fusion between a relatively pH-stable fast-maturing RFP vari-
ant, and a pH-sensitive GFP variant. When targeted to specific
cellular compartments or fused to an individual protein, the
Rosella biosensor provides information about the identity of
the cellular component being delivered to the lysosome/vacuole
for degradation. Importantly, the pH-sensitive dual color fluo-
rescence emission provides information about the environment
of the biosensor during autophagy of various cellular compo-
nents. In yeast, Rosella has been successfully used to monitor
autophagy of cytosol, mitochondria (mitophagy) and the
nucleus (nucleophagy).348-350 Furthermore, the Rosella biosen-
sor can be used as a reporter under various conditions
including nitrogen depletion-dependent induction of auto-
phagy.348,349 The Rosella biosensor can also be expressed in
mammalian cells to follow either nonselective autophagy (cyto-
plasmic turnover), or mitophagy.349

Cautionary notes: The use of tandem mRFP/mCherry-
GFP-LC3/Atg8 reporters in live imaging experiments can be
complicated by the motion of LC3/Atg8 puncta. As a conse-
quence, conventional confocal microscopy may not allow
visualization of colocalized mRFP/mCherry-GFP puncta. In
this case, GFP colocalized puncta represent newly formed
autophagic structures whereas mRFP/mCherry-only puncta
are ambiguous. Spinning disk confocal microscopy or rapid
acquisition times may be required for imaging tandem
mRFP/mCherry-GFP proteins, although these techniques
require a brighter fluorescent signal associated with what
may be undesirably higher levels of transgene expression.
One solution is to use the mTagRFP-mWasabi-LC3 chi-
mera,351 as mTagRFP is brighter than mRFP1 and mCherry,
and mWasabi is brighter than EGFP.352 Another possibility
is to use fixed cells; however, this presents an additional

concern: The use of tandem mRFP/mCherry-GFP relies on
the quenching of the GFP signal in the acidic autolysosome;
however, fixation solutions are often neutral or weak bases,
which will increase the pH of the entire cell. Accordingly,
the GFP signal may be restored after fixation (Fig. 12),
which would cause an underestimation of the amount of
signal that corresponds only to RFP (i.e., in the autolyso-
some). Thus, the tissue or cell samples must be properly
processed to avoid losing the acidic environment of the
autolysosomes. In addition, there may be weak fluorescence
of EGFP even in an acidic environment (pH between 4 and
5).263,331 Therefore, it may be desirable to choose a mono-
meric green fluorescent protein that is more acid sensitive
than EGFP for assaying autophagic flux.

Another caution in the interpretation of the tandem fluores-
cent marker is that colocalization of GFP and mRFP/mCherry
might also be seen in the case of impaired proteolytic degrada-
tion within autolysosomes or altered lysosomal pH. Finally,
expression of tandem mRFP-GFP-LC3 is toxic to some cancer
cell lines relative to GFP-LC3 or RFP-LC3 (K.S. Choi, personal
communication). The cytotoxicity of DsRed and its variants
such as mRFP1 is associated with downregulation of BCL2L1/
Bcl-xL.

353 In contrast to mRFP-GFP-LC3, overexpression of
mTagRFP-mWasabi-LC3 does not appear to be toxic to HeLa
cells (J. Lin, personal communication).

The Rosella assay has not been tested in a wide range of
mammalian cell types. Accordingly, the sensitivity and the spec-
ificity of the assay must be verified independently until this
method has been tested more extensively and used more widely.

Finally, it may be desirable to capture the dynamic behavior
of autophagy in real time, to generate data revealing the rate of
formation and clearance of autophagosomes over time, rather
than single data points. For example, by acquiring signals from
2 fluorescent constructs in real time, the rate of change in
colocalization signal as a measure of the fusion rate and recy-
cling rate between autophagosomes and lysosomes can be
assessed.354 Importantly, due to the integral dynamic relation-
ship of autophagic flux with the onset of apoptosis and necro-
sis, it is advantageous to monitor cell death and autophagic flux
parameters concomitantly over time, which FRET-based
reporter constructs make possible.355

In addition, as the metabolic control of autophagy is becom-
ing increasingly clear, highlighting a tight network between the
autophagy machinery, energy sensing pathways and the cell’s
metabolic circuits,356,357 mitochondrial parameters such as fis-
sion and fusion rate as well as the cell’s ATP demand should be
monitored and correlated with autophagic flux data. This will
provide a better understanding of the variability of autophagy
and cell death susceptibility.

Tandem fluorescent markers show real-time changes in auto-
phagosome fusion with lysosomes, due to entry into an acidic
environment; however, fusion is not definitive evidence of sub-
strate or carrier degradation. Lysosomes may be able to fuse, but
be unable to degrade newly delivered cargo, as occurs in some
lysosomal storage diseases. Best practice would be to perform an
autophagic flux assay in parallel with quantification of tandem
fluorescent markers to confirm completion of carrier flux.

Conclusion: The use of tandem fluorescent constructs,
which display different emission signals depending on the
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Figure 12. GFP fluorescence in the autolysosome can be recovered upon neutralization of the pH. (A) GFP-LC3 emits green fluorescence in the autolysosomes of post-
mortem processed heart sections. Cryosections of 3.8% paraformaldehyde-fixed ventricular myocardium from 3-wk-old GFP-LC3 transgenic mice at the baseline (control)
or starved for 24 h (starved) were processed for immunostaining using a standard protocol (buffered at pH 7.4). Most of the GFP-LC3 puncta are positive for LAMP1, sug-
gesting that the autolysosomes had recovered GFP fluorescence. (B) Colocalization between GFP-LC3 direct fluorescence (green) and indirect immunostaining for GFP
(red). Sections processed as in (A) were immunostained for GFP using a red fluorescence-tagged secondary antibody, and the colocalization with GFP fluorescence was
examined by confocal microscopy. Almost all of the red puncta emit green fluorescence. Image provided by Xuejun Wang.
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environment (in particular, GFP fluorescence is sensitive to an
acidic pH), provides a convenient way to monitor autophagic
flux in many cell types.

f. Autophagic flux determination using flow and
multispectral imaging cytometry
Whereas fluorescence microscopy, in combination with novel
autophagy probes, has permitted single-cell analysis of autopha-
gic flux, automation for allowing medium- to high-throughput
analysis has been challenging. A number of methods have been
developed that allow the determination of autophagic flux using
flow cytometry,225,311,327,358-361 and commercial kits are now
available for monitoring autophagy by flow cytometry. These
approaches make it possible to capture data or, in specialized
instruments, high-content, multiparametric images of cells in
flow (at rates of up to 1,000 cells/sec for imaging, and higher in
nonimaging flow cytometers), and are particularly useful for
cells that grow in suspension. Optimization of image analysis
permits the study of cells with heterogeneous LC3 puncta, thus
making it possible to quantify autophagic flux accurately in sit-
uations that might perturb normal processes (e.g., microbial
infection).360,362 Since EGFP-LC3 is a substrate for autophagic
degradation, total fluorescence intensity of EGFP-LC3 can be
used to indicate levels of autophagy in living mammalian
cells.358 When autophagy is induced, the decrease in total cellu-
lar fluorescence can be precisely quantified in large numbers of
cells to obtain robust data. In another approach, soluble EGFP-
LC3-I can be depleted from the cell by a brief saponin extraction
so that the total fluorescence of EGFP-LC3 then represents that
of EGFP-LC3-II alone (Fig. 13A).326,327 Since EGFP-LC3 trans-
fection typically results in high relative levels of EGFP-LC3-I,
this treatment significantly reduces the background fluorescence
due to nonautophagosome-associated reporter protein. By com-
paring treatments in the presence or absence of lysosomal deg-
radation inhibitors, subtle changes in the flux rate of the GFP-
LC3 reporter construct can be detected. If it is not desirable to

treat cells with lysosomal inhibitors to determine rates of auto-
phagic flux, a tandem mRFP/mCherry-EGFP-LC3 (or similar)
construct can also be used for autophagic flux measurements in
flow cytometry experiments (see Tandem mRFP/mCherry-GFP
fluorescence microscopy).359

These methods, however, require the cells of interest to be
transfected with reporter constructs. Since the saponin extrac-
tion method can also be combined with intracellular staining
for endogenous LC3 protein, subtle changes in autophagic flux
can be measured without the need for reporter transfections
(Fig. 13B).

Cautionary notes: Care must be taken when applying flow
cytometry measurements to adherent cells, particularly neurons
and other cells with interdigitated processes, as the preparation
of single cell suspensions entails significant levels of plasma
membrane disruption and injury that can secondarily induce
autophagy.

Users of the saponin extraction method should carefully titrate
saponin concentrations and times of treatment to ensure specific
extraction of LC3-I in their systems. Also, it has been observed in
some cell types that saponin treatment can lead to nonautophagic
aggregation of LC3,328 which should be controlled for in these
assays (see GFP-Atg8/LC3 fluorescence microscopy).

Cell membrane permeabilization with digitonin and extrac-
tion of the nonmembrane-bound form of LC3 allows combined
staining of membrane-associated LC3-II protein and any
markers for detection of autophagy in relation to other cellular
events/processes. Based on this approach, a method for moni-
toring autophagy in different stages of the cell cycle was devel-
oped.363 Thus, the presence of basal or starvation-induced
autophagy is detected in G1, S, and G2/M phases of the cell
cycle in MEFs with doxycycline-regulated ATG5 expression. In
these experiments cells were gated based on their DNA content
and the relative intensity of GFP-LC3-II and LC3-II expression.
This approach might also be used for the detection of autopha-
gic flux in different stages of the cell cycle or subG1 apoptotic

Figure 13. Saponin extraction allows quantification of LC3-II fluorescence by FACS. (A) Schematic diagram of the effects of the saponin wash. Due to the reorganization of
the EGFP-LC3 reporter protein, induction of autophagosome formation does not change the total levels of fluorescence in EGFP-LC3-transfected cells. However, extraction
of EGFP-LC3-I with saponin results in a higher level of fluorescence in cells with proportionally higher levels of EGFP-LC3-II-containing autophagosomes. This figure was
previously published in ref. 327. (B) Saponin extraction can also be used to measure flux of endogenous LC3 protein. Human osteosarcoma cells were starved of amino
acids and serum by incubation in EBSS, for the indicated times in the presence or absence of a 1 h chloroquine (50 mM) treatment. Cells were then washed with PBS con-
taining 0.05% saponin and processed for FACS analysis for endogenous LC3. Image provided by K.E. Eng and G.M. McInerney.
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cell population by measuring accumulation of LC3-II in the
presence or absence of lysosomal inhibitors.

Although GFP-LC3 can be used as a reporter for flow
cytometry, it is more stable (which is not necessarily ideal
for flux measurements) than GFP-SQSTM1 or GFP-NBR1
(NBR1 is a selective autophagic substrate with structural
similarity to SQSTM1364). GFP-SQSTM1 displays the largest
magnitude change following the induction of autophagy by
amino acid deprivation or rapamycin treatment, and may
thus be a better marker for following autophagic flux by
this method (confirmed in SH-SY5Y neuronal cell lines sta-
bly expressing GFP-SQSTM1; E.M. Valente, personal
communication).365

Conclusion: Medium- to high-throughput analysis of auto-
phagy is possible using flow and multispectral imaging cytome-
try (Fig. 14). The advantage of this approach is that larger
numbers of cells can be analyzed with regard to GFP-LC3
puncta, cell morphology and/or autophagic flux, and concomi-
tant detection of surface markers can be included, potentially
providing more robust data than is achieved with other meth-
ods. A major disadvantage, however, is that flow cytometry only
measures changes in total GFP-LC3 levels, which can be subject
to modification by changes in transcription or translation, or by
pH, and this approach cannot accurately evaluate localization

(e.g., to autophagosomes) or lipidation (generation of LC3-II)
without further permeabilization of the cell.

g. Immunohistochemistry
Immunodetection of ATG proteins (particularly LC3 and
BECN1) has been reported as a prognostic factor in various
human carcinomas, including lymphoma,197,366 breast carci-
noma,367 endometrial adenocarcinoma,368,369 head and neck
squamous cell carcinoma,370-372 hepatocellular carcinoma,373,374

gliomas,375 non-small cell lung carcinomas,376 pancreatic377 and
colon adenocarcinomas,378-380 as well as in cutaneous and uveal
melanomas.381,382 Unfortunately, the reported changes often
reflect overall diffuse staining intensity rather than appropriately
compartmentalized puncta. Therefore, the observation of
increased levels of diffuse LC3 staining (which may reflect a
decrease in autophagy) should not be used to draw conclusions
that autophagy is increased in cancer or other tissue samples.
Importantly, this kind of assay should be performed as recom-
mended by the Reporting Recommendations for Tumor Marker
Prognostic Studies (REMARK).383 As we identify new drugs for
modulating autophagy in clinical applications, this type of infor-
mation may prove useful in the identification of subgroups of
patients for targeted therapy.384-386

Figure 14. Assessing autophagy with multispectral imaging cytometry. (A) Bright Detail Intensity (BDI) measures the foreground intensity of bright puncta (that are 3 pix-
els or less) within the cell image. For each cell, the local background around the spots is removed before intensity calculation. Thus, autophagic cells with puncta have
higher BDI values. (B) Media control (untreated wild type), rapamycin-treated wild-type and atg5-/- MEFs were gated based on BDI. Representative images of cells with
high or low BDI values. Scale bar: 10 mm. Images provided by M.L. Albert.
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In mouse and rat tissues, endogenous LC3, ATG4B, and
ATG9A have been detected by immnohistochemical analyses
using both paraffin sections and cryosections.293,387-389 When
autophagosomes are absent, the localization pattern of LC3 in
the cells of various tissues is diffuse and cytosolic. Moreover,
intense fibrillary staining of LC3 is detectable along dendrites
of intact neurons, whereas granular staining for LC3 appears
mainly in the perikarya of neurons in CTSD- or CTSB- and
CTSL (cathepsin L)-deficient mouse brains.293 LC3 puncta are
also observed in mice in the peripheral nerves, specifically in
Schwann cells after neurodegeneration,390 and Paneth cells of
the small intestine from human Crohn disease patients and
mouse models of intestinal inflammation driven by ER-stress
exhibit strong LC3 puncta staining.391,392 In various neurode-
generative states, LC3 puncta may be numerous in neurites,
especially within dystrophic swellings and, in many cases, these
vacuoles are amphisomes or autolysosomes, reflecting the
delayed or inhibited degradation of LC3 despite the presence of
abundant hydrolase activity.57,66 In developing inner ear and
retinal tissue in chicken, BECN1 is detected by immunofluores-
cence; in chick retina AMBRA1 is also detected.393-395 Finally,
in non-mammalian vertebrates, BECN1 was detected during
follicular atresia in the ovary of 3 fish species using paraffin sec-
tions; a punctate immunostaining for BECN1 is scattered
throughout the cytoplasm of the follicular cells when they are
in intense phagocytic activity for yolk removal.396

Cautionary notes: One problem with LC3 IHC is that in
some tissues this protein can be localized in structures other
than autophagosomes. For example, in murine hepatocytes
and cardiomyocytes under starved conditions, endogenous
LC3 is detected not only in autophagosomes but also on
lipid droplets.397 In neurons in ATG7-deficient mice, LC3
accumulates in ubiquitin- and SQSTM1-positive aggre-
gates.398 In neurons in aging or neurodegenerative disease
states, LC3 is commonly present in autolysosomes and may
be abundant in lipofuscin and other lysosomal residual bod-
ies.57 Thus, immunodetection of LC3 in cytoplasmic gran-
ules is not sufficient to monitor autophagy in vivo. To
evaluate autophagy by the methods of immunohistochemis-
try, it is necessary to identify the autophagosomes directly
using the ABC technique for TEM observation (see Trans-
mission electron microscopy).77

Conclusion: It has not been clearly demonstrated that IHC
of ATG proteins in tissues corresponds to autophagy activity,
and this area of research needs to be further explored before we
can make specific recommendations.

3. SQSTM1 and related LC3 binding protein turnover
assays

In addition to LC3, SQSTM1/p62 or other receptors such as
NBR1, can also be used as protein markers, at least in certain
settings.26,399 For example, SQSTM1 can be detected as puncta
by IHC in cancer cells, similar to LC3.372 The SQSTM1 protein
serves as a link between LC3 and ubiquitinated substrates.84

SQSTM1 and SQSTM1-bound polyubiquitinated proteins
become incorporated into the completed autophagosome and
are degraded in autolysosomes, thus serving as an index of
autophagic degradation (Fig. 15). Inhibition of autophagy

correlates with increased levels of SQSTM1 in mammals and
Drosophila, suggesting that steady state levels of this protein
reflect the autophagic status.61,389,400-404 Similarly, decreased
SQSTM1 levels are associated with autophagy activation. The
phosphorylation of SQSTM1 at Ser403 appears to regulate its
role in the autophagic clearance of ubiquitinated proteins, and
anti-phospho-SQSTM1 antibodies can be used to detect the
modified form of the protein.324

Cautionary notes: SQSTM1 changes can be cell type and
context specific. In some cell types, there is no change in the
overall amount of SQSTM1 despite strong levels of autophagy
induction, verified by the tandem mRFP/mCherry-GFP-LC3
reporter as well as ATG7- and lysosome-dependent turnover of
cargo proteins (C.T. Chu, personal observation). In other con-
texts, a robust loss of SQSTM1 does not correlate with
increased autophagic flux as assessed by a luciferase-based mea-
sure of flux;245 a decrease of SQSTM1 can even relate to a
blockage of autophagy due to cleavage of the protein, together
with other autophagy proteins, by caspases or calpains.405

SQSTM1 may be transcriptionally upregulated under certain
conditions,317,406-409 further complicating the interpretation of
results. For example, SQSTM1 upregulation, and at least tran-
sient increases in the amount of SQSTM1, is seen in some sit-
uations where there is an increase in autophagic flux.410-412

One such case is seen during retinoic acid-induced differentia-
tion of AML cells where SQSTM1 is upregulated407 with con-
comitant increased autophagic flux.413 Activation of a signaling
pathway, e.g., RAF1/Raf-MAP2K/MEK-MAPK/ERK, can also
upregulate SQSTM1 transcription.414 SQSTM1 mRNA is also
upregulated following prolonged starvation, which can restore
the SQSTM1 protein level to that before starvation.415,416 In the
same way, physical exercise, especially when performed during
starvation, increases the SQSTM1 mRNA level in skeletal mus-
cle, and can lead to an incorrect interpretation of autophagic
flux if only the protein level is measured.417,418 Another
instance when both mRNA and protein levels of SQSTM1 are
elevated even though autophagic flux is not impaired is
observed in aneuploid human and murine cells that are gener-
ated by introduction of 1 or 2 extra chromosomes.419,420 Thus,
appropriate positive and negative controls are needed prior to
the use of SQSTM1 as a flux indicator in a particular cellular

Figure 15. Regulation of the SQSTM1 protein during autophagy. The level of
SQSTM1 during starvation. Atg5+/+ and atg5-/- MEFs were cultured in DMEM with-
out amino acids and serum for the indicated times, and then subjected to immu-
noblot analysis using anti-SQSTM1 antibody (Progen Biotechnik, GP62). This figure
was previously published in ref. 26, and is reproduced by permission of Landes Bio-
science, copyright 2007.
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context, and we recommend monitoring the SQSTM1 mRNA
level as part of a complete analysis, or determining the
SQSTM1 protein level in the presence of actinomycin D.

Of interest, SQSTM1 hyperexpression at both gene and pro-
tein levels can be observed in muscle atrophy induced by can-
cer, though not by glucocorticoids, suggesting that the stimulus
inducing autophagy may also be relevant to the differential reg-
ulation of autophagy-related proteins.421 One solution to prob-
lems relating to variations in SQSTM1 expression levels is to
use a HaloTag�-p62 (SQSTM1) chimera.422 The chimeric pro-
tein can be covalently labeled with HaloTag� ligands, and the
loss of signal can then be monitored without interference by
subsequent changes in protein synthesis. Similarly, a stable cell
line expressing EGFP-tagged SQSTM1 under the control of an
inducible promoter can be used to assess the rates of SQSTM1
degradation, taking into account the limitations outlined above
(see Autophagic flux determination using flow and multispectral
imaging cytometry).365 A similar system exists in Drosophila in
which a GFP-tagged SQSTM1 can be expressed using the UAS-
GAL4 system.423 It is worth noting that tetracycline can reduce
autophagy levels; therefore, the appropriate control of only tet-
racycline addition has to be included if using an inducible pro-
moter that responds to this drug.424 Yet another solution is to
employ a radioactive pulse-chase assay to measure the rates of
SQSTM1 degradation.425

SQSTM1 contains a LIR motif as well as a ubiquitin binding
domain, and appears to act by linking ubiquitinated substrates
with the autophagic machinery. Nonetheless, it would be pru-
dent to keep in mind that SQSTM1 contains domains that
interact with several signaling molecules,426 and SQSTM1 may
be part of MTORC1.427 Thus, it may have additional functions
that need to be considered with regard to its role in autophagy.
In the context of autophagy as a stress response, the complexity
of using SQSTM1 as an autophagy marker protein is under-
scored by its capacity to modulate the NFE2L2/NRF2 anti-oxi-
dant response pathway through a KEAP1 binding
domain.428,429 In fact, SQSTM1 may, itself, be transcriptionally
induced by NFE2L2.430 Furthermore, it is preferable to examine
endogenous SQSTM1 because overexpression of this protein
leads to the formation of protein inclusions. In fact, even
endogenous SQSTM1 becomes Triton X-100-insoluble in the
presence of protein aggregates and when autophagic degrada-
tion is inhibited; thus, results with this protein are often con-
text-dependent. Indeed, there is a reciprocal crosstalk between
the UPS and autophagy, with SQSTM1 being a key link
between them.431 First, SQSTM1 participates in proteasomal
degradation, and its level may also increase when the protea-
some is inhibited.432 Accordingly, the SQSTM1 degradation
rate should be analyzed in the presence of an inhibitor such as
epoxomicin or lactacystin to determine the contribution from
the proteasome (see Autophagy inhibitors and inducers for
potential problems with MG132).433 Second, the accumulation
of SQSTM1 due to autophagy inhibition can impair UPS func-
tion by competitively binding ubiquitinated proteins, prevent-
ing their delivery to, and degradation by, the proteasome.434

Accordingly, it may be advisable to measure the UPS flux by
using UbG76V-GFP, a ubiquitin-proteasome activity reporter,
when SQSTM1 accumulation is observed. Thus, it is very

important to determine whether autophagy alone or in con-
junction with the UPS accounts for substrate degradation
induced by a particular biological change. A number of stres-
sors that impair the UPS induce the aggregation/dimerization
of SQSTM1, and this can be seen by the detection of a high
molecular mass (~150 kDa) protein complex by western blot,
which is recognized by SQSTM1 antibodies (R. Franco, per-
sonal communication).435,436 Although the accumulation of
this protein complex can be related to the accumulation of
ubiquitinated SQSTM1-bound proteins, or the dimerization/
inactivation of SQSTM1 (R. Franco, personal communica-
tion),437 evaluation of the ratio between SQSTM1 (aggregates/
dimers) and SQSTM1 monomers is likely a better measurement
of changes in SQSTM1 dynamics linked to autophagy or the
UPS.

SQSTM1 is also a substrate for CASP6/caspase 6 and
CASP8 (as well as CAPN1/calpain 1), which may confound
its use in examining cell death and autophagy.438 This is
one reason why SQSTM1 degradation should also be ana-
lyzed in the presence of a pan-caspase inhibitor such as Q-
VD-OPh before concluding that autophagy is activated
based on a decrease of this protein.405 Another issue is that
some phosphatidylinositol 3-kinase (PtdIns3K) inhibitors
such as LY294002, and to a lesser extent wortmannin (but
apparently not 3-MA),329 can inhibit protein synthesis;439

this might in turn affect the turnover of SQSTM1 and LC3,
which could influence conclusions that are drawn from the
status of these proteins regarding autophagic flux or ALIS
formation. Accordingly, it may be advisable to measure pro-
tein synthesis and proteasome activity along with autophagy
under inhibitory or activating conditions. With regard to
protein synthesis, it is worth noting that this can be moni-
tored through a nonradioactive method.440

Western blot analysis of cell lysates prepared using NP40- or
Triton X-100-containing lysis buffers in autophagic conditions
typically shows a reduction in SQSTM1 levels. However, this
does not necessarily indicate that SQSTM1 is degraded, because
SQSTM1 aggregates are insoluble in these detergent lysis condi-
tions.317,441 Moreover, in some instances SQSTM1 levels do not
change in the soluble fractions despite autophagic degradation,
a finding that might be explained by simultaneous transcrip-
tional induction of the gene encoding SQSTM1, since the solu-
ble fraction accounts only for the diffuse or free form of
SQSTM1. Accumulation of SQSTM1 in the Triton X-100-insol-
uble fraction can be observed when autophagy-mediated degra-
dation is inhibited. Under conditions of higher autophagic flux,
accumulation of SQSTM1 in Triton X-100-insoluble fractions
may not be observed and SQSTM1 levels may be reduced or
maintained. The simplest approach to circumvent many of
these problems is using lysis buffer that allows identification of
the entire cellular pool of SQSTM1 (e.g., containing 1% SDS);
however, additional assessment of both Triton X-100-soluble
and -insoluble fractions will provide further information
regarding the extent of SQSTM1 oligomerization.398 Note,
when performing a western blot using an SQSTM1 antibody, it
is always a good idea to include a positive control in which
SQSTM1 accumulates, such as an atg8a mutant (e.g., see
Fig. S3 in ref. 442).
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To conclusively establish SQSTM1 degradation by auto-
phagy, SQSTM1 levels in both Triton X-100-soluble and
-insoluble fractions need to be determined upon treatment
with autophagy inducers in combination with autophagy
inhibitors, such as those that inhibit the autolysosomal deg-
radation steps (e.g., protease inhibitors, chloroquine or bafi-
lomycin A1). Additionally, an alteration in the level of
SQSTM1 may not be immediately evident with changes
observed in autophagic flux upon certain chemical perturba-
tions (S. Sarkar, personal communication). Whereas LC3
changes may be rapid, clearance of autophagy substrates
may require a longer time. Therefore, if LC3 changes are
assessed at 6 h or 24 h after a drug treatment, SQSTM1 lev-
els can be tested not only at the same time points, but also
at later time points (24 h or 48 h) to determine the maxi-
mal impact on substrate clearance. An alternative method is
immunostaining, with and without autophagy inhibitors, for
SQSTM1, which will appear as either a diffuse or punctate
pattern. Experiments with autophagy inducers and inhibi-
tors, in combination with western blot and immunostaining
analyses, best establish autophagic degradation based on
SQSTM1 turnover. A final point, however, is that empirical
evidence suggests that the species specificity of antibodies
for detecting SQSTM1 must be taken into account. For
example, some commercial antibodies recognize both
human and mouse SQSTM1, whereas others detect the
human, but not the mouse protein.443 Another issue with
detecting SQSTM1 in the context of human diseases is that
it can be mutated (e.g., in Paget disease of bone).444 Thus,
care should be taken to ensure that potential mutations are
not affecting the epitopes that are recognized by anti-
SQSTM1 antibodies when using western blotting to detect
this protein.

As an alternative, the SQSTM1:BECN1 protein level ratio
can be used as a readout of autophagy.445 Since both decreased
SQSTM1 levels and increased BECN1 levels correlate with
enhanced autophagy (as noted in the present article), a
decreased SQSTM1:BECN1 protein level ratio (when derived
from the same protein extract) may, cautiously, be interpreted
as augmented autophagy, keeping in mind that SQSTM1 gene
expression varies significantly under different conditions and
may obscure the meaning of a change in the amount of
SQSTM1 protein. As a general note, using ratios of the levels of
proteins changing in opposite directions, rather than the pro-
tein levels themselves, could be beneficial since it overcomes
the loading normalization issue. The often-used alternative
approach of housekeeping proteins to normalize for loading
biases among samples is sometimes problematic as levels of the
HKPs change under various physiological, pathological and
pharmacological conditions.446-450

Finally, a novel protein family of autophagy receptors,
named CUET (from Cue5/Tollip), was identified, which in con-
trast to SQSTM1 and NBR1 has members that are present in all
eukaryotes.451 The CUET proteins also possess a ubiquitin-
binding CUE-domain and an Atg8-family interacting motif
(AIM)/LIR sequence that interacts with Atg8/LC3. In their
absence, cells are more vulnerable to the toxicity resulting from
aggregation-prone proteins showing that CUET proteins, and

more generally autophagy, play a critical evolutionarily con-
served role in the clearance of cytotoxic protein aggregates.451

Experiments in yeast have shown that Cue5 and the cyto-
plasmic proteins that require this autophagy receptor for rapid
degradation under starvation conditions could be potentially
good marker proteins for measuring autophagic flux.

Special caution must be taken when evaluating SQSTM1
levels in models of protein aggregation. Small protoaggre-
gates often stain positively for SQSTM1 and may be similar
in size to autophagic puncta. Similarly, GFP-u/GFP-degron
reporters (designed as an unstable variant that undergoes
proteasome-dependent degradation) will mark SQSTM1-
positive protein inclusions. Last, some types of aggregates
and inclusions will release soluble SQSTM1 or GFP-u/GFP-
degron under cell lysis or denaturing conditions, which can
skew the interpretation of soluble SQSTM1 and/or protea-
somal function, accordingly.

Conclusion: There is not always a clear correlation between
increases in LC3-II and decreases in SQSTM1. Thus, although
analysis of SQSTM1 can assist in assessing the impairment of
autophagy or autophagic flux, we recommend using SQSTM1
only in combination with other methods detailed in these
guidelines to monitor flux. See also the discussion in Autopha-
gic flux determination using flow and multispectral imaging
cytometry.

4. TOR/MTOR, AMPK and Atg1/ULK1

Atg1/ULK1 are central components in autophagy that likely act
at more than one stage of the process. There are multiple ULK
isoforms in mammalian cells including ULK1, ULK2, ULK3,
ULK4 and STK36.452 ULK3 is a positive regulator of the
Hedgehog signaling pathway,453 and its overexpression induces
both autophagy and senescence.454 Along these lines, ectopic
ULK3 displays a punctate pattern upon starvation-induced
autophagy induction.454 ULK3, ULK4 and STK36, however,
lack the domains present on ULK1 and ULK2 that bind
ATG13 and RB1CC1/FIP200.455 Thus, ULK3 may play a role
that is restricted to senescence and that is independent of the
core autophagy machinery. ULK2 has a higher degree of iden-
tity with ULK1 than any of the other homologs, and they may
have similar functions that are tissue specific. However, ULK1
may be the predominant isoform involved in autophagy, as
knockdown of ULK2 does not affect movement of ATG9.456

Similarly, pharmacological inhibition of ULK1 and ULK2, with
the compound MRT68921, blocks macroautophagy and
expression of a drug-resistant ULK1 mutant is sufficient to res-
cue this block.457 The stability and activation of ULK1, but not
ULK2, is dependent on its interaction with the HSP90-CDC37
chaperone complex. Pharmacological or genetic inhibition of
the chaperone complex increases proteasome-mediated turn-
over of ULK1, impairing its kinase activity and ability to pro-
mote both starvation-induced autophagy and mitophagy.458

AMP-activated protein kinase (AMPK) is a multimeric ser-
ine/threonine protein kinase comprised of PRKAA1/AMPKa1
or PRKAA2/AMPKa2 (a, catalytic), the PRKAB1/AMPKb1 or
PRKAB2/AMPKb2 (b, scaffold), and the PRKAG1/AMPKg1,
PRKAG2/AMPKg2 or PRKAG3/AMPKg3 (g, regulatory)
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subunits. The enzyme activity of AMPK is dependent on phos-
phorylation of the PRKAA/a-subunit on Thr172,459,460 and,
therefore, can be conveniently monitored by western blotting
with a phosphospecific antibody against this site. In some cells,
Thr172 is phosphorylated by CAMKK2/CaMKKb, whereas in
others it is a substrate of the STK11/LKB1 kinase. Regulation of
AMPK activity is mediated primarily by Thr172-dephosphory-
lating protein phosphatases such as PPP1/PP1 (protein phos-
phatase 1) and PPP2/PP2A (protein phosphatase 2).461 Thr172
dephosphorylation is modulated by adenine nucleotides that
bind competitively to regulatory sites in the PRKAG/g-subunit.
AMP and ADP inhibit dephosphorylation and promote AMPK
activity, whereas Mg2C-ATP has the opposite effect.460 Thus,
AMPK acts as a fine-tuned sensor of the overall cellular energy
charge that regulates cellular metabolism to maintain energy
homeostasis. Overexpression of a dominant negative mutant
(R531G) of PRKAG2, the g-subunit isoform 2 of AMPK that is
unable to bind AMP, makes it possible to analyze the relation-
ship between AMP modulation (or alteration of energetic
metabolism) and AMPK activity.462,463 Activation of AMPK is
also associated with the phosphorylation of downstream enzymes
involved in ATP-consuming processes, such as fatty acid (ACAC
[acetyl-CoA carboxylase]) and cholesterol (HMGCR [3-hydroxy-
3-methylglutaryl-CoA reductase]) biosynthesis.

The role of AMPK in autophagy is complex and highly
dependent on both cell type and metabolic conditions. Further-
more, as noted above, there are 2 isoforms of the catalytic sub-
unit, PRKAA1/AMPKa1 and PRKAA2/AMPKa2, and these
may have distinct effects with regard to autophagy (C. Koume-
nis, personal communication). In liver cells, AMPK suppresses
autophagy at the level of cargo sequestration, as indicated by
the rapid sequestration-inhibitory effects of a variety of AMPK
activators, whereas it appears to stimulate autophagy in many
other cell types, including fibroblasts, colon carcinoma cells
and skeletal muscle.464-473 Autophagy-promoting effects of
AMPK are most evident in cells cultured in a complete medium
with serum and amino acids, where cargo sequestration is oth-
erwise largely suppressed.470 Presumably, AMPK antagonizes
the autophagy-inhibitory effect of amino acids (at the level of
phagophore assembly) by phosphorylating proteins involved in
MTORC1 signaling, such as TSC2474 and RPTOR475 as well the
MTORC1 target ULK1 (see below).476-478

Compound C is an effective and widely used inhibitor of
activated (phosphorylated) AMPK.479,480 However, being a
nonspecific inhibitor of oxidative phosphorylation,481,482

this drug has been observed to inhibit autophagy under
conditions where AMPK is already inactive or knocked
out,483 and it has even been shown to stimulate autophagy
by an AMP-independent mechanism.482,484 Compound C
thus cannot be used as a stand-alone indicator of AMPK
involvement, but can be used along with shRNA-mediated
inhibition of AMPK.

TORC1 is an autophagy-suppressive regulator that integra-
tes growth factor, nutrient and energy signals. In most systems,
inhibition of MTOR leads to induction of autophagy, and
AMPK activity is generally antagonistic toward MTOR func-
tion. MTORC1 mediates the autophagy-inhibitory effect of
amino acids, which stimulate the MTOR protein kinase
through a RRAG GTPase dimer. INS/insulin and growth

factors activate MTORC1 through upstream kinases including
AKT/protein kinase B and MAPK1/ERK2-MAPK3/ERK1
when the energy supply is sufficient, whereas energy depletion
may induce AMPK-mediated MTORC1 inhibition and auto-
phagy stimulation, for example, during glucose starvation. In
contrast, amino acid starvation can strongly induce autophagy
even in cells completely lacking AMPK catalytic activity.485

AMPK and MTORC1 regulate autophagy through coordi-
nated phosphorylation of ULK1. Under glucose starvation,
AMPK promotes autophagy by directly activating ULK1
through phosphorylation, although the exact AMPK-medi-
ated ULK1 phosphorylation site(s) remains unclear
(Table 2).473,476-478 Under conditions of nutrient sufficiency,
high MTORC1 activity prevents ULK1 activation by phos-
phorylating alternate ULK1 residues and disrupting the inter-
action between ULK1 and AMPK. There are commercially
available phospho-specific antibodies that recognize different
forms of ULK1. For example, phosphorylation at Ser555, an
AMPK site, is indicative of increased autophagy in response
to nutrient stress, whereas Ser757 is targeted by MTOR to
inhibit autophagy. Even the autophagy-suppressive effects of
AMPK could, conceivably, be mediated through ULK1 phos-
phorylation, for example, at the inhibitory site Ser638.486

AMPK inhibits MTOR by phosphorylating and activating
TSC2.487 Therefore, AMPK is involved in processes that syn-
ergize to activate autophagy, by directly activating ULK1, and
indirectly impairing MTOR-dependent inhibition of ULK1.
The identification of ULK1 as a direct target of MTORC1 and
AMPK represents a significant step toward the definition of
new tools to monitor the induction of autophagy. However,
further studies directed at identifying physiological substrates
of ULK1 will be essential to understand how ULK1 activation
results in initiation of the autophagy program. Along these
lines, ULK1 phosphorylates AMBRA1,488 and the MLCK-like
protein Sqa,489 as well as ATG13, ATG9 and RB1CC1/
FIP200.423,490-493 Furthermore, following amino acid starva-
tion or MTOR inhibition, the activated ULK1 phosphorylates
BECN1 on Ser14, enhancing the activity of the complexes
containing ATG14 and PIK3C3/VPS34. This BECN1 phos-
phorylation by ULK1 is required for full autophagic induc-
tion.494 In addition, ULK1 binds to, and phosphorylates,
RPTOR, leading to inhibition of MTORC1.495 Furthermore,
ULK1 itself appears to be able to mediate inhibitory AMPK
phosphorylation to generate a negative feedback loop.496 Note
that caution should be taken to use appropriate inhibitors of
phosphatases (e.g., sodium fluoride, and beta-glycerophos-
phate) in cell lysis buffer before analyzing the phosphorylation
of AMPK and ULK1 at serine and threonine sites.

TORC1 activity can be monitored by following the phos-
phorylation of its substrates, such as EIF4EBP1/4E-BP1/
PHAS-I and RPS6KB/p70S6 kinase or the latter’s down-
stream target, RPS6/S6, for which good commercial antibod-
ies are available.497-499 In mammalian cells, the analysis
should focus on the phosphorylation of RPS6KB1/S6K1 at
Thr389, and EIF4EBP1 at Thr37 and Thr46, which are
directly phosphorylated by MTORC1.500 The MTORC1-
dependent phosphorylation of EIF4EBP1 can be detected as
a molecular mass shift by western blot.499 Examining the
phosphorylation status of RPS6KB and EIF4EBP1 may be a
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better method for monitoring MTORC1 activity than follow-
ing the phosphorylation of proteins such as RPS6, because
the latter is not a direct substrate of MTORC1 (although
RPS6 phosphorylation is a good readout for RPS6KB1/2
activities, which are directly dependent on MTOR), and it
can also be phosphorylated by other kinases such as
RPS6KA/RSK. Furthermore, the mechanisms that determine
the selectivity as well as the sensitivity of MTORC1 for its
substrates seem to be dependent on the integrity and config-
uration of MTORC1. For example, rapamycin strongly
reduces RPS6KB1 phosphorylation, whereas its effect on
EIF4EBP1 is more variable. In the case of rapamycin treat-
ment, EIF4EBP1 can be phosphorylated by MTORC1 until
rapamycin disrupts MTORC1 dimerization and its integrity,
whereas RPS6KB1 phosphorylation is quickly reduced when
rapamycin simply interacts with MTOR in MTORC1 (see
Autophagy inhibitors and inducers for information on cata-
lytic MTOR inhibitors such as torin1).500 Since it is likely
that other inhibitors, stress, and stimuli may also affect the
integrity of MTORC1, a decrease or increase in the phos-
phorylation status of one MTORC1 substrate does not neces-
sarily correlate with changes in others, including ULK1.
Therefore, reliable anti-phospho-ULK1 antibodies should be
used to directly examine the phosphorylation state of ULK1,
along with additional experimental approaches to analyze
the role of the MTOR complex in regulating autophagy. The
MTORC1-mediated phosphorylation of AMBRA1 on Ser52
has also been described as relevant to ULK1 regulation and
autophagy induction.488,501 In line with what is described for
ULK1, the anti-phospho-AMBRA1 antibody, which is

commercially available, could be used to indirectly measure
MTORC1 activity.501

Activation/assembly of the Atg1 complex in yeast (com-
posed of at least Atg1-Atg13-Atg17-Atg31-Atg29) or the ULK1
complex in mammals (ULK1-RB1CC1/FIP200-ATG13-
ATG101) is one of the first steps of autophagy induction.
Therefore, activation of this complex can be assessed to moni-
tor autophagy induction. In yeast, dephosphorylation of Atg13
is associated with activation/assembly of the core complex that
reflects the reduction of TORC1 and PKA activities. Therefore,
assessing the phosphorylation levels of this protein by immu-
noprecipitation or western blotting502-505 can be used not only
to follow the early steps of autophagy but also to monitor the
activity of some of the upstream nutrient-sensing kinases.
Because this protein is not easily detected when cells are lysed
using conventional procedures, a detailed protocol has been
described.506 In addition, the autophosphorylation of Atg1 at
Thr226 is required for its kinase activity and for autophagy
induction; this can be detected using phospho-specific antibod-
ies, by immunoprecipitation or western blotting (Fig. 16).507,508

In Drosophila, TORC1-dependent phosphorylation of Atg1
and Atg1-dependent phosphorylation of Atg13 can be indi-
rectly determined by monitoring phosphorylation-induced
electromobility retardation (gel shift) of protein bands in
immunoblot images.423,509,510 Nutritional starvation suppresses
TORC1-mediated Atg1 phosphorylation,423,509 while stimulat-
ing Atg1-mediated Atg13 phosphorylation.423,509,510 In mam-
malian cells, the phosphorylation status of ULK1 at the
activating sites (Ser317, 777, 467, 555, 637, or Thr574) or
dephosphorylation at inactivating sites (Ser637, 757) can be

Table 2. Phosphorylation targets of AKT, AMPK, GSK3B, MTORC1, PKA and Atg1/ULK1.

Protein and phosphorylation site Main kinase Function Ref

AMBRA1 S52 TORC1 Inhibits AMBRA1-dependent activation of ULK1 501

Atg1 TORC1 Inhibits Atg1 kinase activity 504

Atg1 PKA Regulation of kinase activity 1522

Atg9 Atg1 Recruitment of Atg protein to the PAS 493

Atg13 TORC1 Interaction with Atg1, assembly of Atg1 kinase complex 504,1523

Atg13 PKA Regulates localization to the PAS 1524

BECN1 S14 ULK1 Increases the activity of the PtdIns3K 494

BECN1 S90 MAPKAPK2-
MAPKAPK3

Stimulates macroautophagy 1525

BECN1 S91, S94 (S93, S96 in human) AMPK Required for glucose starvation-induced macroautophagy 1526

BECN1 Y229, Y233 EGFR Inhibits macroautophagy 523

BECN1 S234, S295 AKT Suppresses macroautophagy 522

LC3 S12 PKA Inhibits macroautophagy by reducing recruitment to phagophores 343

MTOR S2448 AKT Correlates with the activity of MTORC1 1527

MTOR S2481 Autophosphorylation Necessary for MTORC1 formation and kinase activity 1528

NBR1 T586 GSK3A/B Modulates protein aggregation 1529

RPS6KB T389 MTORC1 (apparently
indirect, through
reduction of
dephosphorylation)

Necessary for protein activity 1530

RPS6KB S371 GSK3B Necessary for T389 phosphorylation and the activity of RPS6KB 1531

RPTOR S792 AMPK Suppresses MTORC1 475

SQSTM1 S403 ULK1 (also TBK1,
CSNK, CDK1)

Promotes autophagic degradation of SQSTM1 and its substrates 1532

ULK1 S555 AMPK (direct) Necessary for ATG13-ULK1 interaction and for autophagy mediated by ULK complex 477

ULK1 S317, S467, S555, S574, S777 AMPK (direct) Necessary for the kinase activity of ULK1 477,478

ULK1 S757 MTORC1 Prevents ULK1 interaction with AMPK 478

ULK1 S758 MTORC1 Facilitates ULK1 interaction with AMPK 478,512

ULK1 S637 MTORC1, AMPK Facilitates ULK1 interaction with AMPK 477,512

ULK1 (uncertain site between 278 and 351) Autophosphorylation Modulates the conformation of the C-terminal tail and prevents its interaction with ATG13 492,1533
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determined by western blot using phospho-specific antibod-
ies.477,478,480,486,511,512 In general, the core complex is stable in
mammalian cells, although, as noted above, upstream inhibi-
tors (MTOR) or activators (AMPK) may interact dynamically
with it, thereby determining the status of autophagy.

One additional topic that bears on ULK1 concerns the pro-
cess of LC3-associated phagocytosis (see Noncanonical use of
autophagy-related proteins). LAP is a type of phagocytosis in
macrophages that involves the conjugation of LC3 to single-
membrane pathogen-containing phagosomes, a process that
promotes phagosome acidification and fusion with lyso-
somes.182 Although ULK1 is not required for LAP, in this con-
text it is important to note that UNC-51 (the Atg1 homolog in
C. elegans) is required for apoptotic cell corpse clearance (a
process corresponding to LAP) during embryonic development
in worms,513 whereas this process is mediated by LAP in mam-
mals,180 and does not require UNC-51 in C. elegans Q cell neu-
roblasts.514 In human macrophages infected with
Mycobacterium tuberculosis, MORN2 is recruited at the phago-
some membrane containing M. tuberculosis to induce the
recruitment of LC3, and subsequent maturation into phagoly-
sosomes. In addition, MORN2 drives trafficking of M. tubercu-
losis to a single-membrane compartment. Thus, in certain
conditions MORN2 can be used to help to make the distinction
between autophagy and LAP.515

Cautionary notes: A decrease in TORC1 activity is a good
measure for autophagy induction; however, TORC1 activity
does not necessarily preclude autophagy induction because there
are TOR-independent mechanisms that induce autophagy both
in mammals and yeast.516-520 Along these lines, whereas in most
systems inhibition of MTOR leads to the induction of auto-
phagy, there are instances in commonly used cancer cell lines in
which MTOR appears to be a positive effector.521 Also, MTOR
suppression does not always induce autophagy, such as when
BECN1 undergoes inhibitory phosphorylation by the growth
factor signaling molecules EGFR and AKT.522,523 Note that the
effect of everolimus in EGFR-transgenic mice is not mainly
attributable to autophagy although it suppresses MTOR and
induces autophagy in EGFR-driven lung cancer cell lines.524 In
adult skeletal muscle, active MTORC1 phosphorylates ULK1 at
Ser757 to inhibit the induction of autophagosome formation.
Thus, induction of autophagy requires inhibition of MTORC1
and not of MTORC2.525,526 There is also evidence that inhibition
of MTORC1 is not sufficient to maintain autophagic flux, but
requires additional activation of FOXO transcription factors for
the upregulation of autophagy gene expression.468 In addition,
MTORC1 is downstream of AKT; however, oxidative stress
inhibits MTOR, thus allowing autophagy induction, despite the

concomitant activation of AKT.150 Also, persistent MTORC1
inhibition can cause downregulation of negative feedback loops
on IRS-MTORC2-AKT that results in the reactivation of
MTORC2 under conditions of ongoing starvation.222,415,527

Along these lines, both TORC1 and autophagy can be active in
specific cell subpopulations of yeast colonies.520 Thus, it is neces-
sary to be cautious in deciding how to monitor the TOR/MTOR
pathway, and to verify that the pathway being analyzed displays
TOR/MTOR-dependent inhibition.

In addition, the regulation of autophagy by MTOR can be
ULK1-independent. During mycobacterial infection of macro-
phages, MTOR induces the expression of MIR155 and MIR31
to sustain the activation of the WNT5A and SHH/sonic hedge-
hog pathways. Together, these pathways contribute to the
expression of lipoxygenases and downregulation of IFNG-
induced autophagy.528 Signaling pathways can be monitored by
western blotting, and TaqMan miRNA assays are available to
detect these miRNAs.

One problem in monitoring assembly of the ULK1 complex
is the low abundance of endogenous ULK1 in many systems,
which makes it difficult to detect phospho-ULK1 by western
blot analysis. In addition, Atg1/ULK1 is phosphorylated by
multiple kinases, and the amount of phosphorylation at differ-
ent sites can increase or decrease during autophagy induction.
Thus, although there is an increase in phosphorylation at the
activating sites upon induction, the overall phosphorylation
states of ULK1 and ATG13 are decreased under conditions that
lead to induction of autophagy; therefore, monitoring changes
in phosphorylation by following molecular mass shifts upon
SDS-PAGE may not be informative. In addition, such phos-
phorylation/dephosphorylation events are expected to occur
relatively early (1–2 h) in the signaling cascade of autophagy.
Therefore, it is necessary to optimize treatment time condi-
tions. Finally, in Arabidopsis and possibly other eukaryotes, the
ATG1 and ATG13 proteins are targets of autophagy, which
means that their levels may drop substantially under conditions
that induce autophagic turnover.256

At present, the use of Atg1/ULK1 kinase activity as a tool to
monitor autophagy is limited because only a few physiological
substrates have been identified, and the importance of the
Atg1/ULK1-dependent phosphorylation has not always been
determined. Nonetheless, Atg1/ULK1 kinase activity appears to
increase when autophagy is induced, irrespective of the path-
way leading to induction. As additional physiological substrates
of Atg1/ULK1 are identified, it will be possible to follow their
phosphorylation in vivo as is done with analyses for MTOR.
Nonetheless, it must be kept in mind that monitoring
changes in the activity of Atg1/ULK1 is not a direct assay for
autophagy, although such changes may correlate with auto-
phagy activity. Furthermore, in some cells ULK1 has functions
in addition to autophagy, such as in axonal transport and out-
growth, and its activity state may thus reflect its role in these
processes.529-534 Accordingly, other methods as described
throughout these guidelines should also be used to follow auto-
phagy directly.

Finally, there is not a complete consensus on the specific res-
idues of ULK1 that are targeted by AMPK or MTOR. Similarly,
apparently contradictory data have been published regarding
the association of AMPK and MTOR with the ULK1 kinase

Figure 16. S. cerevisae cells transformed with a plasmid encoding HA-Atg1 were
cultured to mid-log phase and shifted to SD-N (minimal medium lacking nitrogen
that induces a starvation response). Immunoblotting was done with anti-HA anti-
body. The upper band corresponds to autophosphorylation of Atg1. This figure
was modified from data previously published in ref. 508, and is reproduced by per-
mission of the American Society for Cell Biology, copyright 2011.

66 D. J. KLIONSKY ET AL.



complex under different conditions. Therefore, caution should
be used in monitoring ULK1 phosphorylation or the status of
ULK1 association with AMPK until these issues are resolved.

Conclusion: Assays for Atg1/ULK1 can provide detailed
insight into the induction of autophagy, but they are not a
direct measurement of the process. Similarly, since MTOR sub-
strates such as RPS6KB1 and EIF4EBP1 are not recommended
readouts for autophagy, their analysis needs to be combined
with other assays that directly monitor autophagy activity.

5. Additional autophagy-related protein markers

Although Atg8/LC3 has been the most extensively used protein
for monitoring autophagy, other proteins can also be used for
this purpose. Here, we discuss some of the more commonly
used or better-characterized possibilities.

a. Atg9
Atg9 is the only integral membrane Atg protein that is essential
for autophagosome formation in all eukaryotes. Mammalian
ATG9 displays partial colocalization with GFP-LC3.535 Perhaps
the most unique feature of Atg9, however, is that it localizes to
multiple discrete puncta, whereas most Atg proteins are detected
primarily in a single punctum or diffusely within the cytosol.
Yeast Atg9 may cycle between the phagophore assembly site
(PAS) and peripheral reservoirs;536 the latter correspond to tubu-
lovesicular clusters that are precursors to the phagophore.537

Anterograde movement to the PAS is dependent on Atg11,
Atg23, Atg27 and actin. Retrograde movement requires Atg1-
Atg13, Atg2-Atg18 and the PtdIns3K complex I.538 Mutants
such as atg1D accumulate Atg9 primarily at the PAS, and this
phenotype forms the basis of the “transport of Atg9 after knock-
ing out ATG1” (TAKA) assay.106 In brief, this is an epistasis
analysis in which a double-mutant strain is constructed (one of
the mutations being atg1D) that expresses Atg9-GFP. If the sec-
ond mutated gene encodes a protein that is needed for Atg9
anterograde transport, the double mutant will display multiple
Atg9-GFP puncta. In contrast, if the protein acts along with or
after Atg1, all of the Atg9-GFP will be confined to the PAS.
Monitoring the localization of ATG9 has not been used

extensively in higher eukaryotes, but this protein displays the
same type of dependence on Atg1/ULK1 and PtdIns3P for
cycling as seen in yeast,535,538 suggesting that it is possible to fol-
low this ATG9 as an indication of ULK1 and ATG13 function.492

b. Atg12–Atg5
ATG5, ATG12 and ATG16L1 associate with the phagophore
and have been detected by fluorescence or immunofluorescence
(Fig. 17).539,540 The endogenous proteins form puncta that can
be followed to monitor autophagy upregulation. Under physio-
logical conditions, these proteins are predominantly diffusely
distributed throughout the cytoplasm. Upon induction of auto-
phagy, for example during starvation, there is a marked
increase in the proportion of cells with punctate ATG5, ATG12
and ATG16L1. Furthermore, upstream inhibitors of autopha-
gosome formation result in a block in this starvation-induced
puncta formation, and this assay is very robust in some mam-
malian cells. Conversely, downstream inhibition of autophagy
at the level of autophagosome elongation, such as with inhibi-
tion of LC3/GABARAP expression, results in an accumulation
of the phagophore-associated ATG5, ATG12 and ATG16L1
immunofluorescent puncta.541

ATG12–ATG5 conjugation has been used in some studies to
measure autophagy. In Arabidopsis and some mammalian cells
it appears that essentially all of the ATG5 and ATG12 proteins
exist in the conjugated form and the expression levels do not
change, at least during short-term starvation.214,539,540,542

Therefore, monitoring ATG12–ATG5 conjugation per se may
not be a useful method for following the induction of auto-
phagy. It is worth noting, however, that in some cell lines free
ATG5 can be detected,543 suggesting that the amount of free
ATG5 may be cell line-dependent; free ATG5 levels also vary
in response to stress such as DNA damage.544 One final para-
meter that may be considered is that the total amount of the
ATG12–ATG5 conjugate may increase following prolonged
starvation as has been observed in hepatocytes and both mouse
and human fibroblasts (A.M. Cuervo, personal communication;
S. Sarkar, personal communication).

Figure 17. Confocal microscopy image of HCT116 cells immunostained with antibody specific to human ATG12. Cells were starved for 8 h or treated with chloroquine
(50 mM) for 3 h. Scale bar: 10 mm. Image provided by M. Llanos Valero, M.A. de la Cruz and R. Sanchez-Prieto.
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c. ATG14
Yeast Atg14 is the autophagy-specific subunit of the Vps34 com-
plex I,545 and a human homolog, named ATG14/ATG14L/BAR-
KOR, has been identified.546-549 ATG14 localizes primarily to
phagophores. The C-terminal fragment of the protein, named
the BATS domain, is able to direct GFP and BECN1 to autopha-
gosomes in the context of a chimeric protein.550 ATG14-GFP or
BATS-GFP detected by fluorescence microscopy or TEM can be
used as a phagophore marker protein; however, ATG14 is not
localized exclusively to phagophores, as it can also be detected
on mature autophagosomes as well as the ER.550,551 Accordingly,
detection of ATG14 should be carried out in combination with
other phagophore and autophagosome markers. A good anti-
body that can be used to detect endogenous ATG14 is now avail-
able commercially (D.-H. Kim, personal communication).

d. ATG16L1
ATG16L1 has been used to monitor the movement of plasma
membrane as a donor for autophagy, and thus an early step in the
process. Indeed, ATG16L1 is located on phagophores, but not on
completed autophagosomes.344,552 ATG16L1 can be detected by
immuno-TEM, by immunostaining of Flag epitope-tagged
ATG16L1, and/or by the use of GFP-tagged ATG16L1.

e. Atg18/WIPI family
Yeast Atg18553,554 and Atg21335 (or the mammalian WIPI homo-
logs555) are required for both macroautophagy (i.e., nonselective
sequestration of cytoplasm) and autophagy-related processes (e.g.,
the Cvt pathway,556,557 specific organelle degradation,119 and

autophagic elimination of invasive microbes122,123,125,126,553,558).
These proteins bind phosphatidylinositol 3-phosphate (PtdIns3P)
that is present at the phagophore and autophagosome559,560 and
also PtdIns(3,5)P2. Human WIPI1 and WIPI2 function down-
stream of the class III phosphatidylinositol 3-kinase complex I
(PIK3C3/VPS34, BECN1, PIK3R4/VPS15, ATG14) and upstream
of both the ATG12 and LC3 ubiquitin-like conjugation sys-
tems.559,561,562 Upon the initiation of the autophagic pathway,
WIPI1 and WIPI2 bind PtdIns3P and accumulate at limiting
membranes, such as those of the ER, where they participate in the
formation of omegasomes and/or autophagosomes. On the basis
of quantitative fluorescence microscopy, this specific WIPI protein
localization has been used as an assay to monitor autophagy in
human cells.560 Using either endogenous WIPI1 or WIPI2,
detected by indirect fluorescence microscopy or EM, or transiently
or stably expressed tagged fusions of GFP to WIPI1 or WIPI2,
basal autophagy can be detected in cells that display WIPI puncta
at autophagosomal membranes. In circumstances of increased
autophagic activity, such as nutrient starvation or rapamycin
administration, the induction of autophagy is reflected by the ele-
vated number of cells that display WIPI puncta when compared
to the control setting. Also, in circumstances of reduced autopha-
gic activity such as wortmannin treatment, the reduced number of
WIPI puncta-positive cells reflects the inhibition of autophagy.
Basal, induced and inhibited formation of WIPI puncta closely
correlates with both the protein level of LC3-II and the formation
of GFP-LC3 puncta.560,562 Accordingly, WIPI puncta can be
assessed as an alternative to LC3. Automated imaging and analysis
of fluorescent WIPI1 (Fig. 18) or WIPI2 puncta represent an

Figure 18. Automated WIPI1 puncta image acquisition and analysis monitors the induction and inhibition of autophagy. Stable U2OS clones expressing GFP-WIPI1 were
selected using 0.6 mg/ml G418 and then cultured in 96-well plates. Cells were treated for 3 h with nutrient-rich medium (control), nutrient-free medium (EBSS), or with
233 nM wortmannin. Cells were fixed in 3.7% paraformaldehyde and stained with DAPI (5 mg/ml in PBS). An automated imaging and analysis platform was used to deter-
mine the number of both GFP-WIPI1 puncta-positive cells and the number of GFP-WIPI1 puncta per individual cell.470 Cells without GFP-WIPI1 puncta are highlighted in
red (cell detection) and purple (nuclei detection), whereas GFP-WIPI1 puncta-positive cells are highlighted in yellow (GFP-WIPI1 puncta detection), green (cell detection)
and blue (nuclei detection). Scale bars: 20 mm. Images provided by S. Pfisterer and T. Proikas-Cezanne.
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efficient and reliable opportunity to combine the detection of
WIPI proteins with other parameters. It should be noted that there
are 2 isoforms of WIPI2 (2B and 2D),562 and in C. elegans WIPI4
(EPG-6) has been identified as the WIPI homolog required for
autophagy.563 Thus, these proteins, along with the currently
uncharacterized WDR45B/WIPI3, provide additional possibilities
for monitoring phagophore and autophagosome formation.

Cautionary notes: With regard to detection of the WIPI pro-
teins, endogenous WIPI1 puncta cannot be detected in many cell
types,559 and the level of transiently expressed GFP-WIPI1 puncta
is cell context-dependent;559,560 however, this approach has been
used in human and mouse cell systems470,560 and mCherry-Atg18
also works well for monitoring autophagy in transgenic Drosoph-
ila,135 although one caution with regard to the latter is that GFP-
Atg18 expression enhances Atg8 lipidation in the fat body of fed
larvae. GFP-WIPI1 and GFP-WIPI2 have been detected on the
completed (mature) autophagosome by freeze-fracture analysis,102

but endogenous WIPI2 has not been detected on mRFP-LC3- or
LAMP2-positive autophagosomes or autolysosomes using immu-
nolabeling.559 Accordingly, it may be possible to follow the forma-
tion and subsequent disappearance of WIPI puncta to monitor
autophagy induction and flux using specific techniques. As with
GFP-LC3, overexpression of WIPI1 or WIPI2 can lead to the for-
mation of aggregates, which are stable in the presence of PtdIns3K
inhibitors.

f. BECN1/Vps30/Atg6
BECN1 (yeast Vps30/Atg6) and PIK3C3/VPS34 are essential
partners in the autophagy interactome that signals the onset of
autophagy,545,564,565 and many researchers use this protein as a
way to monitor autophagy. BECN1 is inhibited by its binding
to the anti-apoptotic protein BCL2.566 Autophagy is induced by
the release of BECN1 from BCL2 by pro-apoptotic BH3 pro-
teins, phosphorylation of BECN1 by DAPK1 (at Thr119,
located in the BH3 domain),567 or phosphorylation of BCL2 by
MAPK8/JNK1 (at Thr69, Ser70 and Ser87).568,569 The relation-
ship between BECN1 and BCL2 is more complex in developing
cerebellar neurons, as it appears that the cellular levels of BCL2
are, in turn, post-translationally regulated by an autophagic
mechanism linked to a switch from immaturity to matu-
rity.570,571 It is important to be aware, however, that certain
forms of macroautophagy are induced in a BECN1-indepen-
dent manner and are not blocked by PtdIns3K inhibitors.83,572

Interestingly, caspase-mediated cleavage of BECN1 inactivates
BECN1-induced autophagy and enhances apoptosis in several
cell types,573 emphasizing that the crosstalk between apoptosis
and autophagy is complex.

Although a population of BECN1 may localize in proximity
to the trans-Golgi network,574 it is also present at the ER and
mitochondria.566 In keeping with these observations, in cerebel-
lar organotypic cultures BECN1 co-immunoprecipitates with
BCL2 that is primarily localized at the mitochondria and ER;
and in a mouse model of neurodegeneration, autophagic
vacuoles in Purkinje neurons contain partially digested organ-
elles that are immunoreactive for BCL2.571,575 In addition,
BECN1 and PIK3C3/VPS34 can be present in multiple
complexes, so caution must be exercised when monitoring
localization. On induction of autophagy by various stimuli the

presence of BECN1- and PIK3C3/VPS34-positive macroaggre-
gates can be detected in the region of the Golgi complex by
immunofluorescence.150,576 Thus, BECN1-GFP puncta detected
by fluorescence microscopy or TEM may serve as an additional
marker for autophagy induction;577 however, it should be noted
that caspase cleavage of BECN1 can be detected in normal cul-
ture conditions (S. Luo, personal communication), and cleaved
BECN1 is translocated into the nucleus,578 thus care needs to
be taken with these assays under stress conditions in which
more pronounced BECN1 cleavage occurs. In addition, as with
any GFP chimeras there is a concern that the GFP moiety inter-
feres with correct localization of BECN1. To demonstrate that
BECN1 or PtdIns3K macroaggregates are an indirect indication
of ongoing autophagy, it is mandatory to show their specific
association with the process by including appropriate controls
with inhibitors (e.g., 3-MA) or autophagy gene silencing. When
a BECN1-independent autophagy pathway is induced, such
aggregates are not formed regardless of the fact that the cell
expresses BECN1 (e.g., as assessed by western blotting; C. Isi-
doro, personal communication). As BECN1-associated
PtdIns3K activity is crucial in autophagosome formation in
BECN1-dependent autophagy, the measurement of PtdInsk3K
in vitro lipid kinase activity in BECN1 immunoprecipitates can
be a useful technique to monitor the functional activity of this
complex during autophagy modulation.522,523,579

g. DRAM1
DRAM1 is a gene induced by activated TP53 in response to dif-
ferent types of cellular stress, including DNA damage.580,581

DRAM1 is a small hydrophobic protein with 6 transmembrane
domains. It is detected as a subpopulation in the Golgi and cis-
Golgi, colocalizing with GOLGB1/giantin and GOLGA2/
GM130, and also in early and late endosomes and lysosomes,
colocalizing with EEA1 and LAMP2.581 The elimination of
DRAM1 by siRNA blocks autophagy,581,582 as effectively as
elimination of BECN1, indicating it is an essential component
for this process, although its mechanism of action is not
known. The time course of autophagy as a consequence of
DRAM1 activation can be monitored by immunoblot by fol-
lowing the disappearance of the VRK1 protein, a direct target
of this process.581 Detection of DRAM1 RNA is very easy by
quantitative real-time reverse transcription polymerase chain
reaction (qRT-PCR) during autophagy; 580,581 however, detec-
tion of the DRAM1 protein is very difficult because of its small
size and hydrophobicity, features that complicate the genera-
tion of specific antibodies, which in general have very low sen-
sitivity. A commercial DRAM1 antibody may allow the
detection of this protein in rat skeletal muscle (D.W. Russ, per-
sonal communication).

h. ZFYVE1/DFCP1
ZFYVE1 binds PtdIns3P that localizes to the ER and Golgi.
Starvation induces the translocation of ZFYVE1 to punctate
structures on the ER; the ER population of ZFYVE1 marks the
site of omegasome formation.583 ZFYVE1 partially colocalizes
with WIPI1 upon nutrient starvation562 and also with
WIPI2.559
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i. STX17
STX17 is a SNARE protein that is recruited to completely
sealed autophagosomes, but not to phagophores.584,585 As little
STX17 is present on autolysosomes, STX17 is enriched on com-
pleted autophagosomes among autophagy-related structures.
However, STX17 as a competence factor may be recruited just
prior to fusion of autophagosomes with lysosomes, and not all
autophagosomes are positive for this protein. Moreover, it is
also present at the ER and mitochondria.

j. TECPR1
TECPR1 binds ATG5 through an AFIM (ATG5 [five] interact-
ing motif). TECPR1 competes with ATG16L1 for binding to
ATG5, suggesting that there is a transition from the ATG5-
ATG16L1 complex that is involved in phagophore expansion
to an ATG5-TECPR1 complex that plays a role in autophago-
some-lysosome fusion. TECPR1 thus marks lysosomes and
autolysosomes.586

Conclusion: Proteins other than Atg8/LC3 can be moni-
tored to follow autophagy, and these can be important tools to
define specific steps of the process. For example, WIPI puncta
formation can be used to monitor autophagy, but, similar to
Atg8/LC3, should be examined in the presence and absence of
lysosomal inhibitors. Analysis of WIPI puncta should be com-
bined with other assays because individual members of the
WIPI family might also participate in additional, uncharacter-
ized functions apart from their role in autophagy. At present,
we caution against the use of changes in BECN1 localization as
a marker of autophagy induction. It is also worth considering
the use of different markers depending on the specific autopha-
gic stimuli.

6. Sphingolipids

Sphingolipids are ubiquitous membrane lipids that can be pro-
duced in a de novo manner from the ER or by cleavage of
sphingomyelin by phosphodiesterases (sphingomyelinases).
The multiple different metabolites of the sphingolipid pathway,
which are distinct by even a single double bond, carbon chain
length of the fatty acid, or presence of a phosphate group, can
have quite varied cellular functions. Sphingolipids were first
recognized for their role in the architecture of membrane
bilayers affecting parameters such as bilayer stiffness, neighbor-
ing lipid order parameter and microdomain/raft formation.
They also act as second messengers in vital cellular signaling
pathways and as key determinants of cellular homostasis in
what is called a sphingolipid rheostat.587 Sphingolipids partici-
pate in the formation of different membrane structures and
subcellular organelles, such as mitochondria and ER, and are
also involved in the fusion and biophysical properties of cell
membranes.588

Ceramides, positioned at the core of sphingolipid metabo-
lism, play several roles that affect multiple steps of macroauto-
phagy, by inhibition of nutrient transporters,589 by modulation
of BCL2-BECN1 association at the level of AKT signaling,590

and by regulation of mitophagy.591 The latter function is regu-
lated by a particular ceramide species, steroyl (C18:0)-cer-
amide, a sphingolipid generated by CERS1 (ceramide synthase
1). C18-ceramide, in association with LC3-II, targets damaged

mitochondria for autophagic sequestration in response to cer-
amide stress, leading to tumor suppression.591-593 The binding
of ceramide to LC3-II can be detected using anti-ceramide and
anti-LC3 antibodies by immunofluorescence and confocal
microscopy, co-immunoprecipitation using anti-LC3 antibody
followed by liquid chromatography-tandem mass spectrome-
try, using appropriate standards (targeted lipidomics), or label-
ing cells with biotin-sphingosine to generate biotin-ceramide,
and immunoprecipitation using avidin-columns followed by
western blotting to detect LC3-II. It should be noted that inhib-
itors of ceramide generation, and mutants of LC3 with altered
ceramide binding (F52A or I35A), and/or that are conjugation
defective (e.g., G120A), should be used as negative controls.

Other sphingolipids are also involved in autophagy. For
example, accumulation of endogenous sphingosine-1-phos-
phate, a pro-survival downstream metabolite from ceramide
triggers ER-stress associated macroautophagy, by activation of
AKT.594 In addition, gangliosides, have been implicated in
autolysosome morphogenesis.595 To analyze the role of ganglio-
sides in autophagy, 2 main technical approaches can be used:
co-immunoprecipitation and fluorescence resonance energy
transfer. For the first method, lysates from untreated or auto-
phagy-induced cells have to be immunoprecipitated with an
anti-LC3 polyclonal antibody (a rabbit IgG isotypic control
should be used as a negative control). The obtained immuno-
precipitates are subjected to ganglioside extraction, and the
extracts run on an HPTLC aluminum-backed silica gel and
analyzed for the presence of specific gangliosides by using
monoclonal antibodies. Alternatively, the use of FRET by flow
cytometry appears to be highly sensitive to small changes in
distance between 2 molecules and is thus suitable to study
molecular interactions, for example, between ganglioside and
LC3. Furthermore, FRET requires »10 times less biological
material than immunoprecipitation.

Conclusion: Sphingolipids are bioactive molecules that play
key roles in the regulation of autophagy at various stages,
including upstream signal transduction pathways to regulate
autophagy via transcriptional and/or translational mechanisms,
autolysosome morphogenesis, and/or targeting phagophores
to mitochondria for degradation via sphingolipid-LC3
association.204,593,596

7. Transcriptional, translational and posttranslational
regulation

The induction of autophagy in certain scenarios is accompanied by
an increase in the mRNA levels of certain autophagy genes, such as
ATG7,597,598 ATG8/Lc3,599,600 ATG9,601 Atg12,602 and Atg14,603

and an autophagy-dedicated microarray was developed as a high-
throughput tool to simultaneously monitor the transcriptional reg-
ulation of all genes involved in, and related to, autophagy.604 The
mammalian gene that shows the greatest transcriptional regulation
in the liver (in response to starvation and circadian signals) isUlk1,
but others also showmore limited changes in mRNA levels includ-
ing Gabarapl1, Bnip3 and, to a minor extent, Lc3b (J.D. Lin, per-
sonal communication). In several mouse and human cancer cell
lines, ER stress and hypoxia increase the transcription of Lc3/LC3,
Atg5/ATG5 and Atg12/ATG12 by a mechanism involving the
unfolded protein response (UPR). Similarly, a stimulus-dependent
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increase in LC3B expression is detected in neural stem cells
undergoing autophagy induction.605 Increased expression of
Atg5 in vivo after optic nerve axotomy in mice606 and
increased expression of Atg7, Becn1 and Lc3a during neuro-
genesis at different embryonic stages in the mouse olfactory
bulb are also seen.607 LC3 and ATG5 are not required for the
initiation of autophagy, but mediate phagophore expansion
and autophagosome formation. In this regard, the transcrip-
tional induction of LC3 may be necessary to replenish the
LC3 protein that is turned over during extensive ER stress-
and hypoxia-induced autophagy.602,608 In the clinical setting,
tissue expression of ATG5, LC3A and LC3B and their respec-
tive proteins accompanies elevated autophagy flux in human
adipose tissue in obesity.217,609 Thus, assessing the mRNA lev-
els of LC3 and other autophagy-related genes by northern blot
or qRT-PCR may provide correlative data relating to the
induction of autophagy. Downregulation of autophagy-related
mRNAs has been observed in human islets under conditions
of lipotoxicity409 that impair autophagic flux.610 It is not clear
if these changes are sufficient to regulate autophagy, however,
and therefore these are not direct measurements.

Several transcription factors of the nuclear receptor super-
family modulate gene expression of autophagy genes. For
instance, NR1D1/Rev-erba represses Ulk1, Bnip3, Atg5, Park2/
parkin and Becn1 gene expression in mouse skeletal muscle by
directly binding to regulatory regions in their DNA sequences.
Consistently, nr1d1-/- mice display an increased LC3-II/LC3-I
ratio, as well as PARK2 and BNIP3 protein levels, elevated
autophagic flux as measured upon different inhibitor (3-MA,
NH4Cl, bafilomycin A1 and chloroquine) treatment and auto-
phagosomes detected by EM of skeletal muscle sections.611 The
nuclear receptors PPARA (peroxisome proliferator-activated
receptor alpha) and NR1H4/FXR (nuclear receptor subfamily
1, group H, member 4) also regulate hepatic autophagy in
mice. Indeed, PPARA and NR1H4 compete for the control of
lipophagy in response to fasting and feeding nutritional cues,
respectively.612 NR1H4 may also inhibit autophagy via inhibi-
tion of CREB-CRTC2 complex assembly.613 Consistent with in
vitro studies utilizing human cancer cell lines,614,615 in human
adipose tissue explants, E2F1 binds the LC3B promoter, in
association with increased expression of several autophagy
genes and elevated adipose tissue autophagic flux.217,609 In this
instance, classical promoter analysis studies, including chroma-
tin immunoprecipitation and ATG promoter-luciferase con-
structs provide insights on the putative transcriptional
regulation of autophagy genes by demonstrating promoter
binding in situ, and promoter activity in vitro.609

Of note, large changes in Atg gene transcription just prior to
Drosophila salivary gland cell death (that is accompanied by an
increase in autophagy) are detected for Atg2, Atg4, Atg5 and
Atg7, whereas there is no significant change in Atg8a or Atg8b
mRNA.616,617 Autophagy is critical for Drosophila midgut cell
death, which is accompanied by transcriptional upregulation of
all of the Atg genes tested, including Atg8a (Fig. 19).281,618 Simi-
larly, in the silkworm (Bombyx mori) larval midgut619 and fat
body,620 the occurrence of autophagy is accompanied by an
upregulation of the mRNA levels of several Atg genes. Tran-
scriptional upregulation of Drosophila Atg8a and Atg8b is also
observed in the fat body following induction of autophagy at

the end of larval development,621 and these genes as well as
Atg2, Atg9 and Atg18 show a more than 10-fold induction dur-
ing starvation.622 Atg5, Atg6, Atg8a and Atg18 are upregulated
in the ovary of starved flies,623 and an increase in Drosophila
Atg8b is observed in cultured Drosophila l(2)mbn cells follow-
ing starvation (S. Gorski, personal communication). An upre-
gulation of plant ATG8 may be needed during the adaptation
to reproductive growth; a T-DNA inserted mutation of rice
ATG8b blocked the change from vegetative growth to repro-
ductive growth in both homozygous and heterozygous plant
lines (M.-Y. Zhang, unpublished results).

Similarly, the upregulation of autophagy-related genes (Lc3,
Gabarapl1, Bnip3, Atg4b, Atg12l) has been documented at the
transcriptional and translational level in several other species
(e.g., C. elegans,624 mouse, rat, human,625 trout, Arabidopsis
and maize) under conditions of ER stress,602 and diverse types
of prolonged (several days) catabolic situations including can-
cer cachexia, diabetes mellitus, uremia and fasting.215,468,626-628

Along these lines, ATG9 and ATG16L1 are transcriptionally
upregulated upon influenza virus infection (H. Khalil, personal
communication), and in C. elegans, the FOXA transcription
factor PHA-4 and the TFEB ortholog HLH-30 regulate the
expression of several autophagy-related genes (see Methods

Figure 19. pGFP-Atg8a can be used to monitor autophagy in Drosophila mela-
nogaster. The autophagosome marker pGFP-Atg8a, results in expression of Atg8a
fused to GFP from the endogenous Atg8a promoter.281 Live imaging of gastric
caeca from Drosophila melanogaster midgut pGFP-Atg8a puncta (green) and
Hoechst 33342 (blue). Midgut from early third instar larvae prior to the onset of
cell death (top) and from dying midgut at 2 h after puparium formation (bottom).
Bar: 25 mm. Image provided by D. Denton and S. Kumar.
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and challenges of specialized topics/model systems. C. ele-
gans).624,629,1704 Such prolonged induction of the expression of
ATG genes has been thought to allow the replenishment of crit-
ical proteins (e.g., LC3 and GABARAP) that are destroyed dur-
ing autophagosome fusion with the lysosome.630 The
polyamine spermidine increases life span and induces auto-
phagy in cultured yeast and mammalian cells, as well as in
nematodes and flies. In aging yeast, spermidine treatment trig-
gers epigenetic deacetylation of histone H3 through inhibition
of histone acetyltransferases, leading to significant upregulation
of various autophagy-related transcripts.631

In addition to the ATG genes, transcriptional upregulation
of VMP1 (a protein that is involved in autophagy regulation
and that remains associated with the completed autophago-
some) can be detected in mammalian cells subjected to rapa-
mycin treatment or starvation, and in tissues undergoing
disease-induced autophagy such as cancer.632 VMP1 is an
essential autophagy gene that is conserved from Dictyostelium
to mammals,322,633 and the VMP1 protein regulates early steps
of the autophagic pathway.561 VMP1 is poorly expressed in
mammalian cells under nutrient-normal conditions, but is
highly upregulated in cells undergoing autophagy, and the
expression of VMP1 induces autophagosome formation. The
GLI3 transcription factor is an effector of KRAS that regulates
the expression and promoter activity of VMP1, using the his-
tone acetyltransferase EP300/p300 as a co-activator.634

A gene regulatory network, named CLEAR (coordinated
lysosomal expression and regulation) that controls both lyso-
some and autophagosome biogenesis was identified using a
systems-biology approach.625,635,636 The basic helix-loop-
helix transcription factor TFEB acts as a master gene of the
CLEAR network and positively regulates the expression of
both lysosomal and autophagy genes, thus linking the
biogenesis of 2 distinct types of cellular compartments that
cooperate in the autophagic pathway. TFEB activity is regu-
lated by starvation and is controlled by both MAPK1/ERK2-
and MTOR-mediated phosphorylation at specific serine
residues;625,637,638 thus, it can serve as a new tool for monitor-
ing transcriptional regulation connected with autophagy.
TFEB is phosphorylated by MTORC1 on the lysosomal sur-
face, preventing its nuclear translocation. A lysosome-to-
nucleus signaling mechanism transcriptionally regulates auto-
phagy and lysosomal biogenesis via MTOR and TFEB.638 A
very useful readout of endogenous TFEB activity is the evalua-
tion of TFEB subcellular localization, as activation of TFEB
correlates with its translocation from the cytoplasm to the
nucleus. This shift can be monitored by immunofluorescence
using antibodies against TFEB. TFEB localization may also be
studied to monitor MTOR activity, as in most cases TFEB
nuclear localization correlates with inhibition of MTOR. How-
ever, due to the low expression levels of TFEB in most cells
and tissues, it may be difficult to visualize the endogenous
protein. Thus a TFEB nuclear translocation assay was devel-
oped in a HeLa cell line stably transfected with TFEB-GFP.
This fluorescence assay can be used to identify the conditions
and factors that promote TFEB activation.638 TFE3 and MITF,
2 other members of the MiT/TFE family of transcription fac-
tors, in some cases can compensate for TFEB and are regu-
lated in a similar manner.639,640

Similar to TFEB, the erythroid transcription factor GATA1
and its coregulator ZFPM1/FOG1 induce the transcription of
multiple genes encoding autophagy components. This develop-
mentally regulated transcriptional response is coupled to
increases in autophagosome number as well as the percent of
cells that contain autophagosomes.641 FOXO transcription fac-
tors, especially FOXO1 and FOXO3, also play critical roles in
the regulation of autophagy gene expression.468,603,642 A zinc
finger family DNA-binding protein, ZKSCAN3 is a master
transcriptional repressor of autophagy and lysosome biogene-
sis; starvation and MTOR inhibition with torin1 induce
nucleus-to-cytoplasm translocation of ZKSCAN3.643 Finally,
CEBPB/C/EBPb is a transcription factor that regulates auto-
phagy in response to the circadian cycle.644

Although less work has been done on post-transcriptional
regulation, several studies implicate microRNAs in controlling
the expression of proteins associated with auto-
phagy.243,247,248,645-647

Cautionary notes: Most of the ATG genes do not show
significant changes in mRNA levels when autophagy is
induced. Even increases in LC3 mRNA can be quite modest
and are cell type- and organism-dependent.648 In addition,
it is generally better to follow protein levels, which, ulti-
mately, are the significant parameter with regard to the ini-
tiation and completion of autophagy. However, ATG
protein amounts do not always change significantly and the
extent of increase is again cell type- and tissue-dependent.
Finally, changes in autophagy protein levels are not suffi-
cient evidence of autophagy induction and must be accom-
panied by additional assays as described herein. Thus,
monitoring changes in mRNA levels for either ATG genes
or autophagy regulators may provide some evidence sup-
porting upregulation of the potential to undergo autophagy,
but should be used along with other methods.

Another general caution pertains to the fact that in any
cell culture system mixed populations of cells (for example,
those undergoing autophagy or not) exist simultaneously.
Therefore, only an average level of protein or mRNA
expression can be evaluated with most methods. This means
that the results regarding specific changes in autophagic
cells could be hidden due to the background of the average
data. Along these lines, experiments using single-cell real-
time PCR to examine gene expression in individual cardio-
myocytes with and without signs of autophagy revealed that
the transcription of MTOR markedly and significantly
increases in autophagic cells in intact cultures (spontane-
ously undergoing autophagy) as well as in cultures treated
with proteasome inhibitors to induce autophagy (V. Dos-
enko, personal communication). Finally, researchers need to
realize that mammalian cell lines may have mutations that
alter autophagy signaling or execution; this problem can be
avoided by using primary cells.

Conclusion: Although there are changes in ATG gene
expression that coincide with, and may be needed for, auto-
phagy, this has not been carefully studied experimentally.
Therefore, at the present time we do not recommend the
monitoring of ATG gene transcription as a general readout
for autophagy unless there is clear documentation that the
change(s) correlates with autophagy activity.
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8. Posttranslational modification of ATG proteins

Autophagy is controlled by posttranslational modification
(PTM) of ATG proteins such as phosphorylation, ubiquitina-
tion, acetylation, oxidation and cleavage, which can be moni-
tored to analyze the status of the process.343,438,519,523,649-652

The global deacetylation of proteins, which often accompanies
autophagy, can be conveniently measured by quantitative
immunofluorescence with antibodies specifically recognizing
acetylated lysine residues.653 Indeed, depletion of the nutrient
supply causes autophagy in yeast or mammalian cells by reduc-
ing the nucleo-cytosolic pool of acetyl-coenzyme A, which pro-
vides acetyl groups to acetyltransferases, thus reducing the
acetylation level of hundreds of cytoplasmic and nuclear pro-
teins.654 A global deacetylation of cellular proteins is also
observed in response to so-called “caloric restriction mimetics”,
that is, a class of pharmacological agents that deplete the
nucleo-cytosolic pool of acetyl-coenzyme A, inhibit acetyltrans-
ferases (such as EP300) or activate deacetylases (such as
SIRT1). All these agents reduce protein acetylation levels in
cells as they induce autophagy.655 One prominent ATG protein
that is subjected to pro-autophagic deacetylation is LC3.656,657

9. Autophagic protein degradation

Protein degradation assays represent a well-established meth-
odology for measuring autophagic flux, and they allow good
quantification. The general strategy is first to label cellular pro-
teins by incorporation of a radioactive amino acid (e.g., [14C]-
or [3H]-leucine, [14C]-valine or [35S]-methionine; although
valine may be preferred over leucine due to the strong inhibi-
tory effects of the latter on autophagy), preferably for a period
sufficient to achieve labeling of the long-lived proteins that best
represent autophagic substrates, and then to follow this with a
long cold-chase so that the assay starts well after labeled short-
lived proteins are degraded (which occurs predominantly via
the proteasome). Next, the time-dependent release of acid-solu-
ble radioactivity from the labeled protein in intact cells or per-
fused organs is measured.3,658,659 Note that the inclusion of the
appropriate unlabeled amino acid (i.e., valine, leucine or methi-
onine) in the starvation medium at a concentration equivalent
to that of other amino acids in the chase medium is necessary;
otherwise, the released [14C]-amino acid is effectively re-incor-
porated into cellular proteins, which results in a significant
underestimation of protein degradation. A newer method of
quantifying autophagic protein degradation is based on L-azi-
dohomoalanine (AHA) labeling.660 When added to cultured
cells, L-azidohomoalanine is incorporated into proteins during
active protein synthesis. After a click reaction between an azide
and an alkyne, the azide-containing proteins can be detected
with an alkyne-tagged fluorescent dye, coupled with flow
cytometry. The turnover of specific proteins can also be
measured in a pulse-chase regimen using the Tet-ON/OFF
or GeneSwitch systems and subsequent western blot analy-
sis.661-663

In this type of assay a considerable fraction of the measured
degradation will be nonautophagic, and thus it is important to
also measure, in parallel, cell samples treated with autophagy-
suppressive concentrations of 3-MA or amino acids, or

obtained from mutants missing central ATG components
(however, it is important to note that these controls are only
appropriate assuming that nonautophagic proteolytic activity
remains unchanged, which is unlikely); these values are then
subtracted from the total readouts. The complementary
approach of using compounds that block other degradative
pathways, such as proteasome inhibitors, may cause unex-
pected results and should be interpreted with caution due to
crosstalk among the degradative systems. For example, block-
ing proteasome function may activate autophagy.664-667 Thus,
when using inhibitors it is critical to know whether the inhibi-
tors being used alter autophagy in the particular cell type and
context being examined. In addition, because 3-MA could have
some autophagy-independent effects in particular settings it is
advisable to verify that the 3-MA-sensitive degradation is also
sensitive to general lysosomal inhibitors (such as NH4Cl or
leupeptin).

The use of stable isotopes, such as 13C and 15N, in quantita-
tive mass spectrometry-based proteomics allows the recording
of degradation rates of thousands of proteins simultaneously.
These assays may be applied to autophagy-related questions
enabling researchers to investigate differential effects in global
protein or even organelle degradation studies.668,669 Stable iso-
tope labeling with amino acids in cell culture (SILAC) can also
provide comparative information between different treatment
conditions, or between a wild type and mutant.

Another assay that could be considered relies on the limited
proteolysis of a BHMT (betaine–homocysteine S-methyltrans-
ferase) fusion protein. The 44-kDa full-length BHMT protein is
cleaved in hepatocyte amphisomes in the presence of leupeptin
to generate 32-kDa and 10-kDa fragments.670-673 Accumulation
of these fragments is time dependent and is blocked by treat-
ment with autophagy inhibitors. A modified version of this
marker, GST-BHMT, can be expressed in other cell lines where
it behaves similar to the wild-type protein.674 Additional sub-
strates may be considered for similar types of assays. For exam-
ple, the neomycin phosphotransferase II-GFP (NeoR-GFP)
fusion protein is a target of autophagy.675 Transfection of lym-
phoblastoid cells with a plasmid encoding NeoR-GFP followed
by incubation in the presence of 3-MA leads to an accumula-
tion of the NeoR-GFP protein as measured by flow
cytometry.676

A similar western blot assay is based on the degradation
of a cytosolic protein fused to GFP. This method has been
used in yeast and Dictyostelium cells using GFP-Pgk1 and
GFP-Tkt-1 (phosphoglycerate kinase and transketolase,
respectively). In this case the relative amount of free GFP
versus the complete fusion protein is the relevant parameter
for quantification; although it may not be possible to detect
clear changes in the amount of the full-length chimera,
especially under conditions of limited flux.30,37 As described
above for the marker GFP-Atg8/LC3, nonsaturating levels
of lysosomal inhibitors are also needed in Dictyostelium
cells to slow down the autophagic degradation, allowing the
accumulation and detection of free GFP. It should be noted
that this method monitors bulk autophagy since it relies on
the passive transit of a cytoplasmic marker to the lysosome.
Consequently, it is important to determine that the marker
is distributed homogeneously in the cytoplasm.
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One of the most useful methods for monitoring auto-
phagy in Saccharomyces cerevisiae is the Pho8D60 assay.
PHO8 encodes a vacuolar phosphatase, which is synthesized
as a zymogen before finally being transported to and acti-
vated in the vacuole.677 A molecular genetic modification
that eliminates the first 60 amino acids prevents the mutant
(Pho8D60) from entering the ER, leaving the zymogen in
the cytosol. When autophagy is induced, the mutant zymo-
gen is delivered to the vacuole nonselectively inside auto-
phagosomes along with other cytoplasmic material. The
resulting activation of the zymogen can be easily measured
by enzymatic assays for phosphatase activity.261 To mini-
mize background activity, it is preferable to have the gene
encoding the cytosolic phosphatase (PHO13) additionally
deleted (although this is not necessary when assaying cer-
tain substrates).

Cautionary notes: Measuring the degradation of long-lived
proteins requires prior radiolabeling of the cells, and subse-
quent separation of acid-soluble from acid-insoluble radioactiv-
ity. The labeling can be done with relative ease both in cultured
cells and in live animals.3 In cells, it is also possible to measure
the release of an unlabeled amino acid by chromatographic
methods, thereby obviating the need for prelabeling;678 how-
ever, it is important to keep in mind that amino acid release is
also regulated by protein synthesis, which in turn is modulated
by many different factors. In either case, one potential problem
is that the released amino acid may be further metabolized. For
example, branched chain amino acids are good indicators of
proteolysis in hepatocytes, but not in muscle cells where they
are further oxidized (A.J. Meijer, personal communication). In
addition, the amino acid can be reincorporated into protein;
for this reason, such experiments can be carried out in the pres-
ence of cycloheximide, but this raises additional concerns (see
Turnover of autophagic compartments). In the case of labeled
amino acids, a nonlabeled chase is added where the tracer
amino acid is present in excess (being cautious to avoid using
an amino acid that inhibits autophagy), or by use of single pass
perfused organs or superfused cells.679,680 The perfused organ
system also allows for testing the reversibility of effects on pro-
teolysis and the use of autophagy-specific inhibitors in the
same experimental preparation, which are crucial controls for
proper assessment.

If the autophagic protein degradation is low (as it will be in
cells in replete medium), it may be difficult to measure it reli-
ably above the relatively high background of nonautophagic
degradation. It should also be noted that the usual practice of
incubating the cells under “degradation conditions,” that is, in
a saline buffer, indicates the potential autophagic capacity
(maximal attainable activity) of the cells rather than the auto-
phagic activity that prevails in vivo or under rich culture condi-
tions. Finally, inhibition of a particular degradative pathway is
typically accompanied by an increase in a separate pathway as
the cell attempts to compensate for the loss of degradative
capacity.229,666 This compensation might interfere with control
measurements under conditions that attempt to inhibit
macroautophagy; however, as the latter is the major degradative
pathway, the contributions of other types of degradation over
the course of this type of experiment are most often negligible.
Another issue of concern, however, is that most

pharmacological protease inhibitors have “off target” effects
that complicate the interpretation of the data.

The Pho8D60 assay requires standard positive and negative
controls (such as an atg1D strain), and care must be taken to
ensure the efficiency of cell lysis. Glass beads lysis works well in
general, provided that the agitation speed of the instrument is
adequate. Instruments designed for liquid mixing with lower
speeds should be avoided. We also recommend against holding
individual sample tubes on a vortex, as it is difficult to maintain
reproducibility; devices or attachments are available to allow
multiple tubes to be agitated simultaneously. Finally, it is also
important to realize that the deletion of PHO8 can affect yeast
cell physiology, especially depending on the growth conditions,
and this may in turn have consequences for the cell wall; cells
under starvation stress generate thicker cell walls that can be
difficult to degrade enzymatically.

Conclusion: Measuring the turnover of long-lived proteins
is a standard method for determining autophagic flux.
Newer proteomic techniques that compare protein levels in
autophagy-deficient animals relative to wild-type animals are
promising,681 but the current ratiometric methods are affected
by both protein synthesis and degradation, and thus analyze
protein turnover, not just degradation.

10. Selective types of autophagy

Although autophagy can be nonselective, in particular during
starvation, there are many examples of selective types of
autophagy.

a. The Cvt pathway, mitophagy, pexophagy, piecemeal
microautophagy of the nucleus and late nucleophagy in
yeast and filamentous fungi
The precursor form of aminopeptidase I (prApe1) is the major
cargo of the Cvt pathway in yeast, a biosynthetic autophagy-
related pathway.128 The propeptide of prApe1 is proteolytically
cleaved upon vacuolar delivery, and the resulting shift in
molecular mass can be monitored by western blot. Under star-
vation conditions, prApe1 can enter the vacuole through non-
selective autophagy, and thus has been used as a marker for
both the Cvt pathway and autophagy. The yeast Cvt pathway is
unique in that it is a biosynthetic route that utilizes the auto-
phagy-related protein machinery, whereas other types of selec-
tive autophagy are degradative. The latter include pexophagy,
mitophagy, reticulophagy, ribophagy and xenophagy, and each
process has its own marker proteins, although these are typi-
cally variations of other assays used to monitor the Cvt pathway
or autophagy. One common type of assay involves the process-
ing of a GFP chimera similar to the GFP-Atg8/LC3 processing
assay (see GFP-Atg8/LC3 lysosomal delivery and proteolysis).
For example, yeast pexophagy utilizes the processing of Pex14-
GFP and Pot1/Fox3/thiolase-GFP,682,683 whereas mitophagy
can be monitored by the generation of free GFP from Om45-
GFP, Idh1-GFP, Idp1-GFP or mito-DHFR-GFP.684,685-688

Localization of these mitochondrially targeted proteins (or spe-
cific MitoTracker dyes) or similar organelle markers such as
those for the peroxisome (e.g., GFP-SKL with Ser-Lys-Leu at
the C terminus that acts as a peroxisomal targeting signal, acyl-
CoA oxidase 3 [Aox3-EYFP] that allows simultaneous
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observation of peroxisome-vacuole dynamics with the single
FITC filter set, or GFP-catalase) can also be followed by fluores-
cence microscopy.553,683,689-691 In addition, yeast mitophagy
requires both the Slt2 and Hog1 signaling pathways; the activa-
tion and phosphorylation of Slt2 and Hog1 can be monitored
with commercially available phospho-specific antibodies
(Fig. 20).508 It is also possible to monitor pexophagy in yeasts
by the disappearance of activities of specific peroxisome
markers such as catalase, alcohol oxidase or amine oxidase in
cell-free extracts,692 or permeabilized cell suspensions. Catalase
activity, however, is a useful marker only when peroxisomal
catalases are the only such enzymes present or when activities
of different catalases can be distinguished. In S. cerevisiae there
are 2 genes, CTT1 and CTA1, encoding catalase activity, and
only one of these gene products, Cta1, is localized in peroxi-
somes. Activities of both catalases can be distinguished using
an in-gel activity assay after PAGE under nondenaturing condi-
tions by staining with diaminobenzidine.693,694 Plate assays for
monitoring the activity of peroxisomal oxidases in yeast colo-
nies are also available.689,695 The decrease in the level of endog-
enous proteins such as alcohol oxidase, Pex14 or Pot1 can be
followed by western blotting,553,696-699 TEM,700 fluorescence
microscopy 553,701,702 or laser confocal scanning microscopy of
GFP-labeled peroxisomes.703,704

Bimolecular fluorescence complementation (BiFC) may be
useful to study protein-protein interactions in the autophagic
pathway.705-707 In this assay, a protein of interest is cloned into
a vector containing one half of a fluorescent reporter (e.g.,
YFP), while a second protein is cloned into a different vector
containing the other half of the reporter. Constructs are
cotransfected into cells. If the 2 proteins of interest interact, the
2 halves of the reporter are brought into close proximity and a
fluorescent signal is reconstituted, which can be monitored by
confocal microscopy. This assay can be used to determine pro-
tein interactions without prior knowledge of the location or
structural nature of the interaction interface. Moreover, it is
applicable to living cells, and relatively low concentrations of
recombinant protein are required to generate a detectable
signal.

In yeast, nonselective autophagy can be induced by nitrogen
starvation conditions, whereas degradative types of selective
autophagy generally require a carbon source change or ER
stress for efficient induction. For example, in S. cerevisiae, to
induce a substantial level of mitophagy, cells need to be precul-
tured in a nonfermentable carbon source such as lactate or
glycerol to stimulate the proliferation of mitochondria
(although this is not the case in Pichia pastoris). After sufficient
mitochondria proliferation, shifting the cells back to a ferment-
able carbon source such as glucose will cause the autophagic
degradation of superfluous mitochondria.685 It should be noted
that in addition to carbon source change, simultaneous nitro-
gen starvation is also required for efficient mitophagy induc-
tion. This is possibly because excessive mitochondria can be
segregated into daughter cells by cell division if growth contin-
ues.685 A similar carbon source change from oleic acid or meth-
anol to ethanol or glucose (with or without nitrogen starvation)
can be used to assay for pexophagy.708 Mitophagy can also be
induced by treatment with ROS, to induce mitochondria dam-
age.709 In addition, mitophagy can be induced by culturing the
cells in a nonfermentable carbon source to post-log phase. In
this case, mitophagy may be induced because the energy
demand is lower at post-log phase and the mitochondrial mass
exceeds the cell’s needs.120,710,711 It has been suggested that this
type of mitophagy, also known as “stationary phase mito-
phagy,” reflects a quality-control function that culls defective
mitochondria that accumulate in nondividing, respiring
cells.712 The recently developed tool PMI that pharmacologi-
cally induces mitophagy without disrupting mitochondrial res-
piration713 should provide further insight as it circumvents the
acute, chemically induced, blockade of mitochondrial respira-
tion hitherto adopted to dissect the process. Similarly, pexo-
phagy can be induced by culturing the cells in a peroxisome
proliferation medium to post-log phase (J.-C. Farr�e, unpub-
lished results). Along these lines, it should also be realized that
selective types of autophagy continuously occur at a low level
under noninducing conditions. Thus, organelles such as peroxi-
somes have a finite life span and are turned over at a slow rate
by autophagy-related pathways.714

Piecemeal microautophagy of the nucleus (PMN, also
micronucleophagy) is another selective autophagic subtype,
which targets portions of the nucleus for degradation.715-717 In
S. cerevisiae, the nuclear outer membrane, which is continuous
with the nuclear ER, forms contact sites with the vacuolar
membrane. These nucleus-vacuole junctions (NVJs) are gener-
ated by interaction of the outer nuclear membrane protein
Nvj1 with the vacuolar protein Vac8.718 Nvj1 further recruits
the ER-membrane protein Tsc13, which is involved in the syn-
thesis of very-long-chain fatty acids (VLCFAs) and Swh1/
Osh1, a member of a family of oxysterol-binding proteins.
Upon starvation the NVJs bulge into the vacuole and subse-
quently a PMN-vesicle pinches off into the vacuole. PMN
vesicles thus contain nuclear material and are limited by 3
membranes with the outermost derived from the vacuole, and
the 2 inner ones from the nuclear ER. It is not clear which
nuclear components are removed by PMN, but since PMN is
not a cell death mechanism per se, most likely superfluous
material is recycled. During PMN the NVJs are selectively
incorporated into the PMN vesicles and degraded. Accordingly,

Figure 20. S. cerevisae cells were cultured to mid-log phase and shifted to SD-N for
the indicated times. Samples were taken before (C) and at the indicated times
after (–) nitrogen starvation. Immunoblotting was done with anti-phospho-Slt2
and anti-phospho-Hog1 antibody. This figure was modified from data previously
published in ref. 508, and is reproduced by permission of the American Society for
Cell Biology, copyright 2011.
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PMN can be monitored using the proteins that are associated
with the NVJs as markers. To quantitatively follow PMN, an
assay analogous to the above-described GFP-Atg8/LC3 proc-
essing assay has been established using either GFP-Swh1/Osh1
or Nvj1-GFP. These GFP chimeras are, together with the
PMN-vesicles, degraded in the vacuole. Thus, the formation of
the relatively proteolysis-resistant GFP detected in western
blots correlates with the PMN rate. In fluorescence microscopy,
PMN can be visualized with the same constructs, and a chimera
of mCherry fused to a nuclear localization signal (NLS-
mCherry) can also be used. To assure that the measured PMN
rate is indeed due to selective micronucleophagy, appropriate
controls such as cells lacking Nvj1 or Vac8 should be included.
Detailed protocols for the described assays are provided in
ref. 719.

Late nucleophagy (LN) is another type of selective degra-
dation of the nucleus, which specifically targets bulk nucleo-
plasm for degradation after prolonged periods (20–24 h) of
nitrogen starvation.720 LN induction occurs in the absence
of the essential PMN proteins Nvj1 and Vac8 and, there-
fore, the formation of NVJs. Although some components of
the core Atg machinery are required for LN, Atg11 and the
Vps34-containing PtdIns3K complex I are not needed. LN
can be monitored by employing a nuclear-targeted version
of the Rosella biosensor (n-Rosella) and following either its
accumulation (by confocal microscopy), or degradation (by
immunoblotting), within the vacuole.720 Dual labeling of
cells with Nvj1-EYFP, a nuclear membrane reporter of
PMN, and the nucleoplasm-targeted NAB35-DsRed.T3
(NAB35 is a target sequence for the Nab2 RNA-binding
protein, and DsRed.T3 is the pH-stable, red fluorescent
component of n-Rosella) allows detection of PMN soon
after the commencement of nitrogen starvation, whereas
delivery to the vacuole of the nucleoplasm reporter, indica-
tive of LN, is observed only after prolonged periods of
nitrogen starvation. Few cells show simultaneous accumula-
tion of both reporters in the vacuole indicating PMN and
LN are temporally and spatially separated.720

In contrast to unicellular yeasts, filamentous fungi form an
interconnected mycelium of multinucleate hyphae containing
up to 100 nuclei in a single hyphal compartment. A mycelial
colony grows by tip extension with actively growing hyphae at
the colony margin surrounded by an older, inner hyphal net-
work that recycles nutrients to fuel the hyphal tips. By labeling
organelle markers with GFP it is possible to show in Aspergillus
oryzae that macroautophagy mediates degradation of basal
hyphal organelles such as peroxisomes, mitochondria and
entire nuclei.721 In contrast to yeast, PMN has not been
observed in filamentous ascomycetes.723 In Magnaporthe ory-
zae, germination of the condiospore and formation of the
appressorium are accompanied by nuclear degeneration in the
spore.275 The degradation of nuclei in spores requires the non-
selective autophagy machinery, whereas conserved components
of the PMN pathway such as Vac8 and Tsc13 are dispensable
for nuclear breakdown during plant infection.723 Nuclei are
proposed to function in storage of growth-limiting nutrients
such as phosphate and nitrogen.724,725 Similar to nuclei, mito-
chondria and peroxisomes are also preferentially degraded in
the basal hyphae of filamentous ascomycetes.275,721,723-726

Cautionary notes: The Cvt pathway has been demonstrated
to occur only in yeast. In addition, the sequestration of prApe1
is specific, even under starvation conditions, as it involves the
recognition of the propeptide by a receptor, Atg19, which in
turn interacts with the scaffold protein Atg11.727,728 Thus,
unless the propeptide is removed or ATG19 is deleted, prApe1
is recognized as a selective substrate. Overexpression of prApe1
saturates import by the Cvt pathway, and the precursor form
accumulates, but is rapidly matured upon autophagy induc-
tion.305 In addition, mutants such as vac8D and tlg2D accumu-
late prApe1 under rich conditions, but not during
autophagy.505,729 Accordingly, it is possible to monitor the
processing of prApe1 when overexpressed, or in certain mutant
strains to follow autophagy induction. However, under the lat-
ter conditions it must be kept in mind that the sequestering
vesicles are substantially smaller than typical autophagosomes
generated during nonselective autophagy; the Cvt complex
(prApe1 bound to Atg19) is smaller than typical peroxisomes
or mitochondrial fragments that are subject to autophagic deg-
radation. Accordingly, particular mutants may display com-
plete maturation of prApe1 under autophagy-inducing
conditions, but may still have a defect in other types of selective
autophagy, as well as being unable to induce a normal level of
nonselective autophagy.106 For this reason, it is good practice
to evaluate autophagosome size and number by TEM. Actually,
it is much simpler to monitor autophagic bodies (rather than
autophagosomes) in yeast. First, the vacuole is easily identified,
making the identification of autophagic bodies much simpler.
Second, autophagic bodies can be accumulated within the vacu-
ole, allowing for an increased sample size. It is best to use a
strain background that is pep4D vps4D to prevent the break-
down of the autophagic bodies, and to eliminate confounding
vesicles from the multivesicular body pathway. One caveat to
the detection of autophagic bodies, however, is that they may
coalesce in the vacuole lumen, making it difficult to obtain an
accurate quantification. Finally, it is important to account for
biases in sample sectioning to obtain an accurate estimate of
autophagic body number or size.105

In general, when working with yeast it is preferable to use
strains that have the marker proteins integrated into the chro-
mosome rather than relying on plasmid-based expression,
because plasmid numbers can vary from cell to cell. The GFP-
Atg8, or similar, processing assay is easy to perform and is suit-
able for analysis by microscopy as well as western blotting;
however, particular care is needed to obtain quantitative data
for GFP-Atg8, Pex14-GFP or Om45-GFP, etc. processing
assays (see cautionary notes for GFP-Atg8/LC3 lysosomal deliv-
ery and proteolysis). An alternative is an organelle-targeted
Pho8D60 assay. For example, mitoPho8D60 can be used to
quantitatively measure mitophagy.686 In addition, for the GFP-
Atg8 processing assay, 2 h of starvation is generally sufficient to
detect a significant level of free (i.e., vacuolar) GFP by western
blotting as a measure of nonselective autophagy. For selective
types of autophagy, the length of induction needed for a clearly
detectable free GFP band will vary depending on the rate of
cargo delivery/degradation. Usually 6 h of mitophagy induction
is needed to be able to detect free GFP (e.g., from Om45-GFP)
by western blot under starvation conditions, whereas stationary
phase mitophagy typically requires 3 days before a free GFP
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band is observed. However, as with animal systems (see Animal
mitophagy and pexophagy), it would be prudent to follow more
than one GFP-tagged protein, as the kinetics, and even the
occurrence of mitophagic trafficking, seems to be protein spe-
cies-dependent, even within the mitochondrial matrix.730

Care should be taken when choosing antibodies to assess the
degree of mitochondrial protein removal by autophagy; the
quality and clarity of the result may vary depending on the spe-
cifics of the antibody. In testing the efficiency of mitophagy
clearer results may be obtained by using antibodies against
mtDNA-encoded proteins. This experimental precaution may
prove critical to uncover subtle differences that could be missed
when evaluating the process with antibodies against nuclear
encoded, mitochondrially imported proteins (M. Campanella,
personal communication).

b. Aggrephagy
Aggrephagy is the selective removal of aggregates by
macroautophagy.731 This process can be followed in vitro (in
cell culture) and in vivo (in mice) by monitoring the levels of
an aggregate-prone protein such as an expanded polyglutamine
(polyQ)-containing protein or mutant SNCA/a-synuclein (syn-
uclein, alpha [non A4 component of amyloid precursor]). Lev-
els are quantified by immunofluorescence, immunogold
labeling or traditional immunoblot. In yeast, degradation of
SNCA aggregates can be followed by promoter shut-off assays.
Espression of the inducible GAL1 promoter of GFP-tagged
SNCA is stopped by glucose repression. The removal of aggre-
gates is thus monitored with fluorescence microscopy. The con-
tribution of autophagy to SNCA aggregate clearance can be
studied by the use of different autophagy mutants or by phar-
macological treatment with the proteinase B inhibitor
PMSF.732,733 Similarly, fluorescently tagged aggregated proteins
such as polyQ80-CFP can be monitored via immunoblot and
immunofluorescence. In addition to fluorescence methods,
aggregates formed by a splice variant of CCND2 (cyclin D2)
can also be monitored in electron-dense lysosomes and auto-
phagosomes by immunogold labeling and TEM techniques.734

A polyQ80-luciferase reporter, which forms aggregates, can
also be used to follow aggrephagy.735 A nonaggregating
polyQ19-luciferase or untagged full-length luciferase serves as a
control. The ratio of luciferase activity from these 2 constructs
can be calculated to determine autophagic flux.

Autophagic degradation of endogenous aggregates such as
lipofuscin can be monitored in some cell types by fluorescence
microscopy, utilizing the autofluorescence of lipofuscin par-
ticles. Although under normal conditions almost 99% of the
lipofuscin particles are located in the autophagosomes/lyso-
somes, an impairment of macroautophagy leads to free lipofus-
cin in the cytosol.736,737 The amount of lipofuscin in primary
human adipocytes can be reduced by activation of macroauto-
phagy, and the amount of lipofuscin is dramatically reduced in
adipocytes from patients with type 2 diabetes and chronically
enhanced macroautophagy.294

Cautionary notes: Caution must be used when performing
immunoblots of aggregated proteins, as many protein aggregates
fail to enter the resolving gel and are retained in the stacking gel.
In addition, the polyQ80-luciferase in the aggregated state lacks
luciferase activity whereas soluble polyQ80-luciferase retains

activity. Therefore, caution must be used when interpreting results
with these vectors, as treatments that increase aggrephagy or
enhance protein aggregation can lead to a decrease in luciferase
activity.738 Finally, soluble polyQ reporters can be degraded by the
proteasome; thus, changes in the ratio of polyQ19-luciferase:
polyQ80-luciferase may also reflect proteasomal effects and not
just changes in autophagic flux.

c. Allophagy
In C. elegans, mitochondria, and hence mitochondrial DNA,
from sperm are eliminated by an autophagic process. This pro-
cess of allogeneic (nonself) organelle autophagy is termed
“allophagy.”739,740 During allophagy in C. elegans, both paternal
mitochondria and membranous organelles (a sperm-specific
membrane compartment) are eliminated by the 16-cell stage
(100–120 min post-fertilization).741,742 The degradation process
can be monitored in living embryos with GFP::ubiquitin, which
appears in the vicinity of the sperm chromatin (labeled for
example with mCherry-histone H2B) on the membranous
organelles within 3 min after fertilization. GFP fusions and
antibodies specific for LGG-1 and LGG-2 (Atg8/LC3 homo-
logs), which appear next to the sperm DNA, membranous
organelles and mitochondria (labeled with CMXRos or mito-
chondria-targeted GFP) within 15 to 30 min post-fertilization,
can be used to verify the autophagic nature of the degradation.
TEM can also be utilized to demonstrate the presence of mito-
chondria within autophagosomes in the early embryo.

Conclusion: There are many assays that can be used to
monitor selective types of autophagy, but caution must be used
in choosing an appropriate marker(s). The potential role of
other degradative pathways for any individual organelle or
cargo marker should be considered, and it is advisable to use
more than one marker or technique.

d. Animal mitophagy and pexophagy
There is no consensus at the present time with regard to the
best method for monitoring mitophagy in animals. As with any
organelle-specific form of autophagy, it is necessary to demon-
strate: i) increased levels of autophagosomes containing mito-
chondria, ii) maturation of these autophagosomes that
culminates with mitochondrial degradation, which can be
blocked by specific inhibitors of autophagy or of lysosomal deg-
radation, and iii) whether the changes are due to selective mito-
phagy or increased mitochondrial degradation during
nonselective autophagy. Techniques to address each of these
points have been reviewed.42,743

Antibodies against phosphorylated ubiquitin (p-S65-Ub)
have very recently been described as novel tools to detect the
activation of PINK1-PARK2-mediated mitophagy.744 p-S65-
Ub is formed by the kinase PINK1 specifically upon mitochon-
drial stress, and is amplified in the presence of the E3 Ub ligase
PARK2 (reviewed in ref. 745).746 p-S65-Ub antibodies have
been used to demonstrate stress-induced activation of PINK1
in various cells including primary human fibroblasts (Fig. 21).
Phosphorylated poly-ubiquitin chains specifically accumulate
on damaged mitochondria, and staining with p-S65-Ub anti-
bodies can be used, in addition to translocation of PARK2, to
monitor the initiation of mitophagy. Given the complete con-
servation of the epitopes across species, mitochondrial p-S65-
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Ub could also be detected in mouse primary neurons upon
mitochondrial depolarization. Furthermore, the p-S65-Ub sig-
nal partially colocalizes with mitochondrial, lysosomal, and
total ubiquitin markers in cytoplasmic granules that appear to
increase with age and disease in human postmortem brain sam-
ples.744 Along with the excellent performance of p-S65-Ub anti-
bodies in a range of applications, these findings highlight the
potential for future biomarker development.

Ultrastructural analysis at early time points can be used to
establish selective mitophagy, although a maturation inhibitor
may be needed to trap early autophagosomes with recognizable
cargo (Fig. 22). Depending on the use of specific imaging tech-
niques, dyes for living cells or antibodies for fixed cells have to
be chosen. In any case, transfection of the phagophore and
autophagosome marker GFP-LC3 to monitor the initiation of
mitophagy, or RFP-LC3 to assess mitophagy progression, and

visualization of mitochondria (independent of their mitochon-
drial membrane potential) makes it possible to determine the
association of these 2 cellular components. Qualitatively, this
may appear as fluorescence colocalization or as rings of GFP-
LC3 surrounding mitochondria in higher resolution
images.747,748 For live cell imaging microscopy, mitochondria
should be labeled by a matrix-targeted fluorescent protein
transfection or by mitochondria-specific dies. When using
matrix-targeted fluorophores for certain cell lines (e.g., SH-
SY5Y), it is important to allow at least 48 h of transient expres-
sion for sufficient targeting/import of mitochondrial GFP/RFP
prior to analyzing mitophagy. MitoTracker probes are lipo-
philic cations that include a chloromethyl group and a fluores-
cent moiety. They concentrate in mitochondria due to their
negative charge and react with the reduced thiols present in
mitochondrial matrix proteins.749-751 After this reaction the

Figure 21. PINK1-dependent phosphorylation of ubiquitin (p-S65-Ub) upon mitophagic stress. (A) Human dermal fibroblasts from healthy controls or Parkinson disease
patients carrying a PINK1 loss-of-function mutation (Q456X) were treated with valinomycin for the indicated times and lysates were analyzed by western blot. The p-S65-
Ub signal is almost undetectable under nonstress conditions in controls, but is strongly induced in a PINK1 kinase-dependent manner during its stabilization on the outer
mitochondrial membrane. MFN2 serves as a control substrate and VCL (vinculin) as a loading control. (B) HeLa cells stably expressing GFP-PARK2 (wild type) were treated
with CCCP for the indicated times, fixed and stained with p-S65-Ub (red) and GFP-PARK2 (green) as well as mitochondrial (TOMM20, cyan) and nuclear (Hoechst, blue)
markers. The p-S65-Ub staining is almost undetectable in nonstressed cells, but rapidly accumulates on damaged mitochondria where it functions to activate PARK2. On
mitochondria, PINK1 and PARK2 together amplify the p-S65-Ub signal. Scale bar: 10 mm. Image provided by F.C. Fiesel and W. Springer.

Figure 22. Autophagosomes with recognizable cargo are rare in cells. (A) To assess relative rates of autophagosome formation, the fusion inhibitor bafilomycin A1 (10 nM)
was applied for 2 h prior to fixation with 2% glutaraldehyde in order to trap newly formed autophagosomes. Two different PINK1 shRNA lines (A14 and D14) exhibit
increased AV formation over 2 h compared to the control shRNA line. �, p < 0.05 vs. Control. (B) Autophagosomes in bafilomycin A1-treated control cells contain a variety
of cytoplasmic structures (left, arrow), while mitochondria comprise a prominent component of autophagosomes in bafilomycin A1-treated (PINK1 shRNA) cells (right,
arrow). Scale bar: 500 nm. These data indicate induction of selective mitophagy in PINK1-deficient cells. This figure was modified from Figure 2 published in ref. 1951,
Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Human Molecular Genetics 2010; 19:R28-R37.
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probe can be fixed and remains in the mitochondria indepen-
dent of altered mitochondrial function or mitochondrial mem-
brane potential.750,752,753 This method can thus be used when
cells remain healthy as the dye will remain in the mitochondria
and is retained after fixation, although, as stated above, accu-
mulation is dependent on the membrane potential. In addition,
some of the MitoTracker probes, including MitoTracker Green
FM and MitoTracker Red FM, are not well retained after fixa-
tion. Antibodies that specifically recognize mitochondrial pro-
teins such as VDAC, TOMM20 or COX4I1 (cytochrome c
oxidase subunit IV isoform I) may be used to visualize mito-
chondria in immunohistochemical experimental proce-
dures.754,755 In neuronal cells, stabilized PINK1 on the
mitochondrial outer membrane that accumulates in response to
certain forms of acute mitochondrial damage is also a useful
marker because it differentiates between healthy mitochondria
and those that have lost their membrane potential. Redistribution
of cardiolipin to the outer mitochondrial membrane acts as an
elimination signal for mitophagy in mammalian cells, including
primary neurons, and an ANXA5 (annexin A5) binding assay
for externalized cardiolipin can also be considered a good marker
for damaged mitochondria and early mitophagy.145 Colocaliza-
tion analyses of mitochondria and autophagosomes provide an
indication of the degree of autophagic sequestration. TEM can
be used to demonstrate the presence of mitochondria within
autophagosomes (referred to as mitophagosomes during mito-
phagy), and this can be coupled with bafilomycin A1 treatment
to prevent fusion with the lysosome.42 To quantify early mito-
phagy, the percentage of LC3 puncta (endogenous, RFP- or
GFP-LC3 puncta) that colocalize with mitochondria and the
number of colocalizing LC3 puncta per cell—as assessed by
either confocal microscopy or high-throughput imaging—in
response to mitophagic stimuli can be employed as well.756 In
addition, the percentage of lysosomes that colocalize with mito-
chondria can be used to quantify macroautophagy-mediated
delivery of mitochondria. Overall, it is important to quantify
mitophagy at various stages (initiation, progression, and late
mitophagy) to identify stimuli that elicit this process.757,758

The fusion process of mitophagosomes with hydrolase-con-
taining lysosomes represents the next step in the degradation
process. To monitor the amount of fused organelles via live cell
imaging microscopy, MitoTracker� Green FM and
LysoTracker� Red DND-99 may be used to visualize the fusion
process (Fig. 23). Independent of the cell-type specific concentra-
tion used for both dyes, we recommend exchanging

MitoTracker� Green FM with normal medium (preferably phe-
nol-free and CO2 independent to reduce unwanted autofluores-
cence) after incubation with the dye, whereas it is best to
maintain the LysoTracker� Red stain in the incubation medium
during the acquisition of images. Given that these fluorescent
dyes are extremely sensitive to photobleaching, it is critical to per-
form live cell mitophagy experiments via confocal microscopy,
preferably by using a spinning disc confocal microscope for long-
term imaging experiments. For immunocytochemical experi-
ments, antibodies specific for mitochondrial proteins and an anti-
body against LAMP1 (lysosomal-associated membrane protein 1)
can be used. Overlapping signals appear as a merged color and
can be used as indicators for successful fusion of autophagosomes
that contain mitochondria with lysosomal structures.759 To mea-
sure the correlation between 2 variables by imaging techniques,
such as the colocalization of 2 different stainings, we recommend
some form of correlation analysis to assess the value correlating
with the strength of the association. This may use, for example,
ImageJ software or other colocalization scores that can be derived
from consideration not only of pixel colocalization, but also from
a determination that the structures have the appropriate shape.
During live-cell imaging, the 2 structures (autophagosomes
and mitochondria) should move together in more than one
frame. Mitophagy can also be quantitatively monitored using
a mitochondria-targeted version of the pH-dependent Keima
protein.760 The peak of the excitation spectrum of the protein
shifts from 440 nm to 586 nm when mitochondria are deliv-
ered to acidic lysosomes, which allows easy quantification of
mitophagy (Fig. 24). However, it should be noted that long
exposure time of the specimen to intense laser light lead to a
similar spectral change. Finally, a mitochondrially-targeted
version of the tandem mCherry-GFP fluorescent reporter (see
Tandem mRFP/mCherry-GFP fluorescence microscopy) using a
targeting sequence from the mitochondrial membrane protein
FIS1346,347 can be used to monitor mitophagic flux.347

The third and last step of the degradation process is the
monitoring of the amount of remaining mitochondria by
analyzing the mitochondrial mass. This final step provides
the opportunity to determine the efficiency of degradation of
dysfunctional, aged or impaired mitochondria. Mitochon-
drial mass can be measured by a flow cytometry technique
using MitoTracker� Green FM or MitoTracker Deep Red
FM,750 on a single cell basis, by either live cell imaging or
immunocytochemistry (using antibodies specifically raised
against different mitochondrial proteins). Alternatively,

Figure 23. Human fibroblasts showing colocalization of mitochondria with lysosomes. The degree of colocalization of mitochondria with lysosomes in human fibroblasts
was measured via live cell imaging microscopy at 37�C and 5% CO2 atmosphere using the ApoTome� technique. LysoTracker� Red DND-99 staining was applied to mark
lysosomal structures (red), and MitoTracker� Green FM to visualize mitochondria (green). Hoechst 33342 dye was used to stain nuclei (blue). A positive colocalization is
indicated by yellow signals (merge) due to the overlap of LysoTracker� Red and MitoTracker� Green staining (white arrows). Scale bars: 10 mm. Statistical evaluation is
performed by calculating the Pearson’s coefficient for colocalizing pixels. Image provided by L. Burbulla and R. Kr€uger.
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mitochondrial content in response to mitophagic stimuli (in
the presence and absence of autophagy inhibitors to assess
the contribution of mitophagy) in live or fixed cells can be
quantified at the single-cell level as the percentage of cytosol
occupied by mitochondrial-specific fluorescent pixels using
NIH ImageJ.758 Immunoblot analysis of the levels of mito-
chondrial proteins from different mitochondrial subcompart-
ments is valuable for validating the data from flow cytometry
or microscopy studies, and it should be noted that outer
mitochondrial membrane proteins in particular can be
degraded by the proteasome, especially in the context of
mitochondrial depolarization.761,762 EM can also be used to
verify loss of entire mitochondria, and PCR (or fluorescence
microscopy) to quantify mitochondrial DNA (mtDNA). A
reliable estimation of mtDNA can be performed by real-time
PCR of the MT-ND2 (mitochondrially encoded NADH
dehydrogenase 2) gene expressed as a ratio of mtDNA:
nuclear DNA by normalizing to that of TERT (telomerase
reverse transcriptase) genomic DNA.763 The spectrophoto-
metric measurement of the activity of CS (citrate synthase),
a mitochondrial matrix enzyme of the TCA cycle, which
remains highly constant in these organelles and is considered
a reliable marker of their intracellular content, can also be
used to estimate the mitochondrial mass.763

In addition to monitoring the steady state levels of different
steps of mitophagy—whether by single-cell analyses of LC3
mitochondrial colocalization or by immunoblotting for mito-
chondrial markers—investigation of the mitophagic flux is
needed to determine whether mitophagy is impaired or acti-
vated in response to stimuli, and at which steps. Therefore,
appropriate treatment (pharmacological inhibition and/or
siRNA-mediated knockdown of ATG genes) may be applied
to prevent mitochondrial degradation at distinct steps of the
process. A recent method using flow cytometry in combina-
tion with autophagy and mitophagy inhibitors has been devel-
oped to determine mitophagic flux using MitoTracker
probes.750

Certain cellular models require stress conditions to measure
the mitochondrial degradation capacity, as basal levels are too
low to reliably assess organelle clearance. However, one
exception has been identified in Drosophila where large
numbers of mitochondria are cleared by mitophagy during

developmentally triggered autophagy.764 Hence, in many cases,
it may be useful to pretreat the cells with uncoupling agents,
such as CCCP, that stimulate mitochondrial degradation and
allow measurements of mitophagic activity; however, it should
be kept in mind that, although helpful to stimulate mitochon-
drial degradation, this treatment is not physiological and pro-
motes the rapid degradation of outer membrane-localized
mitochondrial proteins. In part for this reason a milder mito-
phagy stimulus has been developed that relies on a combination
of antimycin A and oligomycin, inhibitors of the electron trans-
port chain and ATP synthase, respectively;765 this treatment is
less toxic, and the resulting damage is time dependent. Another
method to induce mitophagy is by expressing and activating a
mitochondrially localized fluorescent protein photosensitizer
such as Killer Red.766 The excitation of Killer Red results in an
acute increase of superoxide, due to phototoxicity, that causes
mitochondrial damage resulting in mitophagy.767 The advan-
tage of using a genetically encoded photosensitizer is that it
allows for both spatial and temporal control in inducing mito-
phagy. Finally, the forced targeting of AMBRA1 to the external
mitochondrial membrane is sufficient to induce massive
mitophagy.768

A new classification suggests that mitophagy can be divided
into 3 types.769 Type 1 mitophagy, involves the formation of a
phagophore, and typically also requires mitochondrial fission;
the PtdIns3K containing BECN1 mediates this process. In con-
trast, type 2 mitophagy is independent of BECN1 and takes
place when mitochondria have been damaged, resulting in
depolarization; sequestration involves the coalescence of GFP-
LC3 membranes around the mitochondria rather than through
fission and engulfment within a phagophore. In type 3 mito-
phagy, mitochondrial fragments or vesicles from damaged
organelles are sequestered through a microautophagy-like pro-
cess that is independent of ATG5 and LC3, but requires PINK1
and PARK2.

Although the process of pexophagy is prominent and well
described in yeast cells,696,770 relatively little work has been
done in the area of selective mammalian peroxisome degra-
dation by autophagy (for a review see ref. 771). Typically,
peroxisomes are induced by treatment with hypolipidemic
drugs such as clofibrate or dioctyl phthalate, which bind to a
subfamily of nuclear receptors, referred to as peroxisome

Figure 24. Detection of mitophagy in primary cortical neurons using mitochondria-targeted Keima. Neurons transfected with mito-Keima were visualized using 458-nm
(green, mitochondria at neutral pH) and 561-nm (red, mitochondria in acidic pH) laser lines and 575-nm band pass filter. Compared with the control (A) wild-type PINK1
overexpression (B) increases the number of the mitochondria exposed to acidic conditions. Scale bar: 2 mm. (C) Quantification of red dots suggests increased mitophagy
in wild-type PINK1 but not in the kinase dead (kd) PINK1K219M-overexpressing neurons. Image provided by V. Choubey and A. Kaasik.
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proliferator-activated receptors.772 Degradation of excess
organelles is induced by drug withdrawal, although starvation
without prior proliferation can also be used. EPAS1 activa-
tion in liver-specific vhl-/- and vhl-/- hif1a-/- mice reduces per-
oxisome abundance by pexophagy, whereas ER and
mitochondrial protein levels are not affected.773 Pexophagy
can also be induced by the expression of a nondegradable
active EPAS1 variant.773 Induction of pexophagy in response
to endogenous and exogenous reactive oxygen species (ROS)
and reactive nitrogen species has been observed in mamma-
lian cells. In this setting, pexophagy is induced via ROS/reac-
tive nitrogen species-mediated activation of ATM,774,775

repression of MTORC1 and phosphorylation of PEX5 by
ATM;776,777 ATM phosphorylation of PEX5 at S141 triggers
PEX5 ubiquitination and binding of SQSTM1 to peroxisomes
targeted for pexophagy.777 Loss of peroxisomes can be fol-
lowed enzymatically or by immunoblot, monitoring enzymes
such as ACOX/fatty acyl-CoA oxidase (note that this enzyme
is sometimes abbreviated “AOX,” but should not be confused
with the enzyme alcohol oxidase that is frequently used in
assays for yeast pexophagy) or CAT/catalase, and also by
EM, cytochemistry or immunocytochemistry.778-781 Finally, a
HaloTag�-PTS1 marker that is targeted to peroxisomes has
been used to fluorescently label the organelle.782 An alterna-
tive approach uses a peroxisome-specific tandem fluoro-
chrome assay (RFP-EGFP localizing to peroxisomes by the
C-terminal addition of the tripeptide SKL, or a peroxisomal
membrane protein tagged with mCherry-mGFP), which has
been used to demonstrate the involvement of ACBD5/
ATG37, NBR1 and SQSTM1 in mammalian pexophagy.345,783

Cautionary notes: There are many assays that can be used to
monitor specific types of autophagy, but caution must be used
in choosing an appropriate marker(s). To follow mitophagy it is
best to monitor more than one protein and to include an inner
membrane or matrix component in the analysis. In particular,
it is not sufficient to follow a single mitochondrial outer mem-
brane protein because these can be degraded independently of
mitophagy. Although the localization of PARK2 to mitochon-
dria as monitored by fluorescence microscopy is associated
with the early stages of protonophore uncoupler (CCCP)-
driven mitochondria degradation,250 this by itself cannot be
used as a marker for mitophagy, as these events can be dissoci-
ated.784 Moreover, mitophagy elicited in a number of disease
models does not involve mitochondrial PARK2 transloca-
tion.145,347,785 Along these lines, recent studies implicate an
essential role for TRAF2, an E3 ubiquitin ligase, as a mitophagy
effector in concert with PARK2 in cardiac myocytes; whereby
mitochondrial proteins accumulate differentially with defi-
ciency of either, indicating nonredundant roles for these E3
ubiquitin ligases in mitophagy.786 This finding necessitates an
integrated approach to assess mitophagy based on a broad eval-
uation of multiple mitochondrial effectors and proteins.

PARK2 translocates to damaged mitochondria and ubiquiti-
nates a wide range of outer membrane proteins including
VDAC1, MFN1/2 and TOMM20/TOM20.755,761,762,787 This
results in the preferential degradation of mitochondrial outer
membrane proteins by the proteasome, while inner membrane
proteins and mitochondrial DNA788 remain intact. Monitoring
loss of a single protein such as TOMM20 by western blot or

fluorescence microscopy to follow mitophagy may thus be mis-
leading, as noted above.787 MitoTracker dyes are widely used to
stain mitochondria and, when colocalized with GFP-LC3, they
can function as a marker for mitophagy. However, staining
with MitoTracker dyes depends on mitochondrial membrane
potential (although MitoTracker Green FM is less sensitive to
loss of membrane potential), so that damaged, or sequestered
nonfunctional mitochondria may not be stained. In vitro this
can be avoided by labeling the cells with MitoTracker before the
induction by the mitophagic stimuli.750,789 One additional point
is that MitoTracker dyes might influence mitochondrial motil-
ity in axons (D. Ebrahimi-Fakhari, personal communication).

Although it is widely assumed that macroautophagy is the
major mechanism for degradation of entire organelles, there
are multiple mechanisms that may account for the disappear-
ance of mitochondrial markers. These include proteasomal
degradation of outer membrane proteins and/or proteins that
fail to correctly translocate into the mitochondria, degrada-
tion due to proteases within the mitochondria, and reduced
biosynthesis or import of mitochondrial proteins. PINK1 and
PARK2 also participate in an ATG gene-independent path-
way for lysosomal degradation of small mitochondria-derived
vesicles.790 Furthermore, the PINK1-PARK2 mitophagy path-
way is also transcriptionally upregulated in response to star-
vation-triggered generalized autophagy, and is intertwined
with the lipogenesis pathway.791-794 In addition to mitophagy,
mitochondria can be eliminated by extrusion from the cell
(mitoptosis).795,759,755,742 Transcellular degradation of mito-
chondria, or transmitophagy, also occurs in the nervous sys-
tem when astrocytes degrade axon-derived mitochondria.796

Thus, it is advisable to use a variety of complementary meth-
ods to monitor mitochondria loss including TEM, single cell
analysis of LC3 fluorescent puncta that colocalize with mito-
chondria, and western blot, in conjunction with flux inhibi-
tors and specific inhibitors of autophagy induction compared
with inhibitors of the other major degradation systems (see
cautions in Autophagy inhibitors and inducers). To monitor
and/or rule out changes in cellular capacity to undergo mito-
chondrial biogenesis, a process that is tightly coordinated
with mitophagy and can dictate the outcome following mito-
phagy-inducing insults especially in primary neurons and
other mitochondria-dependent cells, colocalization analysis
after double staining for the mitochondrial marker TOMM20
and BrdU (for visualization of newly synthesized mtDNA)
can be performed (Fig. 25).

Likewise, although the mechanism(s) of peroxisomal protein
degradation in mammals awaits further elucidation, it can
occur by both autophagic and proteasome-dependent mecha-
nisms.797 Thus, controls are needed to determine the extent of
degradation that is due to the proteasome. Moreover, 2 addi-
tional degradation mechanisms have been suggested: the action
of the peroxisome-specific LONP2/Lon (lon peptidase 2, perox-
isomal) protease and the membrane disruption effect of 15-
lipoxygenase.798

e. Chlorophagy
Besides functioning as the primary energy suppliers for plants,
chloroplasts represent a major source of fixed carbon and nitro-
gen to be remobilized from senescing leaves to storage organs
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and newly developing tissues. As such, the turnover of these
organelles has long been considered to occur via an autophagy-
type mechanism. However, while the detection of chloroplasts
within autophagic body-like vesicles or within vacuole-like
compartments has been observed for decades, only recently has
a direct connection between chloroplast turnover and auto-
phagy been made through the analysis of atg mutants com-
bined with the use of fluorescent ATG8 reporters.799,800 In fact,
it is now clear that chlorophagy, the selective degradation of
chloroplasts by macroautophagy, can occur via several routes,
including the encapsulation of whole chloroplasts, or the bud-
ding of chloroplast material into small distinct autophagic
vesicles called Rubisco-containing bodies (RCBs) and ATI1
plastid-associated bodies (ATI-PS), which then transport chlo-
roplast cargo to the vacuole.799,801 Chloroplasts produce long
tubes called stromules that project out from the organelle outer
membrane. Recent studies suggest that stromules are part of
the chlorophagy process, by which the stromule tips presum-
ably containing unwanted or damaged chloroplast material are
engulfed by autophagic membranes using ESCRTII endocytic
machinery that depends on ATG8.802 The appearance of RCBs
is tightly linked with leaf carbon status, indicating that chlor-
ophagy through RCBs represents an important route for recy-
cling plant nutrients provided in plastid stores.

f. Chromatophagy
Autophagy has been known for its pro-survival role in cells
under metabolic stress and other conditions. However, exces-
sively induced autophagy may be cytotoxic and may lead to cell
death. Chromatophagy (chromatin-specific autophagy) comes
into view as one of the autophagic responses that can contrib-
ute to cell death.803 Chromatophagy can be seen in cells during
nutrient depletion, such as arginine starvation, and its pheno-
type consists of giant-autophagosome formation, nucleus mem-
brane rupture and histone-associated-chromatin/DNA leakage
that is captured by autophagosomes.803 Arginine starvation can
be achieved by adding purified arginine deiminase to remove

arginine from the culture medium, or by using arginine-drop-
out medium. The degradation of leaked nuclear DNA/chroma-
tin can be observed by fluorescence microscopy; with GFP-LC3
or anti-LC3 antibody, and LysoTracker Red or anti-LAMP1,
multiple giant autophagosomes or autolysosomes containing
leaked nuclear DNA can be detected. In addition, the chroma-
tophagy-related autophagosomes also contain parts of the
nuclear outer-membrane, including NUP98 (nucleoporin
98kDa), indicating that the process involves a fusion event.803

g. Ferritinophagy
Ferritinophagy is a selective form of autophagy that functions
in intracellular iron processing.804 Iron is recruited to ferritin
for storage and to prevent the generation of free radical
iron.805,806 To release iron from ferritin, the iron-bound form is
sequestered within an autophagosome.807 Fusion with a lyso-
some leads to breakdown of ferritin and release of iron. Fur-
thermore, iron can be acidified in the lysosome, converting it
from an inactive state of Fe3C to Fe2C.808,809 Iron can be
detected in the autolysosome via TEM.808 Colocalization of
iron with autolysosomes may also be determined utilizing cal-
cein AM to tag iron.808,810 NCOA4 is a cargo receptor that
recruits ferritin to the autophagosome.804

h. Intraplastidial autophagy
Intraplastidial autophagy is a process whereby plastids of some
cell types adopt autophagic functions, engulfing and digesting
portions of the cytoplasm. These plastids are characterized by
formation of invaginations in their double-membrane envelopes
that eventually generate a cytoplasmic compartment within the
plastidial stroma, isolated from the outer cytoplasm. W. Nagl
coined the term “plastolysome” to define this special plastid
type.811 Initially, the engulfed cytoplasm is identical to the outer
cytoplasm, containing ribosomes, vesicles and even larger organ-
elles. Lytic activity was demonstrated in these plastids, in both
the cytoplasmic compartment and the stroma. Therefore, it was
suggested that plastolysomes digest themselves together with

Figure 25. Confocal microscopy deconvolved (AutoQuant X3) images and colocalization image analysis (ImageJ 1.47; Imaris 7.6) through a local approach showing peri-
nuclear mitochondrial biogenesis in hippocampal neuronal cultures. The upper channels show TOMM20 (green channel), BrdU (for visualization of newly synthesized
mitochondrial DNA, red channel), and merged fluorescence channels. Overlay, corresponds to the spatial pattern of software thresholded colocalized structures (white
spots) layered on the merged fluorescence channels. Surface Plot, or luminance intensity height, is proportional to the colocalization strength of the colocalized structures
(white spots). Plot Profile, corresponds to the spatial intensity profiles of the fluorescence channels of the white line positioned in the Merge image. Yellow arrows indi-
cate a qualitative evaluation of the spatial association trends for the fluorescence intensities. Arrows pointing up indicate an increase in the colocalization, while arrows
pointing down show a decrease. Scale bar: 2 mm. This figure was modified from previously published data2187 and provided by F. Florenzano.
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their cytoplasmic cargo, and transform into lytic vacuoles. Intra-
plastidial autophagy has been reported in plastids of suspensor
cells of Phaseolus coccineus811 and Phaseolus vulgaris,812 where
plastids transformed into autophagic vacuoles during the senes-
cence of the suspensor. This process was also demonstrated in
petal cells of Dendrobium813 and in Brassica napus microspores
experimentally induced towards embryogenesis.814 All these
reports established a clear link between these plastid transforma-
tions and their engagement in autophagy. At present, descrip-
tions of this process are limited to a few, specialized plant cell
types. However, pictures of cytoplasm-containing plastids in
other plant cell types have been occasionally published, although
the authors did not make any mention of this special plastid
type. For example, this has been seen in pictures of fertile and
Ogu-INRA male sterile tetrads of Brassica napus,815 and Phaseo-
lus vulgaris root cells.816 Possibly, this process is not as rare as
initially thought, but authors have only paid attention to it in
those cell types where it is particularly frequent.

i. Lipophagy
The specific macroautophagic degradation of lipid droplets rep-
resents another type of selective autophagy.817 Lipophagy
requires the core autophagic machinery and can be monitored
by following triglyceride content, or total lipid levels using
BODIPY 493/503 or HCS LipidTOX neutral lipid stains with
fluorescence microscopy, cell staining with Oil Red O, the cho-
lesterol dye filipin III,818 or ideally label-free techniques such as
CARS or SRS microscopy. BODIPY 493/503 should be used
with caution, however, when performing costains (especially in
the green and red spectra) because this commonly used fluores-
cent marker of neutral lipids is highly susceptible to bleed-
through into the other fluorescence channels (hence often
yielding false positives), unlike the LipidTOX stain that has a
narrow emission spectrum.819 In addition, BODIPY 493/503
cannot be used to monitor lipophagy in C. elegans because it
stains both lipid droplets and the lysosome.820 TEM can also be
used to monitor lipid droplet size and number, as well as lipid
droplet-associated double-membrane structures, which corre-
spond to autophagosomes.817,821,822 The transcription factor
TFEB positively regulates lipophagy,624 and promotes fatty acid
b-oxidation,823 thus providing a regulatory link between differ-
ent lipid degradation pathways.824 Accordingly, TFEB overex-
pression rescues fat accumulation and metabolic syndrome in a
diet-induced model of obesity.823,825 The regulation of expres-
sion of lipid droplet regulators (such as the PLIN/perilipin fam-
ily) and of autophagy adaptors (such as the TBC1D1 family)
during starvation and disease is one of several areas in this topic
that deserves further exploration.826-828

Cautionary notes: With regard to changes in the cellular
neutral lipid content, the presence and potential activation of
cytoplasmic lipases that are unrelated to lysosomal degradation
must be considered.

j. Lysophagy
Lysophagy is a selective macroautophagy process that partici-
pates in cellular quality control through lysosome turnover. By
eliminating ruptured lysosomes, lysophagy prevents the subse-
quent activation of the inflammasome complex and innate
immune response.829,830

k. Oxiapoptophagy
There are now several lines of evidence indicating that
autophagy is an essential process in vascular functions.
Autophagy can be considered as atheroprotective in the
early stages of atherosclerosis and detrimental in advanced
atherosclerotic plaques.831 Currently, little is known about
the molecules that promote autophagy on the cells of the
vascular wall. As increased levels of cholesterol oxidation
products (also named oxysterols) are found in atheroscle-
rotic lesions,832 the part taken by these molecules has been
investigated, and several studies support the idea that some
of them could contribute to the induction of auto-
phagy.833,834 It is now suggested that oxysterols, especially
7-ketocholesterol, which can be increased under various
stress conditions in numerous age-related diseases not only
including vascular diseases but also neurodegenerative dis-
eases,835 could trigger a particular type of autophagy termed
oxiapoptophagy (OXIdation C APOPTOsis C auto-
PHAGY)836 characterized by the simultaneous induction of
oxidative stress associated with apoptosis and autophagic cri-
teria in different cell types from different species.837,838 As
oxiapoptophagy has also been observed with 7b-hydroxycho-
lesterol and 24S-hydroxycholesterol, which are potent inducers
of cell death, it is suggested that oxiapoptophagy could charac-
terize the effect of cytotoxic oxysterols.837

l. Reticulophagy
Starvation in yeast induces a type of selective macroautophagy
of the ER, which depends on the autophagy receptors Atg39
and Atg40.839 ER stress also triggers an autophagic response,840

which includes the formation of multi-lamellar ER whorls and
their degradation by a microautophagic mechanism.841 ER-
selective autophagy has been termed ER-phagy or reticulo-
phagy.842,843 Selective autophagy of the ER has also been
observed in mammalian cells,844 and FAM134B has been iden-
tified as an ER-specific macroautophagy receptor that appears
to be functionally homologous to Atg40.845 Since reticulophagy
is selective, it should be able to act in ER quality control,846

sequester parts of the ER that are damaged, and eliminate pro-
tein aggregates that cannot be removed in other ways. It may
also serve to limit stress-induced ER expansion,841 for example
by reducing the ER to a normal level after a particular stress
condition has ended.

m. Ribophagy
Autophagy is also used for the selective removal of ribosomes,
particularly upon nitrogen starvation.847 This process can be
monitored by western blot, following the generation of free
GFP from Rpl25-GFP or Rpl5-GFP,848 or the disappearance of
ribosomal subunits such as Rps3. Vacuolar localization of
Rpl25-GFP or Rpl5-GFP can also be seen by fluorescence
microscopy. The Rkr1/Ltn1 ubiquitin ligase acts as an inhibitor
of 60S ribosomal subunit ribophagy via, at least, Rpl25 as a tar-
get, and is antagonized by the deubiquitinase Ubp3-Bre5 com-
plex.847,848 Rkr1/Ltn1 and Ubp3-Bre5 likely contribute to adapt
ribophagy activity to both nutrient supply and protein
translation.
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n. RNA-silencing components
Several components of the RNA-silencing machinery are selec-
tively degraded by autophagy in different organisms. This was
first shown for the plant AGO1/ARGONAUTE1 protein, a key
component of the Arabidopsis RNA-induced silencing complex
(RISC) that, after ubiquitination by a virus encoded F-box pro-
tein, is targeted to the vacuole.849 AGO1 colocalizes with Arabi-
dopsis ATG8a-positive bodies and its degradation is impaired
by various drugs such as 3-MA and E64d, or in Arabidopsis
mutants in which autophagy is compromised such as the TOR-
overexpressing mutant line G548 or the atg7-2 mutant allele (P.
Genschik, unpublished data). Moreover, this pathway also
degrades AGO1 in a nonviral context, especially when the pro-
duction of miRNAs is impaired. In mammalian cells, not only
the main miRNA effector AGO2, but also the miRNA-process-
ing enzyme DICER1, is degraded as a miRNA-free entity by
selective autophagy.850 Chemical inhibitors of autophagy (bafi-
lomycin A1 and chloroquine) and, in HeLa cells, depletion of
key autophagy components ATG5, ATG6 or ATG7 using short
interfering RNAs, blocks the degradation of both proteins.
Electron microscopy shows that DICER1 is associated with
membrane-bound structures having the hallmarks of autopha-
gosomes. Moreover, the selectivity of DICER1 and AGO2 deg-
radation might depend on the autophagy receptor
CALCOCO2/NDP52, at least in these cell types. Finally, in C.
elegans, AIN-1, a homolog of mammalian TNRC6A/GW182
that interacts with AGO and mediates silencing, is also
degraded by autophagy.851 AIN-1 colocalizes with SQST-1 that
acts as a receptor for autophagic degradation of ubiquitinated
protein aggregates and also directly interacts with LGG-1
(Atg8/LC3) contributing to cargo specificity.

o. Vacuole import and degradation pathway
In yeast, gluconeogenic enzymes such as fructose-1,6-bisphos-
phatase (Fbp1/FBPase), malate dehydrogenase (Mdh2), isoci-
trate lyase (Icl1) and phosphoenolpyruvate carboxykinase
(Pck1) constitute the cargo of the vacuole import and degrada-
tion (Vid) pathway.852 These enzymes are induced when yeast
cells are glucose starved (grown in a medium containing 0.5%
glucose and potassium acetate). Upon replenishing these cells
with fresh glucose (a medium containing 2% glucose), these
enzymes are degraded in either the proteasome853-855 or the
vacuole852,856 depending on the duration of starvation. Follow-
ing glucose replenishment after 3 d glucose starvation, the
gluconeogenic enzymes are delivered to the vacuole for degra-
dation.857 These enzymes are sequestered in specialized 30- to
50-nm Vid vesicles.858 Vid vesicles can be purified by fraction-
ation and gradient centrifugation; western blotting analysis
using antibodies against organelle markers and Fbp1, and the
subsequent verification of fractions by EM facilitate their iden-
tification.858 Furthermore, the amount of marker proteins in
the cytosol compared to the Vid vesicles can be examined by
differential centrifugation. In this case, yeast cells are lysed and
subjected to differential centrifugation. The Vid vesicle-
enriched pellet fraction and the cytosolic supernatant fraction
are examined with antibodies against Vid24, Vid30, Sec28 and
Fbp1.859-861

The distribution of Vid vesicles containing cargo destined
for endosomes, and finally for the vacuole, can be examined

using FM 4–64, a lipophilic dye that primarily stains endocytic
compartments and the vacuole limiting membrane.862 In these
experiments, starved yeast cells are replenished with fresh glu-
cose and FM 4–64, and cells are collected at appropriate time
points for examination by fluorescence microscopy.860 The site
of degradation of the cargo in the vacuole can be determined
by studying the distribution of Fbp1-GFP, or other Vid cargo
markers in wild-type and pep4D cells.863 Cells can also be
examined for the distribution of Fbp1 at the ultrastructural
level by immuno-TEM.864

As actin patch polymerization is required for the delivery of
cargo to the vacuole in the Vid pathway, distribution of Vid
vesicles containing cargo and actin patches can be examined by
actin staining (with phalloidin conjugated to rhodamine) using
fluorescence microscopy.864 The distribution of GFP tagged
protein and actin is examined by fluorescence microscopy.
GFP-Vid24, Vid30-GFP and Sec28-GFP colocalize with actin
during prolonged glucose starvation and for up to 30 min fol-
lowing glucose replenishment in wild-type cells; however,
colocalization is less obvious by the 60-min time point.859,864

p. Xenophagy
The macroautophagy pathway has emerged as an important
cellular factor in both innate and adaptive immunity. Many in
vitro and in vivo studies have demonstrated that genes encod-
ing macroautophagy components are required for host defense
against infection by bacteria, parasites and viruses. Xenophagy
is often used as a term to describe autophagy of microbial
pathogens, mediating their capture and delivery to lysosomes
for degradation. Since xenophagy presents an immune defense,
it is not surprising that microbial pathogens have evolved strat-
egies to overcome it. The interactions of such pathogens with
the autophagy system of host cells are complex and have been
the subject of several excellent reviews.121-126,865-871 Here we
will make note of a few key considerations when studying inter-
actions of microbial pathogens with the autophagy system.
Importantly, autophagy should no longer be considered as
strictly antibacterial, and several studies have described the fact
that autophagy may serve to either restrict or promote bacterial
replication both in vivo872 and in vitro (reviewed in refs. 874,
875).

LC3 is commonly used as a marker of macroautophagy.
However, studies have established that LC3 can promote pha-
gosome maturation independently of macroautophagy through
LC3-associated phagocytosis (see cautionary notes in Atg8/LC3
detection and quantification, and Noncanonical use of auto-
phagy-related proteins). Other studies show that macroauto-
phagy of Salmonella enterica serovar Typhimurium
(S. typhimurium) is dependent on ATG9, an essential
macroautophagy protein, whereas LC3 recruitment to bacteria
does not require ATG9.875 In contrast, macroautophagy of
these bacteria requires either glycan-dependent binding of
LGALS8/galectin-8 (lectin, galactoside-binding, soluble, 8) to
damaged membranes and subsequent recruitment of the cargo
receptor CALCOCO2/NDP52876 or ubiquitination of target
proteins (not yet identified) and recruitment of 4 different
ubiquitin-binding receptor proteins, SQSTM1,877 CALCOCO2/
NDP52,878 TAX1BP1/CALCOCO3879 and OPTN.880 There-
fore, the currently available criteria to differentiate LAP from
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macroautophagy include: i) LAP involves LC3 recruitment to
bacteria in a manner that requires ROS production by an
NADPH oxidase. It should be noted that most cells express at
least one member of the NADPH oxidase family. Targeting
expression of the common CYBA/p22phox subunit is an effec-
tive way to disrupt the NADPH oxidases. Scavenging of ROS
by antioxidants such as resveratrol and alpha-tocopherol is also
an effective way to inhibit LAP. In contrast, N-acetylcysteine,
which raises cellular glutathione levels, does not inhibit LAP.881

ii) Macroautophagy of bacteria requires ATG9, whereas LAP
apparently does not.875 iii) LAP involves single-membrane
structures. For LAP, CLEM (with LC3 as a marker) is expected
to show single-membrane structures that are LC3C with
LAP.182 In contrast, macroautophagy is expected to generate
double-membrane structures surrounding cargo (which may
include single membrane phagosomes, giving rise to triple-
membrane structures875). It is anticipated that more specific
markers of LAP will be identified as these phagosomes are fur-
ther characterized.

Nonmotile Listeria monocytogenes can be targeted to dou-
ble-membrane autophagosomes upon antibiotic treatment,882

which indicates that macroautophagy serves as a cellular
defense to microbes in the cytosol. However, subsequent stud-
ies have revealed that macroautophagy can also target patho-
gens within phagosomes, damaged phagosomes or the cytosol.
Therefore, when studying microbial interactions by EM, many
structures can be visualized, with any number of membranes
encompassing microbes, all of which may be LC3C.883,884 As
discussed above, single-membrane structures that are LC3C

may arise through LAP, and we cannot rule out the possibility
that both LAP and macroautophagy may operate at the same
time to target the same phagosome. Indeed macroautophagy
may facilitate phagocytosis and subsequent bacterial clearance
(X. Li and M. Wu, submitted). Macroautophagy is not only
induced by intracellular bacteria, but also can be activated by
extracellular bacteria such as Pseudomonas aeruginosa and
Klebsiella pneumoniae, which may involve complex mecha-
nisms.885-887 Furthermore, macroautophagy can be induced by
all intracellular and extracellular Gram-negative bacteria via a
common mechanism involving naturally produced bacterial
outer membrane vesicles;888,889 these vesicles enter human epi-
thelial cells, resulting in autophagosome formation and inflam-
matory responses mediated via the host pathogen recognition
receptor NOD1.888

Viruses can also be targeted by autophagy, and in turn can
act to inhibit autophagy. For example, infection of a cell by
influenza and dengue viruses890 or enforced expression of the
hepatitis B virus C protein891 have profound consequences for
autophagy, as viral proteins such as NS4A stimulate autophagy
and protect the infected cell against apoptosis, thus extending
the time in which the virus can replicate. Conversely, the HSV-
1 ICP34.5 protein inhibits autophagy by targeting BECN1.892

While the impact of ICP34.5’s targeting of BECN1 on viral rep-
lication in cultured permissive cells is minimal, it has a signifi-
cant impact upon pathogenesis in vivo, most likely through
interfering with activation of CD4C T cells,893,894 and through
cell-intrinsic antiviral effects in neurons.895 Also, viral BCL2
proteins, encoded by large DNA viruses, are able to inhibit
autophagy by interacting with BECN1565 through their BH3

homology domain. An example of these include g-herpesvi-
rus68,896 Kaposi sarcoma-associated herpesvirus566 and African
swine fever virus (ASFV) vBCL2 homologs.897 ASFV encodes a
protein homologous to HSV-1 ICP34.5, which, similar to its
herpesvirus counterpart, inhibits the ER stress response activat-
ing PPP1/protein phosphatase 1; however, in contrast to
HSV-1 ICP34.5 it does not interact with BECN1. ASFV vBCL2
strongly inhibits both autophagy (reviewed in ref. 898) and
apoptosis.899

HIV-1 utilizes the initial, nondegradative stages of auto-
phagy to promote its replication in macrophages. In addition,
the HIV-1 protein Nef acts as an anti-autophagic maturation
factor protecting the virus from degradation by physically
blocking BECN1.900-902 Autophagy contributes to limiting viral
pathogenesis in HIV-1 nonprogressor-infected patients by tar-
geting viral components for degradation.903

Care must be taken in determining the role of autophagy in
viral replication, as some viruses such as vaccinia virus use dou-
ble-membrane structures that form independently of the auto-
phagy machinery.904 Similarly, dengue virus replication, which
appears to involve a double-membrane compartment, requires
the ER rather than autophagosomes,905 whereas coronaviruses
and Japanese encephalitis virus use a nonlipidated version of
LC3 (see Atg8/LC3 detection and quantification).190,191 Yet
another type of variation is seen with hepatitis C virus, which
requires BECN1, ATG4B, ATG5 and ATG12 for initiating rep-
lication, but does not require these proteins once an infection is
established.906

Finally, it is important to realize that there may be other
macroautophagy-like pathways that have yet to be character-
ized. For example, in response to cytotoxic stress (treatment
with etoposide), autophagosomes are formed in an ATG5- and
ATG7-independent manner (see Noncanonical use of auto-
phagy-related proteins).27 While this does not rule out involve-
ment of other macroautophagy regulators/components in the
formation of these autophagosomes, it does establish that the
canonical macroautophagy pathway involving LC3 conjugation
is not involved. In contrast, RAB9 is required for this alterna-
tive pathway, potentially providing a useful marker for analysis
of these structures. Returning to xenophagy, M. tuberculosis
can be targeted to autophagosomes in an ATG5-independent
manner.907 Furthermore, up to 25% of intracellular S. typhimu-
rium are observed in multi-lamellar membrane structures
resembling autophagosomes in atg5-/- MEFs.877 These findings
indicate that an alternate macroautophagy pathway is relevant
to host-pathogen interactions. Moreover, differences are
observed that depend on the cell type being studied. Yersinia
pseudotuberculosis is targeted to autophagosomes where they
can replicate in bone marrow-derived macrophages,908 whereas
in RAW264.7 and J774 cells, bacteria are targeted both to auto-
phagosomes, and LC3-negative, single-membrane vacuoles (F.
Lafont, personal communication).

One key consideration has recently emerged in studying
xenophagy. Whereas the basal autophagic flux in most cells is
essential for their survival, infecting pathogens can selectively
modulate antibacterial autophagy (i.e., xenophagy) without
influencing basal autophagy. This may help pathogens ensure
prolonged cellular (i.e., host) survival. Thus, in the case of
xenophagy it would be prudent to monitor substrate
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(pathogen)-specific autophagic flux to understand the true
nature of the perturbation of infecting pathogens on autophagy
(D. Kumar, personal communication). Furthermore, this con-
sideration particularly limits the sensitivity of LC3 western
blots for use in monitoring autophagy regulation.

q. Zymophagy
Zymophagy was originally defined as a specific mechanism that
eliminates pancreatitis-activated zymogen granules in the pan-
creatic acinar cells and, thus, prevents deleterious effects of pre-
maturely activated and intracellularly released proteolytic
enzymes, when impairment of secretory function occurs.909

Therefore, zymophagy is primarily considered to be a protec-
tive mechanism implemented to sustain secretory homeostasis
and to mitigate pancreatitis. The presence of zymogen granules,
however, is not only attributed to pancreatic acinar cells. Thus,
zymophagy was also reported in activated secretory Paneth
cells of the crypts of Lieberkuhn in the small intestine.910 Note
that one of the major functions of Paneth cells is to prevent
translocation of intestinal bacteria by secreting hydrolytic
enzymes and antibacterial peptides to the crypt lumens. The
similarity in mechanisms of degradation of secretory granules
in these 2 different types of secretory cells sustains the concept
of the protective role of autophagy when “self-inflicted” damage
may occur due to overreaction and/or secretory malfunction in
specialized cells.

Zymophagy can be monitored by TEM, identifying autopha-
gosomes containing secretory granules, by following SQSTM1
degradation by western blot, and by examining the subcellular
localization of VMP1-EGFP, which relocates to granular areas
of the cell upon zymophagy induction. Colocalization of
PRSS1/trypsinogen (which is packaged within zymogen gran-
ules) and LC3, or of GFP-ubiquitin (which is recruited to the
activated granules) with RFP-LC3 can also be observed by indi-
rect or direct immunofluorescence microscopy, respectively.
Active trypsin is also detectable in zymophagosomes and par-
ticipates in the early onset of acute pancreatitis (F. Fortunato
et al., unpublished data).

11. Autophagic sequestration assays

Although it is useful to employ autophagic markers such as
LC3 in studies of autophagy, LC3-II levels or LC3 dots cannot
quantify actual autophagic activity, since LC3-II is not involved
in all cargo sequestration events, and LC3-II can be found on
phagophores and nonautophagosomal membranes in addition
to autophagosomes. Thus, quantification of autophagic
markers such as LC3 does not tell how much cargo material
has actually been sequestered inside autophagosomes. More-
over, LC3 and several other autophagic markers cannot be used
to monitor noncanonical autophagy. Autophagic sequestration
assays constitute marker-independent methods to measure the
sequestration of autophagic cargo into autophagosomal com-
partments, and are among the few functional autophagy assays
described to date. Macroautophagic cargo sequestration activity
can be monitored using either an (electro)injected, inert cyto-
solic marker such as [3H]-raffinose911 or an endogenous cyto-
solic protein such as LDH/lactate dehydrogenase,912 in the
latter case along with treatment with a protease inhibitor (e.g.,

leupeptin) or other inhibitors of lysosomal activity (e.g., bafilo-
mycin A1)

216 to prevent intralysosomal degradation of the pro-
tein marker. The assay simply measures the transfer of cargo
from the soluble (cytosol) to the insoluble (sedimentable) cell
fraction (which includes autophagic compartments), with no
need for a sophisticated subcellular fractionation. Electrodis-
ruption of the plasma membrane followed by centrifugation
through a density cushion was originally used to separate cyto-
sol from sedimentable cell fractions in primary hepatocytes.913

This method has also been used in various human cancer cell
lines and mouse embryonic fibroblasts, where the LDH seques-
tration assay has been validated with pharmacological agents as
well as genetic silencing or knockout of key factors of the auto-
phagic machinery (N. Engedal, unpublished results).143,216,914

Moreover, a downscaling and simplification of the method that
avoids the density cushion has been introduced.914 Homogeni-
zation and sonication techniques have also been successfully
used for the LDH sequestration assay.658,915 The endogenous
LDH cargo marker can be quantified by an enzymatic assay, or
by western blotting. In principle, any intracellular component
can be used as a cargo marker, but cytosolic enzymes having
low sedimentable backgrounds are preferable. Membrane-asso-
ciated markers are less suitable, and proteins such as LC3,
which are part of the sequestering system itself, will have a
much more complex relationship to the autophagic flux than a
pure cargo marker such as LDH.

In yeast, sequestration assays are typically done by moni-
toring protease protection of an autophagosome marker or
a cargo protein. For example, prApe1, and GFP-Atg8 have
been used to follow completion of the autophagosome.916

The relative resistance or sensitivity to an exogenous prote-
ase in the absence of detergent is an indication of whether
the autophagosome (or other sequestering vesicle) is com-
plete or incomplete, respectively. Thus, this method also
distinguishes between a block in autophagosome formation
versus fusion with the vacuole. The critical issues to keep in
mind involve the use of appropriate control strains and/or
proteins, and deciding on the correct reporter protein. In
addition to protease protection assays, sequestration can be
monitored by fluorescence microscopy during pexophagy of
methanol-induced peroxisomes, using GFP-Atg8 as a pexo-
phagosome marker and BFP-SKL to label the peroxisomes.
The vacuolar sequestration process during micropexophagy
can also be monitored by formation of the vacuolar seques-
tering membrane stained with FM 4–64.689,697

Sequestration assays can be designed to measure flux
through individual steps of the autophagy pathway. For
example, intralysosomally degraded sequestration probes
such as [14C]-lactate or LDH will mark prelysosomal com-
partments in the absence of degradation inhibitors. Hence,
their accumulation in such compartments can be observed
when fusion with lysosomes is suppressed, for example, by
a microtubule inhibitor such as vinblastine.917 Furthermore,
lactate hydrolysis can be used to monitor the overall auto-
phagic pathway (autophagic lactolysis).918 One caveat, how-
ever, is that inhibitors may affect sequestration indirectly,
for example, by modifying the uptake and metabolism
(including protein synthesis) of autophagy-suppressive
amino acids (see Autophagy inhibitors and inducers). Under
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some conditions, such as amino acid starvation, sequestered
LDH en route through the autophagosome-lysosome path-
way can also be detected in the absence of inhibitors.216

A variation of this approach applicable to mammalian cells
includes live cell imaging. Autophagy induction is monitored
as the movement of cargo, such as mitochondria, to GFP-LC3-
colocalizing compartments, and then fusion/flux is measured
by delivery of cargo to lysosomal compartments.331,919 In addi-
tion, sequestration of fluorescently tagged cytosolic proteins
into membranous compartments can be measured, as fluores-
cent puncta become resistant to the detergent digitonin.920 Use
of multiple time points and monitoring colocalization of a par-
ticular cargo with GFP-LC3 and lysosomes can also be used to
assess sequestration of cargo with autophagosomes as well as
delivery to lysosomes.758

In the Drosophila fat body, the localization of free cytosolic
mCherry changes from a diffuse to a punctate pattern in an Atg
gene-dependent manner, and these mCherry dots colocalize
with the lysosomal marker Lamp1-GFP during starvation (G.
Juhasz, unpublished data). Thus, the redistribution of free cyto-
solic mCherry may be used to follow bulk, nonselective auto-
phagy due to its stability and accumulation in autolysosomes.

Cautionary notes: The electro-injection of radiolabeled
probes is technically demanding, but the use of an endogenous
cytosolic protein probe is very simple and requires no pretreat-
ment of the cells other than with a protease inhibitor. Another
concern with electro-injection is that it can affect cellular physi-
ology, so it is necessary to verify that the cells behave properly
under control situations such as amino acid deprivation. An
alternate approach for incorporating exogenous proteins into
mammalian cell cytosol is to use “scrape-loading,” a method
that works for cells that are adherent to tissue culture plates.921

Finally, these assays work well with hepatocytes but may be
problematic with other cell types, and it can be difficult to load
the cell while retaining the integrity of the compartments in the
post-nuclear supernatant (S. Tooze, unpublished results). Gen-
eral points of caution to be addressed with regard to live cell
imaging relate to photobleaching of the fluorophore, cell injury
due to repetitive imaging, autofluorescence in tissues contain-
ing lipofuscin, and the pH sensitivity of the fluorophore.

There are several issues to keep in mind when monitoring
sequestration by the protease protection assay in yeast.916 First,
as discussed in Selective types of autophagy, prApe1 is not an
accurate marker for nonselective autophagy; import of prApe1
utilizes a receptor (Atg19) and a scaffold (Atg11) that make the
process specific. In addition, vesicles that are substantially
smaller than autophagosomes can effectively sequester the Cvt
complex. Another problem is that prApe1 cannot be used as an
autophagy reporter for mutants that are not defective in the
Cvt pathway, although this can be bypassed by using a vac8D
background.922 At present, the prApe1 assay cannot be used in
any system other than yeast. The GFP-Atg8 protease protection
assay avoids these problems, but the signal-to-noise ratio is typ-
ically substantially lower. In theory, it should be possible to use
this assay in other cell types, and protease protection of GFP-
LC3 and GFP-SQSTM1 has been analyzed in HeLa cells.923

Finally, tendencies of GFP-LC3 and particularly GFP-SQSTM1
to aggregate may make LC3 and SQSTM1 inaccessible to
proteases.

Conclusion: Sequestration assays represent the most direct
method for monitoring autophagy, and in particular for dis-
criminating between conditions where the autophagosome is
complete (but not fused with the lysosome/vacuole) or open
(that is, a phagophore). These assays can also be modified to
measure autophagic flux.

12. Turnover of autophagic compartments

Inhibitors of autophagic sequestration (e.g., amino acids, 3-MA
or wortmannin) can be used to monitor the disappearance of
autophagic elements (phagophores, autophagosomes, autolyso-
somes) to estimate their half-life by TEM morphometry/stere-
ology. The turnover of the autophagosome or the autolysosome
will be differentially affected if fusion or intralysosomal degra-
dation is inhibited.12,14,25,924 The duration of such experiments
is usually only a few hours; therefore, long-term side effects or
declining effectiveness of the inhibitors can be avoided. It
should be noted that fluorescence microscopy has also been
used to monitor the half-life of autophagosomes, monitoring
GFP-LC3 in the presence and absence of bafilomycin A1 or fol-
lowing GFP-LC3 after starvation and recovery in amino acid-
rich medium (see Atg8/LC3 detection and quantification).16,925

Cautionary notes: The inhibitory effect must be strong and
the efficiency of the inhibitor needs to be tested under the
experimental conditions to be employed. Cycloheximide is
sometimes used as an autophagy inhibitor, but its use in long-
term experiments is problematic because of the many potential
indirect effects. Cycloheximide inhibits translational elonga-
tion, and therefore protein synthesis. In addition, it decreases
the efficiency of protein degradation in several cell types (A.M.
Cuervo, personal communication) including hematopoietic
cells (A. Edinger, personal communication). Treatment with
cycloheximide causes a potent increase in MTORC1 activity,
which can decrease autophagy in part as a result of the increase
in the amino acid pool resulting from suppressed protein syn-
thesis (H.-M. Shen, personal communication; I. Topisirovic,
personal communication).926,927 In addition, at high concentra-
tions (in the millimolar range) cycloheximide inhibits complex
I of the mitochondrial respiratory chain,928,929 but this is not a
problem, at least in hepatocytes, at low concentrations
(10–20 mM) that are sufficient to prevent protein synthesis
(A.J. Meijer, personal communication).

Conclusion: The turnover of autophagic compartments is a
valid method for monitoring autophagic-lysosomal flux, but
cycloheximide must be used with caution in long-term
experiments.

13. Autophagosome-lysosome colocalization and
dequenching assay

Another method to demonstrate the convergence of the auto-
phagic pathway with a functional degradative compartment is
to incubate cells with the bovine serum albumin derivative
dequenched (DQ)-BSA that has been labeled with the red-fluo-
rescent BODIPY TR-X dye; this conjugate will accumulate in
lysosomes. The labeling of DQ-BSA is so extensive that the flu-
orophore is self-quenched. Proteolysis of this compound results
in dequenching and the release of brightly fluorescent
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fragments. Thus, DQ-BSA is useful for detecting intracellular
proteolytic activity as a measure of a functional lysosome.930

Furthermore, DQ-BSA labeling can be combined with
GFP-LC3 to monitor colocalization, and thus visualize the con-
vergence, of amphisomes with a functional degradative com-
partment (DQ-BSA is internalized by endocytosis). This
method can also be used to visualize fusion events in real-time
experiments by confocal microscopy (live cell imaging). Along
similar lines, other approaches for monitoring convergence are
to follow the colocalization of RFP-LC3 and LysoSensor Green
(M. Bains and K.A. Heidenreich, personal communication),
mCherry-LC3 and LysoSensor Blue,332 or tagged versions of
LC3 and LAMP1 (K. Macleod, personal communication) or
CD63331 as a measure of the fusion of autophagosomes with
lysosomes. It is also possible to trace autophagic events by visu-
alizing the pH-dependent excitation changes of the coral pro-
tein Keima.760 This quantitative technique is capable of
monitoring the fusion of autophagosomes with lysosomes, that
is, the formation of an autolysosome, and the assay does not
depend on the analysis of LC3.

Cautionary notes: Some experiments require the use of
inhibitors (e.g., 3-MA or wortmannin) or overexpression of
proteins (e.g., RAB7 dominant negative mutants) that may also
affect the endocytic pathway or the delivery of DQ-BSA to lyso-
somes (e.g., wortmannin causes the swelling of late endo-
somes931). In this case, the lysosomal compartment can be
labeled with DQ-BSA overnight before treating the cells with
the drugs, or prior to the transfection.

Conclusion: DQ-BSA provides a relatively convenient
means for monitoring lysosomal protease function and can
also be used to follow the fusion of amphisomes with the lyso-
some. Colocalization of autophagosomes (fluorescently tagged
LC3) with lysosomal proteins or dyes can also be monitored.

14. Tissue fractionation

The study of autophagy in the organs of larger animals, in large
numbers of organisms with very similar characteristics, or in
tissue culture cells provides an opportunity to use tissue frac-
tionation techniques as has been possible with autophagy in rat
liver.35,54,932-937 Because of their sizes (smaller than nuclei but
larger than membrane fragments [microsomes]), differential
centrifugation can be used to obtain a subcellular fraction
enriched in mitochondria and organelles of the autophagy-
lysosomal system, which can then be subjected to density gradi-
ent centrifugation to enrich autophagosomes, amphisomes,
autolysosomes and lysosomes.35,54,937-941 Any part of such a
fraction can be considered to be a representative sample of tis-
sue constituents and used in quantitative biochemical, centrifu-
gational and morphological studies of autophagic particle
populations.

The simplest studies of the autophagic process take advan-
tage of sequestered marker enzymes, changes in location of
these enzymes, differences in particle/compartment size and
differential sensitivity of particles of different sizes to mechani-
cal and osmotic stress (e.g., acid hydrolases are found primarily
in membrane-bound compartments and their latent activities
cannot be measured unless these membranes are lysed). Such a
change in enzyme accessibility can be used to follow the time

course of an exogenously induced, or naturally occurring, auto-
phagic process.932,934,936

Quantitative localization of enzymatic activity (or any other
marker) to specific cytoplasmic particle populations and
changes in the location of such markers during autophagy can
be assessed by using rate sedimentation ultracentrifugation.938

Similar results can be obtained with isopycnic centrifugation
where particles enter a density gradient (sometimes made with
sucrose but iso-osmotic media such as iodixanol, metrizamide
and Nycodenz may be preferred as discussed below under Cau-
tionary notes) and are centrifuged until they reach locations in
the gradient where their densities are equal to those of the
gradient.938

The fractionation of organelles can also be evaluated by pro-
tein-correlation-profiling, a quantitative mass spectrometry-
based proteomics approach. Similar to the biochemical assays
described above, gradient profiles of marker proteins can be
recorded and compared to proteins of interest.362 Compared to
classical biochemical approaches, protein-correlation-profiling
allows the proteome-wide recording of protein gradient
profiles.

Particle populations in subcellular fractions evaluated with
quantitative biochemical and centrifugational approaches can
also be studied with quantitative morphological methods.
Detailed morphological study of the particle populations
involved in the autophagic process usually requires the use of
EM. The thin sections required for such studies pose major
sampling problems in both intact cells942 and subcellular frac-
tions.938 With the latter, 2,000,000 sections can be obtained
from each 0.1 ml of pellet volume, so any practical sample size
is an infinitesimally small subsample of the total sample.938

However, through homogenization and resuspension, complex
and heterogeneous components of subcellular fractions become
randomly distributed throughout the fraction volume. There-
fore, any aliquot of that volume can be considered a random
sample of the whole volume. What is necessary is to conserve
this property of subcellular fractions in the generation of a
specimen that can be examined with the electron microscope.
This can be done with the use of a pressure filtration proce-
dure.942,938 Because of the thinness of the sections, multiple sec-
tions of individual particles are possible so morphometric/
stereological methods942 must be used to determine the volume
occupied by a given class of particles, as well as the size distri-
bution and average size of the particle class. From this informa-
tion the number of particles in a specific particle class can be
calculated.944 Examination of individual profiles gives informa-
tion on the contents of different types of particles and
their degree of degradation, as well as their enclosing
membranes.932,934

Cautionary notes: When isolating organelles from tissues
and cells in culture it is essential to use disruption methods that
do not alter the membrane of lysosomes and autophagosomes,
compartments that are particularly sensitive to some of those
procedures. For example teflon/glass motor homogenization is
suitable for tissues with abundant connective tissue, such as
liver, but for circulating cells or cells in culture, disruption by
nitrogen cavitation is a good method to preserve lysosomal
membrane stability;945 however, this method is not suitable for
small samples and may not be readily available. Other methods,
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including “Balch” or “Dounce” homogenizers also work
well.946,947 During the isolation procedure it is essential to
always use iso-osmotic solutions to avoid hypotonic or hyper-
tonic disruption of the organelles. In that respect, because lyso-
somes are able to take up sucrose if it is present at high
concentrations, the use of sucrose gradients for the isolation of
intact lysosome-related organelles is strongly discouraged. It
should also be noted that several commercially available kits
for subcellular fractionation contain reducing compounds such
as dithiothreitol, which may affect the redox status of any pre-
pared fractions. Since numerous proteins involved in auto-
phagy are redox sensitive (an area requiring much additional
experimentation), there exists the potential for redox-active
compounds in kits to interfere with results. As such, it is sug-
gested to make solutions for fractionation within the labora-
tory, whenever possible.

As with the isolation of any other intracellular organelle, it is
essential to assess the purity of each preparation, as there is
often considerable variability from experiment to experiment
due to the many steps involved in the process. Correction for
purity can be done through calculation of recovery (percentage
of the total activity present in the homogenate) and enrichment
(dividing by the specific activity in the homogenate) of enzymes
or protein markers for those compartments (e.g., HEX/b-
hexosaminidase is routinely used to assess lysosomal purity,
but enzymes such as CTSB may also be used and may provide
more accurate readouts).945 Because of the time-consuming
nature of quantitative morphological studies, such studies
should not be carried out until simpler biochemical procedures
have established the circumstances most likely to give meaning-
ful morphometric/stereological results.

Finally, it is worthwhile noting that not all lysosomes are
alike. For example, there are differences among primary lyso-
somes, autolysosomes and telolysosomes. Furthermore, what
we refer to as “lysosomes” are actually a very heterogeneous
pool of organelles that simply fulfill 5 classical criteria, having a
pH <5.6, mature cathepsins, the presence of LAMP proteins, a
single membrane, and the absence of endosomal and recycling
compartment markers (e.g., M6PR/mannose-6-phosphate
receptor or RAB5). But even applying those criteria we can sep-
arate lysosomes with clear differences in their proteome and
other properties, and these distinct populations of lysosomes
are likely to participate in different functions in the cell (see
Chaperone-mediated autophagy).948

Conclusion: Considering the limited methods available for
in vivo analysis of autophagy, tissue fractionation is a valid,
although relatively laborious, method for monitoring auto-
phagy. Care must be taken to ensure that sample analysis is
representative.

15. Analyses in vivo

Monitoring autophagic flux in vivo or in organs is one of the
least developed areas at present, and ideal methods relative to
the techniques possible with cell culture may not exist. Impor-
tantly, the level of basal autophagy, time course of autophagic
induction, and the bioavailability of autophagy-stimulating and
-inhibiting drugs is likely tissue specific. Moreover, basal auto-
phagy or sensitivity to autophagic induction may vary with

animal age, sex or strain background. Therefore methods may
need to be optimized for the tissue of interest. One method for
in vivo studies is the analysis of GFP-LC3/Atg8 (see GFP-Atg8/
LC3 fluorescence microscopy). Autophagy can be monitored in
tissue (e.g., skeletal muscle, liver, brain and retina) in vivo in
transgenic mice systemically expressing GFP-LC3,153,606,949,950

or in other models by transfection with GFP-LC3 plasmids or
in transgenic strains that possess either mCherry- or GFP-LC3/
Atg8 under control of either inducible or LC3/Atg8 promoter
sequences.281,468,764 It should be noted that tissues such as white
adipose tissue, ovary, and testes and some brain regions such as
the hypothalamus do not appear to express the Actb promoter-
driven GFP-Lc3 transgene strongly enough to allow detection
of the fluorescent protein.153 In addition, tissue-specific GFP-
LC3 mice have been generated for monitoring cardiac myo-
cytes.951,952 In these settings, GFP fluorescent puncta are indic-
ative of autophagic structures; however, the use of a lysosomal
fusion or protease inhibitor would be needed to assess flux.
Cleavage of GFP-LC3 to generate free GFP can be evaluated as
one method to monitor the completion of autophagy. This has
been successfully performed in mouse liver,257,747 suggesting
the GFP-LC3 cleavage assay may also be applied to in vivo
studies. Note that the accumulation of free GFP in the mouse
brain is minimal after autophagy is induced with rapamycin
(autophagy induction based on GFP-LC3 imaging and
SQSTM1 IHC; M. Lipinski, personal communication), but sig-
nificant when autophagic flux is partially blocked after trau-
matic brain injury.950 Thus, caution needs to be taken when
interpreting results of these assays in different tissues. We also
recommend including a control under conditions known to
induce autophagic flux such as starvation. A simple methodol-
ogy to measure autophagic flux in the brain was described.953

This strategy combines the generation of adeno-associated
virus and the use of the dynamic fluorescent reporter mCherry-
GFP-LC3, that allows an extended transduction and stable
expression of mCherry-GFP-LC3 after intracerebroventricular
injection in newborn animals. With this approach, a wide-
spread transduction level is achieved along neurons at the cen-
tral nervous system when newborn pups are injected, including
pyramidal cortical and hippocampal neurons, Purkinje cells,
and motor neurons in the spinal cord and also, to a lesser
extent, in oligodendrocytes.953 The use of different serotypes of
adeno-associated virus could be used to transduce other cell
types at the CNS.953,954 This methodology allows a reproducible
and sensitive mCherry-GFP-LC3 detection, and a strong LC3
flux when animals are treated with autophagy inducers includ-
ing rapamycin and trehalose.955 Therefore, these combined
strategies can be applied to monitor autophagy activity in mice
and also determine autophagy alterations in animal models of
diseases affecting the nervous system.953,954 Alternatively, con-
focal laser scanning microscopy, which makes it possible to
obtain numerous sections and substantial data about spatial
localization features, can be a suitable system for studying auto-
phagic structures (especially for whole mount embryo in vivo
analysis).956 In addition, this method can be used to obtain
quantitative data through densitometric analysis of fluorescent
signals.957

Another possibility is immunohistochemical staining, an
important procedure that may be applicable to human studies
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as well considering the role of autophagy in neurodegeneration,
myopathies and cardiac disease where samples may be limited
to biopsy/autopsy tissue. Immunodetection of LC3 as definite
puncta is possible in paraffin-embedded tissue sections and
fresh frozen tissue, by either IHC or immunofluores-
cence;197,958-964 however, this methodology has not received
extensive evaluation, and does not lend itself well to dynamic
assays. Other autophagic substrates can be evaluated via IHC
and include SQSTM1, NBR1, ubiquitinated inclusions and pro-
tein aggregates. Similarly, autophagy can be evaluated by mea-
suring levels of these autophagic substrates via traditional
immunoblot; however, their presence or absence needs to be
cautiously interpreted as some of these substrates can accumu-
late with either an increase or a decrease in autophagic flux (see
SQSTM1 and related LC3 binding protein turnover assays).
Bone marrow transfer has been used to document in vivo the
role of autophagy in the reverse cholesterol transport pathway
from peripheral tissues or cells (e.g., macrophages) to the liver
for secretion in bile and for excretion,965 and a study shows
that TGM2 (transglutaminase 2) protein levels decrease in
mouse liver in vivo upon starvation in an autophagy-dependent
manner (and in human cell lines in vitro in response to various
stimuli; M. Piacentini, personal communication), presenting
additional possible methods for following autophagy activity.
In that respect, it is noteworthy to mention that TGM2 can
negatively affect autophagy by modifying ITPR1 (inositol 1,4,5-
trisphosphate receptor, type 1) and suppressing its Ca2C-release
activity.966

It is also possible to analyze tissues ex vivo, and these studies
can be particularly helpful in assessing autophagic flux as they
avoid the risks of toxicity and bioavailability of compounds
such as bafilomycin A1 or other autophagy inhibitors. Along
these lines, autophagic flux can be determined by western blot
in retinas placed in culture for 4 h with protease inhibi-
tors.967,968 This method could be used in tissues that can remain
“alive” for several hours in culture such as the retina,967,968

brain slices,950,969 and spinal cord slices.970

Several studies have demonstrated the feasibility of monitor-
ing autophagic flux in vivo in skeletal muscle. Starvation is one
of the easiest and most rapid methods for stimulating the auto-
phagic machinery in skeletal muscles. 12 h of fasting in mice
may be sufficient to trigger autophagy in muscle,971,972 but the
appropriate time should be determined empirically. It is also
important to consider that the expression of autophagy-related
factors, as well as the autophagic response to various stimuli
and disease states, can differ between muscles of different fiber
type, metabolic, and contractile properties.153,974-976 Thus,
which muscle(s) or portion of muscle(s) used for analysis
should be carefully considered and clearly outlined. Although
food deprivation does not induce detectable macroautophagy
in the brain it induces macroautophagy in the retina, and by
the use of in vivo injection of leupeptin autophagic flux can be
evaluated with LC3 lipidation by western blot.968 Although dif-
ficult to standardize and multifactorial, exercise may be a par-
ticularly appropriate stimulus to use for assessing
macroautophagy in skeletal muscle.950,977 Data about the auto-
phagic flux can be obtained by treating mice with, for example,
chloroquine,972 leupeptin969,978 or colchicine224 and then moni-
toring the change in accumulation of LC3 (see cautionary

notes). This type of analysis can also be done with liver, by
comparing the LC3-II level in untreated liver (obtained by a
partial hepatectomy) to that following subsequent exposure to
chloroquine (V. Skop, Z. Papackova and M. Cahov�a, personal
communication). Additional reporter assays to monitor auto-
phagic flux in vivo need to be developed, including tandem
fluorescent-LC3 transgenic mice, or viral vectors to express this
construct in vivo in localized areas. One of the challenges of
studying autophagic flux in intact animals is the demonstration
of cargo clearance, but studies of fly intestines that combine
sophisticated mosaic mutant cell genetics with imaging of mito-
chondrial clearance reveal that such analyses are possible.764

Another organ particularly amenable to ex vivo analysis is
the heart, with rodent hearts easily subjected to perfusion by
the methods of Langendorff established in 1895 (for review see
ref. 978). Autophagy has been monitored in perfused hearts,979

where it is thought to be an important process in several modes
of cardioprotection against ischemic injury.980 It should be
noted that baseline autophagy levels (as indicated by LC3-II)
appear relatively high in the perfused heart, although this may
be due to perceived starvation by the ex vivo organ, highlight-
ing the need to ensure adequate delivery of metabolic substrates
in perfusion media, which may include the addition of INS/
insulin. Another concern is that the high partial pressure of
oxygen of the perfusate (e.g., buffer perfused with 95%/5% [O2/
CO2]) used in the Langendorff method makes this preparation
problematic for the study of autophagy because of the high lev-
els of oxidation (redox disturbances) resulting from the prepa-
ration. Therefore, great caution should be exercised in
interpretation of these results.

Human placenta also represents an organ suitable for ex
vivo studies, such as to investigate pregnancy outcome abnor-
malities. Autophagy has been evaluated in placentas from nor-
mal pregnancies981-983 identifying a baseline autophagy level
(as indicated by LC3-II) in uneventful gestation. In cases with
abnormal pregnancy outcome, LC3-II is increased in placentas
complicated by intrauterine growth restriction in cases both
from singleton pregnancies984 and from monochorionic twins
pregnancies.985 Moreover, placentas from pregnancies compli-
cated by preeclampsia show a higher level of LC3-II than nor-
mal pregnancies.986 Finally, placentas from acidotic newborns
developing neonatal encephalopathy exhibit a higher IHC LC3
expression than placentas from newborn without neonatal
encephalopathy.987 For this reported association, further inves-
tigations are needed to assess if autophagy protein expression
in placentas with severe neonatal acidosis could be a potential
marker for poor neurological outcome.

The retina is a very suitable organ for ex vivo as well as in
vivo autophagy determination. The retina is a part of the cen-
tral nervous system, is readily accessible and can be maintained
in organotypic cultures for some time allowing treatment with
protease and autophagy inhibitors. This allows determination
of autophagic flux ex vivo in adult and embryonic retinas by
western blot394,967 as well as by flow cytometry and microscopy
analysis.968 Moreover, only 4 h of leupeptin injection in fasted
mice allows for autophagic flux assessment in the retina968 indi-
cating 2 things: first, food deprivation induces autophagy in
selected areas of the central nervous system; and second, leu-
peptin can cross the blood-retinal barrier.
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In vivo analysis of the autophagic flux in the brain tissue
of neonatal rats can also be performed. These studies use
the intraperitoneal administration of the acidotropic dye
monodansylcadaverine (MDC) to pup rats 1 h before sacri-
fice, followed by the analysis of tissue labeling through fluo-
rescence or confocal laser scanning microscopy (365/525-
nm excitation/emission filter). This method was adapted to
study autophagy in the central nervous system after its vali-
dation in cardiac tissue.988 MDC labels acidic endosomes,
lysosomes, and late-stage autophagosomes, and its labeling
is upregulated under conditions that increase autophagy.989

In a neonatal model of hypoxic-ischemic brain injury,
where autophagy activation is a direct consequence of the
insult,990 MDC labeling is detectable only in the ischemic
tissue, and colocalizes with LC3-II.991 The number of
MDC- and LC3-II-positive structures changes when auto-
phagy is pharmacologically up- or downregulated.991,992

Whether this method can also be used in adult animals
needs to be determined. Furthermore, it should be kept in
mind that staining with MDC is not, by itself, a sufficient
method for monitoring autophagy (see Acidotropic dyes).

Another approach that can be used in vivo in brain tissue is
to stain for lysosomal enzymes. In situations where an increase
in autophagosomes has been shown (e.g., by immunostaining
for LC3 and immunoblotting for LC3-II), it is important to
show whether this is due to a shutdown of the lysosomal sys-
tem, causing an accumulation of autophagosomes, or whether
this is due to a true increase in autophagic flux. The standard
methods described above for in vitro research, such as the study
of clearance of a substrate, are difficult to use in vivo, but if it
can be demonstrated that the increase in autophagosomes is
accompanied by an increase in lysosomes, this makes it very
likely that there has been a true increase in autophagic flux.
Lysosomal enzymes can be detected by IHC (e.g., for LAMP1
or CTSD) or by classical histochemistry to reveal their activity
(e.g., ACP/acid phosphatase or HEX/b-hexosaminidase).993-995

Some biochemical assays may be used to at least provide
indirect correlative data relating to autophagy, in particular
when examining the role of autophagy in cell death. For exam-
ple, cellular viability is related to high CTSB activity and low
CTSD activities.996 Therefore, the appearance of the opposite
levels of activities may be one indication of the initiation of
autophagy (lysosome)-dependent cell death. The question of
“high” versus “low” activities can be determined by comparison
to the same tissue under control conditions, or to a different tis-
sue in the same organism, depending on the specific question.

Cautionary notes: The major hurdle with in vivo analyses is
the identification of autophagy-specific substrates and the abil-
ity to “block” autophagosome degradation with a compound
such as bafilomycin A1. Regardless, it is still essential to adapt
the same rigors for measuring autophagic flux in vitro to meas-
urements made with in vivo systems. Moreover, as with cell
culture, to substantiate a change in autophagic flux it is not ade-
quate to rely solely on the analysis of static levels or changes in
LC3-II protein levels on western blot using tissue samples. To
truly measure in vivo autophagic flux using LC3-II as a bio-
marker, it is necessary to block lysosomal degradation of the
protein. Several studies have successfully done this in select tis-
sues in vivo. Certain general principles need to be kept in

mind: (a) Any autophagic blocker, whether leupeptin, bafilo-
mycin A1, chloroquine or microtubule depolarizing agents
such as colchicine or vinblastine, must significantly increase
basal LC3-II levels. The turnover of LC3-II or rate of basal
autophagic flux is not known for tissues in vivo, and therefore
short treatments (e.g., 4 h) may not be as effective as blocking
for longer times (e.g., 12 to 24 h). (b) The toxicity of the block-
ing agent needs to be considered (e.g., treating animals with
bafilomycin A1 for 2 h can be quite toxic), and food intake
must be monitored. If long-term treatment is needed to see a
change in LC3-II levels, then confirmation that the animals
have not lost weight may be needed. Mice may lose a substan-
tial portion of their body weight when deprived of food for
24 h, and starvation is a potent stimulus for the activation of
autophagy. (c) The bioavailability of the agent needs to be con-
sidered. For example, many inhibitors such as bafilomycin A1

or chloroquine have relatively poor bioavailability to the central
nervous system. To overcome this problem, intracerebroven-
tricular injection can be performed.

A dramatic increase of intracellular free poly-unsaturated
fatty acid levels can be observed by proton nuclear magnetic
resonance spectroscopy in living pancreatic cancer cells within
4 h of autophagy inhibition by omeprazole, which interacts
with the V-ATPase and probably inhibits autophagosome-lyso-
some fusion. Omeprazole is one of the most frequently pre-
scribed drugs worldwide and shows only minor side effects
even in higher doses. Proton nuclear magnetic resonance spec-
troscopy is a noninvasive method that can be also applied as
localized spectroscopy in magnetic resonance tomography and
therefore opens the possibility of a noninvasive, clinically appli-
cable autophagy monitoring method, although technical issues
still have to be solved.997

When analyzing autophagic flux in vivo, one major limita-
tion is the variability between animals. Different animals do
not always activate autophagy at the same time. To improve
the statistical relevance and avoid unclear results, these experi-
ments should be repeated more than once, with each experi-
ment including several animals. Induction of autophagy in a
time-dependent manner by fasting mice for different times
requires appropriate caution. Mice are nocturnal animals, so
they preferentially move and eat during the night, while they
mostly rest during daylight. Therefore, in such experiments it is
better to start food deprivation early in the morning, to avoid
the possibility that the animals have already been fasting for
several hours. The use of chloroquine for flux analysis is techni-
cally easier, since it only needs one intraperitoneal injection per
day, but the main concern is that chloroquine has some toxic-
ity. Chloroquine suppresses the immunological response in a
manner that is not due to its pH-dependent lysosomotropic
accumulation (chloroquine interferes with lipopolysaccharide-
induced Tnf/Tnf-a gene expression by a nonlysosmotropic
mechanism),998 as well as through its pH-dependent inhibition
of antigen presentation.999 Therefore, chloroquine treatment
should be used for short times and at doses that do not induce
severe collateral effects, which may invalidate the measurement
of the autophagic flux, and care must be exercised in using
chloroquine for studies on autophagy that involve immunologi-
cal aspects. It is also important to have time-matched controls
for in vivo analyses. That is, having only a zero hour time point
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control is not sufficient because there may be substantial diur-
nal changes in basal autophagy.644 For example, variations in
basal flux in the liver associated with circadian rhythm may be
several fold,1000 which can equal or exceed the changes due to
starvation. Along these lines, to allow comparisons of a single
time-point it is important to specify what time of day the mea-
surement is taken and the lighting conditions under which the
animals are housed. It is also important that the replicate
experiments are conducted at the same time of day. Controlling
for circadian effects can greatly reduce the mouse-to-mouse
variability in autophagy markers and flux (J.A. Haspel and A.
M.K. Choi, personal communication).

When analyzing the basal autophagic level in vivo using
GFP-LC3 transgenic mice,153 one pitfall is that GFP-LC3
expression is driven by the Cmv/cytomegalovirus enhancer and
Actb/b-actin (CAG) promoter, so that the intensity of the GFP
signal may not always represent the actual autophagic activity,
but rather the CAG promoter activity in individual cells. For
example, GFP-LC3 transgenic mice exhibit prominent fluores-
cence in podocytes, but rarely in tubular epithelial cells in the
kidney,153 but a similar GFP pattern is observed in transgenic
mice carrying CAG promoter-driven non-tagged GFP.1001 Fur-
thermore, proximal tubule-specific ATG5-deficient mice1002

display a degeneration phenotype earlier than podocyte-specific
ATG5-deficient mice,1003 suggesting that autophagy, and hence
LC3 levels, might actually be more prominent in the former.

One caution in using approaches that monitor ubiquitinated
aggregates is that the accumulation of ubiquitin may indicate a
block in autophagy or inhibition of proteasomal degradation,
or it may correspond to structural changes in the substrate pro-
teins that hinder their degradation. In addition, only cytosolic
and not nuclear ubiquitin is subject to autophagic degradation.
It is helpful to analyze aggregate degradation in an autophagy-
deficient control strain, such as an autophagy mutant mouse,
whenever possible to determine whether an aggregate is being
degraded by an autophagic mechanism. This type of control
will be impractical for some tissues such as those of the central
nervous system because the absence of autophagy leads to rapid
degeneration. Accordingly, the use of Atg16l1 hypomorphs or
Becn1 heterozygotes may help circumvent this problem.

Conclusion: Although the techniques for analyzing auto-
phagy in vivo are not as advanced as those for cell culture, it is
still possible to follow this process (including flux) by monitor-
ing, for example, GFP-LC3 by fluorescence microscopy, and
SQSTM1 and NBR1 by IHC and/or western blotting.

16. Clinical setting

Altered autophagy is clearly relevant in neurodegenerative dis-
ease, as demonstrated by the accumulation of protein aggre-
gates, for example in Alzheimer disease,1004,1005 Parkinson
disease,1006 polyglutamine diseases,1007 muscle diseases,1008 and
amyotrophic lateral sclerosis.1009 Further evidence comes from
the observations that the crucial mitophagy regulators PINK1
and PARK2 show loss-of-function mutations in autosomal
recessive juvenile parkinsonism,1010 and that the putative
ribophagy regulator VCP/p97 (an ortholog of yeast Cdc48) as
well as the autophagy receptor OPTN are mutated in motor
neuron disease.1011,1012 In addition to neurodegenerative

diseases, alterations in autophagy have also been implicated in
other neurological diseases including some epilepsies, neuro-
metabolic and neurodevelopmental disorders.969,1013-1015 A
very useful nonspecific indicator of deficient aggrephagy in
autopsy brain or biopsy tissue is SQSTM1 IHC.1016,1017 For
clinical attempts to monitor autophagy alterations in peripheral
tissues such as blood, it is important to know that eating behav-
ior may be altered as a consequence of the disease,1018 resulting
in a need to control feeding-fasting conditions during the anal-
yses. Recently, altered autophagy was also implicated in schizo-
phrenia, with BECN1 transcript levels decreasing in the
postmortem hippocampus in comparison to appropriate con-
trols.1019 In the same hippocampal postmortem samples, the
correlation between the RNA transcript content for ADNP
(activity-dependent neuroprotective homeobox) and its sister
protein ADNP2 is deregulated,1020 and ADNP as well as
ADNP2 RNA levels increase in peripheral lymphocytes from
schizophrenia patients compared to matched healthy controls,
suggesting a potential biomarker.1019

Similarly, autophagy inhibition plays a key role in the patho-
genesis of inherited autophagic vacuolar myopathies (including
Danon disease, X-linked myopathy with excessive autophagy,
and infantile autophagic vacuolar myopathy), all of which are
characterized by lysosomal defects and an accumulation of
autophagic vacuoles.1021 Autophagic vacuolar myopathies and
cardiomyopathies can also be secondary to treatment with
autophagy-inhibiting drugs (chloroquine, hydroxychloroquine
and colchicine), which are used experimentally to interrogate
autophagic flux and clinically to treat malaria, rheumatological
diseases, and gout.964 Autophagy impairment has also been
implicated in the pathogenesis of inclusion body myositis, an
age-associated inflammatory myopathy that is currently refrac-
tory to any form of treatment,1022-1024 along with other muscu-
lar dystrophies such as tibial muscular dystrophy.1025 In all
these striated muscle disorders, definitive tissue diagnosis used
to require ultrastructural demonstration of accumulated auto-
phagic vacuoles; more recently, it has been shown that IHC for
LC3 and/or SQSTM1 can be used instead.962-964,1026

In addition, altered basal autophagy levels are seen in
rheumatoid arthritis,1027,1028 and osteoarthritis.1029 Other
aspects of the immune response associated with dysfunc-
tional autophagy are seen in neutrophils from patients with
familial Mediterranean fever1030 and in monocytes from
patients with TNF receptor-associated periodic syn-
drome,1031 2 autoinflammatory disorders. Moreover, auto-
phagy regulates an important neutrophil function, the
generation of neutrophil extracellular traps (NETs).1024,1032

The important role of autophagy in the induction of NET
formation has been studied in several neutrophil-associated
disorders such as gout,1033 sepsis,1034 and lung fibrosis.1035

Furthermore, there is an intersection between autophagy
and the secretory pathway in mammalian macrophages for
the release of IL1B,1036 demonstrating a possible alternative
role of autophagy for protein trafficking. This role has also
been implied in neutrophils through exposure of protein
epitopes on NETs by acidified LC3-positive vacuoles in sep-
sis1034 and anti-neutrophil cytoplasmic antibody associated
vasculitis.1037 Patients with chronic kidney disease also have
impaired autophagy activation in leukocytes, which is
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closely related to their cardiac abnormalities. There is also
evidence for altered autophagy in pancreatic beta
cells,1038,1039 and in adipocytes 217,1040,1041 of patients with
type 2 diabetes.1042 However, autophagy also plays an
important role in the development in vitro of giant phago-
cytes, a long-lived neutrophil subpopulation, derived from
neutrophils of healthy individuals.1043,1044

Photodynamic therapy (PDT), an FDA-approved anticancer
therapy, has high selectivity for tumor cell elimination by elicit-
ing efficient apoptosis and autophagy induction and fulfills the
need to merge a direct cytotoxic action on tumor cells with
potent immunostimulatory effects (i.e., immunogenic cell
death, ICD).1045 A few photosensitizers, such as Photofrin,
Hypericin, Foscan, 5-ALA and Rose Bengal acetate, are associ-
ated with danger/damage-associated molecular pattern
(DAMP) exposure and/or release that is a requisite to elicit
ICD. Rose Bengal acetate PDT is the first treatment to induce
autophagic HeLa cells to express and release DAMPS, thus sug-
gesting a possible role of the autophagic cells in ICD induc-
tion.1046 Similarly, the photosensitizer Hypocrellin B-acetate is
able to induce macroautophagy at very low concentrations.1047

A crucial role for therapy-induced autophagy in cancer
cells has recently emerged, in modulating the interface of can-
cer cells and the immune system;1048 primarily, by affecting
the nature of danger signaling (i.e., the signaling cascade that
facilitates the exposure and/or release of danger signals) asso-
ciated with ICD.1045,1048-1051 This is an important point con-
sidering the recent clinical surge in the success of cancer
immunotherapy in patients, and the emerging clinical rele-
vance of ICD for positive patient prognosis. Several notorious
autophagy-inducing anticancer therapies induce ICD includ-
ing mitoxantrone, doxorubicin, oxaliplatin, radiotherapy, cer-
tain oncolytic viruses and hypericin-based photodynamic
therapy (Hyp-PDT).1051-1054 In fact, in the setting of Hyp-
PDT, ER stress-induced autophagy in human cancer cells sup-
presses CALR (calreticulin) surface exposure (a danger signal
crucial for ICD) thereby leading to suppression of human
dendritic cell maturation and human CD4C and CD8C T cell
stimulation.1053 Conversely, chemotherapy (mitoxantrone or
oxaliplatin)-induced autophagy facilitates ATP secretion
(another crucial ICD-associated danger signal) thereby facili-
tating ICD and anti-tumor immunity in the murine system,
the first documented instance of autophagy-based ICD modu-
lation.1055 The role of ATP as a DAMP becomes clear when
the extracellular concentration of ATP becomes high and elic-
its activation of the purinergic receptor P2RX7. P2RX7 is
involved in several pathways, including the sterile immune
response, and its activation induces cancer cell death through
PI3K, AKT and MTOR.1056,1057 In addition, cells lacking the
essential chaperone-mediated autophagy (CMA) gene
LAMP2A fail to expose surface CALR after treatment with
both Hyp-PDT and mitoxantrone.1058 These observations
have highlighted the important, context-dependent role of
therapy-induced autophagy, in modulating the cancer cell-
immune cell interface by regulating the emission of ICD-asso-
ciated danger signals.1059 Recent studies also have implicated
insufficient autophagy in the pathogenesis of nonresolving
vital organ failure and muscle weakness during critical illness,
2 leading causes of death in prolonged critically ill

patients.1060,1061 Finally, a block of autophagy with consequent
accumulation of autophagy substrates is detected in liver
fibrosis,1062,1063 and lysosomal storage diseases.1064

It is important to note that disease-associated autophagy
defects are not restricted to macroautophagy but also concern
other forms of autophagy. CMA impairment, for instance, is
associated with several disease conditions, including neurode-
generative disorders,229,1065 lysosomal storage diseases,1066,1067,
nephropathies1068 and diabetes.1069 In addition, it is very
important to keep in mind that although human disease is
mostly associated with inhibited autophagy, enhanced auto-
phagy has also been proposed to participate in, and even con-
tribute to, the pathogenesis of human diseases, such as chronic
obstructive pulmonary disease,1070 and adipocyte/adipose tissue
dysfunction in obesity.217,1040 Along these lines, chloroquine
decreases diabetes risk in patients treated with the drug for
rheumatoid arthritis.1071

A set of recommendations regarding the design of clinical
trials modulating autophagy can be found in ref. 1072.

Cautionary notes: To establish a role for autophagy in mod-
ulating the interface with the immune system, specific tests
need to be performed where genes encoding autophagy-rele-
vant components (e.g., ATG5, ATG7 or BECN1) have been
knocked down through RNA silencing or other protein- or
gene-specific targeting technologies.1053,1055,1058 Usage of chem-
ical inhibitors such as bafilomycin A1, 3-MA or chloroquine
can create problems owing to their off-target effects, especially
on immune cells, and thus their use should be subjected to due
caution, and relevant controls are critical to account for any
off-target effects. In the context of ICD, consideration should
be given to the observations that autophagy can play a context-
dependent role in modulating danger signaling;1053,1055,1058 and
thus, all the relevant danger signals (e.g., surface exposed
CALR or secreted ATP) should be (re-)tested for new agents/
therapies in the presence of targeted ablation of autophagy-rel-
evant proteins/genes, accompanied by relevant immunological
assays (e.g., in vivo rodent vaccination/anti-tumor immunity
studies or ex vivo immune cell stimulation assays), in order to
implicate autophagy in regulating ICD or general immune
responses.

17. Cell death

In several cases, autophagy has been established as the cause of
cell death;83,281,354,764,1073-1081 although opposite results have
been reported using analogous experimental settings.1082 Fur-
thermore, many of the papers claiming a causative role of auto-
phagy in cell death fail to provide adequate evidence.1083 Other
papers suffer from ambiguous use of the term “autophagic cell
death,” which was coined in the 1970s1084 in a purely morpho-
logical context to refer to cell death with autophagic features
(especially the presence of numerous secondary lysosomes);
this was sometimes taken to suggest a role of autophagy in the
cell death mechanism, but death-mediation was not part of the
definition.1085 Unfortunately, the term “autophagic cell death”
is now used in at least 3 different ways: (a) Autophagy-
associated cell death (the original meaning). (b) Autophagy-
mediated cell death (which could involve a standard
mechanism of cell death such as apoptosis, but triggered by
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autophagy). (c) A distinct mechanism of cell death, indepen-
dent of apoptosis or necrosis. Clearly claim (b) is stronger than
claim (a), and needs to be justified by proof that inhibiting
autophagy, through either genetic or chemical means, prevents
cell death.1086 Claim (c) is still stronger, because, even if the cell
death is blocked by autophagy inhibition, proof needs to be
provided that the cell death mechanism is not apoptosis or
necrosis.1087 In view of the current confusion it may be prefera-
ble to replace the term “autophagic cell death” by other terms
such as “autophagy-associated cell death” or “autophagy-medi-
ated cell death,” unless the criteria in claim (c) above have been
satisfied. Along these lines, it is preferable to use the term
“autophagy-dependent cell death” instead of “autophagy-medi-
ated cell death” when it is proven that autophagy is a pre-requi-
site for the occurrence of cell death, but it is not proven that
autophagy mechanistically mediates the switch to cell death. It
is important to note that a stress/stimulus can in many circum-
stances induce different cell death pathways at the same time,
which might lead to a “type” of cell death with mixed pheno-
types.1088,1089 Furthermore, inhibition of one cell death pathway
(e.g., apoptosis) can either induce the compensatory activation
of a secondary mechanism (e.g., necrosis),1090,1091 or attenuate
a primary mechanism (e.g., liponecrosis).1088

The role of autophagy in the death of plant cells is less
ambiguous, because plants are devoid of the apoptotic machin-
ery and use lytic vacuoles to disassemble dying cells from
inside.1092 This mode of cell death governs many plant develop-
mental processes and was named “vacuolar cell death”.1093

Recent studies have revealed a key role of autophagy in the exe-
cution of vacuolar cell death, where autophagy sustains the
growth of lytic vacuoles.1094,1095 Besides being an executioner
of vacuolar cell death, autophagy can also play an upstream,
initiator role in immunity-associated cell death related to the
pathogen-triggered hypersensitive response.1092,1096

Upon induction by starvation during multicellular develop-
ment in the protist Dictyostelium, autophagy (or at least Atg1)
is required to protect against starvation-induced cell death,
allowing vacuolar developmental cell death to take place
instead.1097,1098 Autophagy may be involved not only in allow-
ing this death to occur, but also, as during vacuolar cell death
in plants, in the vacuolization process itself.1099

Recently, a novel form of autophagy-dependent cell death
has been described, autosis, which not only meets the criteria
in claim (c) (i.e., blocked by autophagy inhibition, independent
of apoptosis or necrosis), but also demonstrates unique mor-
phological features and a unique ability to be suppressed by
pharmacological or genetic inhibition of the NaC,KC-
ATPase.1080 In addition, the demonstration that autophagy is
required for cell death during Drosophila development where
caspases and necrosis do not appear to be involved may be the
best known physiologically relevant model of cell death that
involves autophagy.281,764

Cautionary notes: In brief, rigorous criteria must be met in
order to establish a death-mediating role of autophagy, as this
process typically promotes cell survival. These include a clear
demonstration of autophagic flux as described in this article, as
well as verification that inhibition of autophagy prevents cell
death (claim [b] above; if using a knockdown approach, at least
2 ATG genes should be targeted), and that other mechanisms

of cell death are not responsible (claim [c] above). As part of
this analysis, it is necessary to examine the effect of the specific
treatment, conditions or mutation on cell viability using several
methods.1090 In the case of postmitotic cells such as neurons or
retinal cells, cell death—and cell rescue by autophagy inhibi-
tion—can usually be established in vivo by morphological anal-
ysis,1100 and in culture by cell counts and/or measurement of
the release of an enzyme such as LDH into the medium at early
and late time points; however, a substantial amount of neuronal
cell death occurs during neurogenesis, making it problematic to
carry out a correct analysis in vivo or ex vivo.1101,1102 In popula-
tions of rapidly dividing cells, the problems may be greater. A
commonly used method is the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay or a related
assay using a similar, or a water-soluble, tetrazolium salt. The
main concern with the MTT assay is that it measures mito-
chondrial activity, but does not allow a precise determination
of cellular viability or cell death, whereas methods that show
cell death directly (e.g., trypan blue exclusion, or LDH release
assay) fail to establish the viability of the remaining cell popula-
tion.1103 Accordingly, a preferred alternative is to accurately
quantify cell death by appropriate cytofluorometric or micros-
copy assays.1090 Moreover, long-term clonogenic assays should
be employed when possible to measure the effective functional
survival of cells.

Conclusion: In most systems, ascribing death to autophagy
based solely on morphological criteria is insufficient; autopha-
gic cell death can only be demonstrated as death that is sup-
pressed by the inhibition of autophagy, through either genetic
or chemical means.1086 In addition, more than one assay should
be used to measure cell death. In this regard, it is important to
mention that neither changes in mitochondrial activity/poten-
tial, nor caspase activation or externalization of phosphatidyl-
serine can be accurately used to determine cell death as all
these phenomena have been reported to be reversible. Only the
determination of cellular viability (ratio between dead/live cells)
can be used to accurately determine cell death progression.

18. Chaperone-mediated autophagy

The primary characteristic that makes CMA different from the
other autophagic variants described in these guidelines is that it
does not require formation of intermediate vesicular compart-
ments (autophagosomes or microvesicles) for the import of
cargo into lysosomes.1104,1105 Instead, the CMA substrates are
translocated across the lysosomal membrane through the
action of HSPA8/HSC70 (heat shock 70kDa protein 8) located
in the cytosol and lysosome lumen, and the lysosome mem-
brane protein LAMP2A. To date, CMA has only been identified
in mammalian cells, and accordingly this section refers only to
studies in mammals.

The following section discusses methods commonly utilized
to determine if a protein is a CMA substrate (see ref. 1106 for
experimental details):

a. Analysis of the amino acid sequence of the protein to
identify the presence of a KFERQ-related motif that is an
absolute requirement for all CMA substrates.1107

b. Colocalization studies with lysosomal markers (typically
LAMP2A and/or LysoTracker) to identify a fraction of
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the protein associated with lysosomes. The increase in
association of the putative substrate under conditions
that upregulate CMA (such as prolonged starvation) or
upon blockage of lysosomal proteases (to prevent the
degradation of the protein) helps support the hypothesis
that the protein of interest is a CMA substrate. However,
association with lysosomes is necessary but not sufficient
to consider a protein an authentic CMA substrate,
because proteins delivered by other pathways to lyso-
somes will also behave in a similar manner. A higher
degree of confidence can be attained if the association is
preferentially with the subset of lysosomes active for
CMA (i.e., those containing HSPA8 in their lumen),
which can be separated from other lysosomes following
published procedures.948

c. Co-immunoprecipitation of the protein of interest with
cytosolic HSPA8. Due to the large number of proteins
that interact with this chaperone, it is usually better to
perform affinity isolation with the protein of interest and
then analyze the isolated proteins for the presence of
HSPA8 rather than vice versa.

d. Co-immunoprecipitation of the protein of interest with
LAMP2A.1108 Due to the fact that the only antibodies
specific for the LAMP2A variant (the only 1 of the 3
LAMP2 variants involved in CMA92,1109) are generated
against the cytosolic tail of LAMP2A, where the substrate
also binds, it is necessary to affinity isolate the protein of
interest and then analyze for the presence of LAMP2A.
Immunoblot for LAMP2A in the precipitate can only be
done with the antibodies specific for LAMP2A and not
just those that recognize the lumenal portion of the pro-
tein that is identical in the other LAMP2 variants. If the
protein of interest is abundant inside cells, co-immuno-
precipitations with LAMP2A can be done in total cellular
lysates, but for low abundance cellular proteins, prepara-
tion of a membrane fraction (enriched in lysosomes) by
differential centrifugation may facilitate the detection of
the population of the protein bound to LAMP2A.

e. Selective upregulation and blockage of CMA to demon-
strate that degradation of the protein of interest changes
with these manipulations. Selective chemical inhibitors
for CMA are not currently available. Note that general
inhibitors of lysosomal proteases (e.g., bafilomycin A1,
NH4Cl, leupeptin) also block the degradation of proteins
delivered to lysosomes by other autophagic and endoso-
mal pathways. The most selective way to block CMA is
by knockdown of LAMP2A, which causes this protein to
become a limiting factor.92 The other components
involved in CMA, including HSPA8, HSP90AA1, GFAP,
and EEF1A/eF1a, are all multifunctional cellular pro-
teins, making it difficult to interpret the effects of knock-
downs. Overexpression of LAMP2A1108 is also a better
approach to upregulate CMA than the use of chemical
modulators. The 2 compounds demonstrated to affect
degradation of long-lived proteins in lysosomes,1110

6-aminonicotinamide and geldanamycin, lack selectivity,
as they affect many other cellular processes. In addition,
in the case of geldanamycin, the effect on CMA can be
the opposite (inhibition rather than stimulation)

depending on the cell type (this is due to the fact that the
observed stimulation of CMA is actually a compensatory
response to the blockage of HSP90AA1 in lysosomes,
and different cells activate different compensatory
responses).1111

f. The most conclusive way to prove that a protein is a
CMA substrate is by reconstituting its direct transloca-
tion into lysosomes using a cell-free system.1106 This
method is only possible when the protein of interest can
be purified, and it requires the isolation of the population
of lysosomes active for CMA. Internalization of the pro-
tein of interest inside lysosomes upon incubation with
the isolated organelle can be monitored using protease
protection assays (in which addition of an exogenous
protease removes the protein bound to the cytosolic side
of lysosomes, whereas it is inaccessible to the protein that
has reached the lysosomal lumen; note that pre-incuba-
tion of lysosomes with lysosomal protease inhibitors
before adding the substrate is required to prevent the
degradation of the translocated substrate inside lyso-
somes).1112 The use of exogenous protease requires
numerous controls (see ref. 1106) to guarantee that the
amount of protease is sufficient to remove all the sub-
strate outside lysosomes, but will not penetrate inside the
lysosomal lumen upon breaking the lysosomal
membrane.

The difficulties in the adjustment of the amount of protease
have led to the development of a second method that is more
suitable for laboratories that have no previous experience with
these procedures. In this case, the substrate is incubated with
lysosomes untreated or previously incubated with inhibitors of
lysosomal proteases, and then uptake is determined as the dif-
ference of protein associated with lysosomes not incubated
with inhibitors (in which the only remaining protein will be the
one associated with the cytosolic side of the lysosomal mem-
brane) and those incubated with the protease inhibitors (which
contain both the protein bound to the membrane and that
translocated into the lumen).1113

Confidence that the lysosomal internalization is by CMA
increases if the uptake of the substrate can be competed with
proteins previously identified as substrates for CMA (e.g.,
GAPDH/glyceraldehyde-3-phosphate dehydrogenase or
RNASE1/ribonuclease A, both commercially available as purified
proteins), but is not affected by the presence of similar amounts
of nonsubstrate proteins (such as SERPINB/ovalbumin or PPIA/
cyclophilin A). Blockage of uptake by pre-incubation of the lyso-
somes with antibodies against the cytosolic tail of LAMP2A also
reinforces the hypothesis that the protein is a CMA substrate. It
should be noted that several commercially available kits for lyso-
some isolation separate a mixture of lysosomal populations and
do not enrich in the subgroup of lysosomes active for CMA,
which limits their use for CMA uptake assays.

In other instances, rather than determining if a particular
protein is a CMA substrate, the interest may be to analyze pos-
sible changes in CMA activity under different conditions or in
response to different modifications. We enumerate here the
methods, from lower to higher complexity, that can be utilized
to measure CMA in cultured cells and in tissues (see ref. 1106
for detailed experimental procedures).
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a. Measurement of changes in the intracellular rates of deg-
radation of long-lived proteins, when combined with
inhibitors of other autophagic pathways, can provide a
first demonstration in support of changes that are due to
CMA. For example, CMA is defined as lysosomal degra-
dation upregulated in response to serum removal but
insensitive to PtdIns3K inhibitors.

b. Measurement of levels of CMA components is insuffi-
cient to conclude changes in CMA because this does not
provide functional information, and changes in CMA
components can also occur under other conditions.
However, analysis of the levels of LAMP2A can be used
to support changes in CMA detected by other proce-
dures. Cytosolic levels of HSPA8 remain constant and
are not limiting for CMA, thus providing no information
about this pathway. Likewise, changes in total cellular
levels of LAMP2A do not have an impact on this path-
way unless they also affect their lysosomal levels (i.e.,
conditions in which LAMP2A is massively overexpressed
lead to its targeting to the plasma membrane where it
cannot function in CMA). It is advisable that changes in
the levels of these 2 CMA components are confirmed to
occur in lysosomes, either by colocalization with lyso-
somal markers when using image-based procedures or
by performing immunoblot of a lysosomal enriched frac-
tion (purification of this fraction does not require the
large amounts of cells/tissue necessary for the isolation of
the subset of lysosomes active for CMA).

c. Tracking changes in the subset of lysosomes active for
CMA. This group of lysosomes is defined as those con-
taining HSPA8 in their lumen (note that LAMP2A is
present in both lysosomes that are active and inactive for
CMA, and it is the presence of HSPA8 that confers CMA
capability). Immunogold or immunofluorescence against
these 2 proteins (LAMP2A and HSPA8) makes it possi-
ble to quantify changes in the levels of these lysosomes
present at a given time, which correlates well with CMA
activity.948

d. Analysis of lysosomal association of fluorescent artificial
CMA substrates. Two different fluorescent probes have
been generated to track changes in CMA activity in cul-
tured cells using immunofluorescence or flow cytometry
analysis.948 These probes contain the KFERQ and context
sequences in frame with photoswitchable or photoacti-
vated fluorescent proteins. Activation of CMA results in
the mobilization of a fraction of the cytosolic probe to
lysosomes and the subsequent change from a diffuse to a
punctate pattern. CMA activity can be quantified as the
number of fluorescent puncta per cell or as the decay in
fluorescence activity over time because of degradation of
the artificial substrate. Because the assay does not allow
measuring accumulation of the substrate (which must
unfold for translocation), it is advisable to perform a
time-course analysis to determine gradual changes in
CMA activity. Antibodies against the fluorescent protein
in combination with inhibitors of lysosomal proteases
can be used to monitor accumulation of the probe in
lysosomes over a period of time, but both the photo-
switchable and the unmodified probe will be detected by

this procedure.1114 As for any other fluorescence probe
based on analysis of intracellular “puncta” it is essential
to include controls to confirm that the puncta are indeed
lysosomes (colocalization with LysoTracker or LAMPs
and lack of colocalization with markers of cytosolic
aggregation such as ubiquitin) and do not reach the lyso-
somes through other autophagic pathways (insensitivity
to PtdIns3K inhibitors and sensitivity to LAMP2A
knockdown are good controls in this respect).

e. Direct measurement of CMA using in vitro cell free
assays. Although the introduction of the fluorescent
probes should facilitate measurement of CMA in many
instances, they are not applicable for tissue samples. In
addition, because the probes measure binding of sub-
strate to lysosomal membranes it is important to confirm
that enhanced binding does not result from defective
translocation. Last, the in vitro uptake assays are also the
most efficient way to determine primary changes in
CMA independently of changes in other proteolytic sys-
tems in the cells. These in vitro assays are the same ones
described in the previous section on the identification of
proteins as substrates of CMA, but are performed in this
case with purified proteins previously characterized to be
substrates for CMA. In this case the substrate protein is
always the same, and what changes is the source of lyso-
somes (from the different tissues or cells that are to be
compared). As described in the previous section, binding
and uptake can be analyzed separately using lysosomes
previously treated or not with protease inhibitors. The
analysis of the purity of the lysosomal fractions prior to
performing functional analysis is essential to conclude
that changes in the efficiency to take up the substrates
results from changes in CMA rather than from different
levels of lysosomes in the isolated fractions. Control of
the integrity of the lysosomal membrane and sufficiency
of the proteases are also essential to discard the possibil-
ity that degradation is occurring outside lysosomes
because of leakage, or that accumulation of substrates
inside lysosomes is due to enhanced uptake rather than
to decreased degradation.

Cautionary notes: The discovery of another selective form
of protein degradation in mammals named endosomal
microautophagy (e-MI)1115 has made it necessary to recon-
sider some of the criteria that applied in the past for the defi-
nition of a protein as a CMA substrate. The KFERQ-like
motif, previously considered to be exclusive for CMA, is also
used to mediate selective targeting of cytosolic proteins to the
surface of late endosomes. Once there, substrates can be inter-
nalized in microvesicles that form from the surface of these
organelles in an ESCRT-dependent manner. HSPA8 has been
identified as the chaperone that binds this subset of substrates
and directly interacts with lipids in the late endosomal mem-
brane, acting thus as a receptor for cytosolic substrates in this
compartment. At a practical level, to determine if a KFERQ-
containing protein is being degraded by CMA or e-MI the fol-
lowing criteria can be applied: (a) Inhibition of lysosomal pro-
teolysis (for example with NH4Cl and leupeptin) blocks
degradation by both pathways. (b) Knockdown of LAMP2A
inhibits CMA but not e-MI. (c) Knockdown of components
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of ESCRTI and II (e.g., VPS4 and TSG101) inhibits e-MI but
not CMA. (d) Interfering with the capability to unfold the
substrate protein blocks its degradation by CMA, but does
not affect e-MI of the protein. In this respect, soluble proteins,
oligomers and protein aggregates can undergo e-MI, but only
soluble proteins can be CMA substrates. (e) In vitro uptake of
e-MI substrates can be reconstituted using isolated late endo-
somes whereas in vitro uptake of CMA substrates can only be
reconstituted using lysosomes.

Another pathway that needs to be considered relative to
CMA is chaperone-assisted selective autophagy (CASA).1116

CASA is dependent on HSPA8 and LAMP2 (although it is not
yet known if it is dependent solely on the LAMP2A isoform).
Thus, a requirement for these 2 proteins is not sufficient to con-
clude that a protein is degraded by CMA. It should also be
noted that LAMP1 and LAMP2 share common function as
revealed by the embryonic lethal phenotype of lamp1-/- lamp2y/-

double-deficient mice.1117 In addition to CMA, LAMP2 is
involved in the fusion of late endosomes and autophagosomes
or phagosomes.1118,1119 LAMP2C, one of the LAMP2 isoforms,
can also function as an RNA/DNA receptor in RNautophagy
and DNautophagy pathways, where RNA or DNA is taken up
directly by lysosomes in an ATP-dependent manner.1120-1123

LAMP1 and LAMP2 deficiency does not necessarily affect pro-
tein degradation under conditions when CMA is active,1117 and
the expression levels of neuronal CMA substrates does not
change upon loss of LAMP2.1120,1124,1125

Conclusion: One of the key issues with the analysis of CMA
is verifying that the protein of interest is an authentic substrate.
Methods for monitoring CMA that utilize fluorescent probes
are available that eliminate the need for the isolation of CMA-
competent lysosomes, one of the most difficult aspects of assay-
ing this process.

19. Chaperone-assisted selective autophagy

CASA is a recently identified, specialized form of autophagy
whereby substrate proteins are ubiquitinated and targeted for
lysosomal degradation by chaperone and co-chaperone pro-
teins.1116 The substrate protein does not require a KFERQ
motif, which differentiates CASA from CMA. In CASA the
substrate protein is recognized by the chaperone HSPA8, the
small heat shock proteins HSPB6 and HSPB8, the ubiquitin
ligase STUB1/CHIP, which forms a multidomain complex with
the co-chaperone BAG3, and the receptor proteins SYNPO2/
myopodin (synaptopodin 2) and SQSTM1. Following ubiquiti-
nation the substrate protein is loaded onto the CASA machin-
ery. SYNPO2 and SQSTM1 then bind to core components of
the autophagosome (VPS18 and LC3, respectively) resulting in
engulfment of the substrate protein and associated multido-
main complex into the autophagosome, and subsequent lyso-
somal degradation.1116,1126

To date, CASA has only been reported in muscle with the
FLN (filamin) family of proteins being the most studied target.
However, CASA may also be capable of targeting nonmuscle
proteins for degradation as demonstrated by an in vitro study
on BAG3-mediated degradation of mutant HTT.1127,1128

Conclusion: Given that the autophagy machinery involved
in CASA is very similar to that in other forms of autophagy

there are currently no specific markers or inhibitors available to
study this process specifically, but the involvement of BAG3
and ubiquitination of client proteins is highly suggestive of
CASA activity.

B. Comments on additional methods

1. Acidotropic dyes

Among the older methods for following autophagy is staining
with acidotropic dyes such as monodansylcadaverine,1129 acri-
dine orange,1130 Neutral Red,956 LysoSensor Blue1131 and Lyso-
Tracker Red.280,1132 It should be emphasized that, whereas
these dyes are useful to identify acidified vesicular compart-
ments, they should not be relied upon to compare differences
in endosomal or lysosomal pH between cells due to variables
that can alter the intensity of the signal. For example, excessive
incubation time and/or concentrations of LysoTracker Red can
oversaturate labeling of the cell and mask differences in signal
intensity that reflect different degrees of acidification within
populations of compartments.1133 Use of these dyes to detect,
size, and quantify numbers of acidic compartments must
involve careful standardization of the conditions of labeling
and ideally should be confirmed by ancillary TEM and/or
immunoblot analysis. Reliable measurements of vesicle pH
require ratiometric measurements of 2 dyes with different
peaks of optimal fluorescence (e.g., LysoSensor Blue and Lyso-
Sensor Yellow) to exclude variables related to uptake.62,1133

Cautionary notes: Although MDC was first described as a
specific marker of autophagic vacuoles1134 subsequent studies
have suggested that this, and other acidotropic dyes, are not
specific markers for early autophagosomes,331 but rather label
later stages in the degradation process. For example, autopha-
gosomes are not acidic, and MDC staining can be seen in auto-
phagy-defective mutants540 and in the absence of autophagy
activation.1135 MDC may also show confounding levels of back-
ground labeling unless narrow bandpass filters are used. How-
ever, in the presence of vinblastine, which blocks fusion with
lysosomes, MDC labeling increases, suggesting that under these
conditions MDC can label late-stage autophagosomes.989 Along
these lines, cells that overexpress a dominant negative version
of RAB7 (the T22N mutant) show colocalization of this protein
with MDC; in this case fusion with lysosomes is also
blocked1136 indicating that MDC does not just label lysosomes.
Nevertheless, MDC labeling could be considered to be an indi-
cator of autophagy when the increased labeling of cellular com-
partments by this dye is prevented by treatment with specific
autophagy inhibitors.

Overall, staining with MDC or its derivative monodansyla-
mylamine (MDH)1129 is not, by itself, a sufficient method for
monitoring autophagy. Similarly, LysoTracker Red, Neutral
Red and acridine orange are not ideal markers for autophagy
because they primarily detect lysosomes and an increase in
lysosome size or number could reflect an increase in nonprofes-
sional phagocytosis (often seen in embryonic tissues1137) rather
than autophagy. These markers are, however, useful for moni-
toring selective autophagy when used in conjunction with pro-
tein markers or other dyes. For example, increased
colocalization of mitochondria with both GFP-LC3 and
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LysoTracker Red can be used as evidence of autophagic cargo
delivery to lysosomes. Moreover, LysoTracker Red has been
used to provide correlative data on autophagy in D. mela-
nogaster fat body cells (Fig. 26).279,280 However, additional
assays, such as GFP-Atg8/LC3 fluorescence and EM, should be
used to substantiate results obtained with acidotropic dyes
whenever possible to rule out the possibility that LAP is
involved (see Noncanonical use of autophagy-related proteins).
Finally, one important caution when co-imaging with Lyso-
Tracker Red and a green-fluorescing marker (e.g., GFP-LC3 or
MitoTracker Green) is that it is necessary to control for
rapid red-to-green photoconversion of the LysoTracker, which
can otherwise result in an incorrect interpretation of
colocalization.1138

Some of the confusion regarding the interpretation of results
with these dyes stems in part from the nomenclature in this field.
Indeed, the discussion of acidotropic dyes points out why it is
advisable to differentiate between the terms “autophagosome”
and “autophagic vacuole,” although they are occasionally, and
incorrectly, used interchangeably. The autophagosome is the
sequestering compartment generated by the phagophore. The
fusion of an autophagosome with an endosome or a lysosome
generates an amphisome or an autolysosome, respectively.884 The
early autophagosome is not an acidic compartment, whereas
amphisomes and autolysosomes are acidic. As noted in the sec-
tion Transmission electron microscopy, earlier names for these
compartments are “initial autophagic vacuole (AVi),” “intermedi-
ate or intermediate/degradative autophagic vacuole (AVi/d)” and
“degradative autophagic vacuole (AVd),” respectively. Thus, acid-
otropic dyes can stain late autophagic vacuoles (in particular
autolysosomes), but not the initial autophagic vacuole, the early
autophagosome.

A recently developed dye for monitoring autophagy, Cyto-
ID, stains vesicular structures shortly after amino acid depriva-
tion, which extensively colocalize with RFP-LC3-positive struc-
tures, while colocalizing partially with lysosomal probes.1139

Moreover, unlike MDC, Cyto-ID does not show background
fluorescence under control conditions and the 2 dyes colocalize
only marginally. Furthermore, the Cyto-ID signal responds to
well-known autophagy modulators. Therefore, this amphiphilic
dye, which partitions in hydrophobic environments, may prove
more selective for autophagic vacuoles than the previously dis-
cussed lysosomotropic dyes.

With the above caveats in mind, the combined use of early
and late markers of autophagy is highly encouraged, and when
quantifying mammalian lysosomes, it is important to keep in
mind that increases in both lysosome size and number are fre-
quently observed. Finally, to avoid confusion with the plant
and fungal vacuole, the equivalent organelle to the lysosome,
we recommend the use of the term “autophagosome” instead
of “autophagic vacuole” when possible, that is, when the spe-
cific nature of the structure is known.

Conclusion: Given the development of better techniques
that are indicators of autophagy, the use of acidotropic dyes to
study this process is discouraged, and relying entirely on such
dyes is not acceptable.

2. Autophagy inhibitors and inducers

In many situations it is important to demonstrate an effect
resulting from inhibition or stimulation of autophagy (see
ref. 1140 for a partial listing of regulatory compounds), and a
few words of caution are worthwhile in this regard. Most chem-
ical inhibitors of autophagy are not entirely specific, and it is

Figure 26. LysoTracker Red stains lysosomes and can be used to monitor autophagy in Drosophila. Live fat body tissues from Drosophila were stained with LysoTracker
Red (red) and Hoechst 33342 (blue) to stain the nucleus. Tissues were isolated from fed (left) or 3-h starved (right) animals. Scale bar: 25 mm. This figure was modified
from data presented in ref. 280, Developmental Cell, 7, Scott RC, Schuldiner O, Neufeld TP, Role and regulation of starvation-induced autophagy in the Drosophila fat
body, pp. 167–78, copyright 2004, with permission from Elsevier.

98 D. J. KLIONSKY ET AL.



important to consider possible dose- and time-dependent
effects. Accordingly, it is generally preferable to analyze specific
loss-of-function Atg mutants. However, it must be kept in
mind that some apparently specific Atg gene products may
have autophagy-independent roles (e.g., ATG5 in cell death,
and the PIK3C3/VPS34-containing complexes—including
BECN1—in apoptosis, endosomal function and protein traf-
ficking), or may be dispensable for autophagy (see Noncanoni-
cal use of autophagy-related proteins).27,543,573,1141-1144

Therefore, the experimental conditions of inhibitor application
and their side effects must be carefully considered. In addition,
it must be emphasized once again that autophagy, as a multi-
step process, can be inhibited at different stages. Sequestration
inhibitors, including 3-MA, LY294002 and wortmannin, inhibit
class I phosphoinositide 3-kinases (PI3Ks) as well as class III
PtdIns3Ks.132,330,1145 The class I enzymes generate products
such as PtdIns(3,4,5)P3 that inhibit autophagic sequestration,
whereas the class III product (PtdIns3P) generally stimulates
autophagic sequestration. The overall effect of these inhibitors
is typically to block autophagy because the class III enzymes
that are required to activate autophagy act downstream of the
negative regulatory class I enzymes, although cell death may
ensue in cell types that are dependent upon high levels of AKT
for survival. The effect of 3-MA (but not that of wortmannin)
is further complicated by the fact that it has different temporal
patterns of inhibition, causing a long-term suppression of the
class I PI3K, but only a transient inhibition of the class III
enzyme. In cells incubated in a complete medium for extended
periods of time, 3-MA may, therefore (particularly at subopti-
mal concentrations), promote autophagy by inhibition of the
class I enzyme.330 Thus, wortmannin may be considered as an
alternative to 3-MA for autophagy inhibition.330 However,
wortmannin can induce the formation of vacuoles that may
have the appearance of autophagosomes, although they are
swollen late endocytic compartments.931 Furthermore, studies
have demonstrated that inhibition of autophagy with 3-MA or
wortmannin can have effects on cytokine transcription, process-
ing and secretion, particularly of IL1 family members,1146-1148

but 3-MA and wortmannin also inhibit the secretion of some
cytokines and chemokines (e.g., TNF, IL6, CCL2/MCP-1) in an
autophagy-independent manner (J. Harris, unpublished observa-
tions).1146,1149 Thus, in studies where the effect of autophagy
inhibition on specific cellular processes is being investigated, it is
important to confirm results using other methods, such as RNA
silencing. Due to these issues, it is of great interest that inhibitors
with specificity for the class III PtdIns3Ks, and their consequent
effects on autophagy, have been described.244,1150,1151

A mutant mouse line carrying a floxed allele of Pik3c3
has been created.1152 This provides a useful genetic tool
that will help in defining the physiological role of the class
III PtdIns3K with bona fide specificity by deleting the class
III kinase in a cell type-specific manner in a whole animal
using the Cre-LoxP strategy. For example, the phenotype
resulting from a knockout of Pik3c3 specifically in the kid-
ney glomerular podocytes (Pik3c3pdKO) indicates that there
is no compensation by other classes of PtdIns3Ks or
related Atg genes, thus highlighting the functional specific-
ity and physiological importance of class III PtdIns3K in
these cells.

Cycloheximide, a commonly used protein synthesis inhibi-
tor in mammals, is also an inhibitor of sequestration in
vivo,12-14,78,924,1153-1157 and in various cell types in vitro,466,1158

and it has been utilized to investigate the dynamic nature of the
regression of various autophagic elements.12-14,25,78,1154,1155 The
mechanism of action of cycloheximide in short-term experi-
ments is not clear, but it has no direct relation to the inhibition
of protein synthesis.466 This latter activity, however, may com-
plicate certain types of analysis when using this drug.

A significant challenge for a more detailed analysis of the
dynamic role of autophagy in physiological and pathophysio-
logical processes, for instance with regard to cancer and cancer
therapy, is to find more specific inhibitors of autophagy signal-
ing which do not affect other signaling cascades. For example,
in the context of cellular radiation responses it is well known
that PI3Ks, in addition to signaling through the PI3K-AKT
pathway, have a major role in the regulation of DNA-damage
repair.1159 However, 3-MA, which is a nonspecific inhibitor of
these lipid kinases, can alter the function of other classes of this
enzyme, which are involved in the DNA-damage repair
response. This is of particular importance for investigations
into the role of radiation-induced autophagy in cellular radia-
tion sensitivity or resistance.1160,1161

Most other inhibitory drugs act at post-sequestration steps.
These types of agents have been used in many experiments to
both inhibit endogenous protein degradation and to increase
the number of autophagic compartments. They cause the accu-
mulation of sequestered material in either autophagosomes or
autolysosomes, or both, because they allow autophagic seques-
tration to proceed. The main categories of these types of inhibi-
tors include the vinca alkaloids (e.g., vinblastine) and other
microtubule poisons that inhibit fusion, inhibitors of lysosomal
enzymes (e.g., leupeptin, pepstatin A and E-64d), and com-
pounds that elevate lysosomal pH (e.g., inhibitors of V-
ATPases such as bafilomycin A1 and concanamycin A [another
V-ATPase inhibitor], and weak base amines including methyl-
or propylamine, chloroquine, and Neutral Red, some of which
slow down fusion). Ammonia is a very useful agent for the ele-
vation of lysosomal pH in short-term experiments, but it has
been reported to cause a stimulation of autophagy during long-
term incubation of cells in a full medium,1162 under which con-
ditions a good alternative might be methylamine or propyl-
amine.1163 Along these lines, it should be noted that the half-
life of glutamine in cell culture media is approximately 2 weeks
due to chemical decomposition, which results in media with
lowered glutamine and elevated ammonia concentrations that
can affect the autophagic flux (either inhibiting or stimulating
autophagy, depending on the concentration1164). Thus, to help
reduce experimental variation, the use of freshly prepared cell
culture media with glutamine is advised. A special note of cau-
tion is also warranted in regard to chloroquine. Although this
chemical is commonly used as an autophagy inhibitor, chloro-
quine may initially stimulate autophagy (F.C. Dorsey, personal
communication; R. Franco, personal communication). In addi-
tion, culture conditions requiring acidic media preclude the use
of chloroquine because intracellular accumulation of the chem-
ical is dramatically reduced by low pH.1165 To overcome this
issue, it is possible to use acid compounds that modulate auto-
phagy, such as betulinic acid and its derivatives.235,1166-1168
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Betulinic acid damages lysosomal function differing from tradi-
tional inbibitors (e.g., chloroquine, NH4Cl or bafilomycin A1)
that raise the lysosomal pH; betulinic acid interacts with pure
phospholipid membranes,235,1169 and is capable of changing
membrane permeability.235,1170,1171 The lysosomal damage
mediated by betulinic acid is capable of compromising auto-
phagy without any incremental damage when lysosomal func-
tion is altered by lysosomal inhibitors (e.g., chloroquine or
bafilomycin A1);

235 however, betulinic acid is not lysosome spe-
cific, and will affect other organelles such as mitochondria.

Some data suggest that particular nanomaterials may also
be novel inhibitors of autophagy, by as yet unidentified
mechanisms.1172

It is worth noting that lysosomal proteases fall into 3 general
groups, cysteine, aspartic acid and serine proteases. Therefore,
the fact that leupeptin, a serine and cysteine protease inhibitor,
has little or no effect does not necessarily indicate that lyso-
somal degradation is not taking place; a combination of leupep-
tin, pepstatin A and E-64d may be a more effective treatment.
However, it should also be pointed out that these protease
inhibitors can exert inhibitory effects not only on lysosomal
proteases, but also on cytosolic proteases; that is, degradation
of proteins might be blocked through inhibition of cytosolic
instead of lysosomal proteases. Conversely, it should be noted
that MG132 (Z-leu-leu-leu-al) and its related peptide aldehydes
are commonly used as proteasomal inhibitors, but they can
also inhibit certain lysosomal hydrolases such as cathepsins
and calpains.1173 Thus, any positive results using MG132 do
not rule out the possibility of involvement of the autophagy-
lysosomal system. Therefore, even if MG132 is effective in
inhibiting autophagy, it is important to confirm the result using
more specific proteasomal inhibitors such as lactacystin or
epoxomicin. Finally, there are significant differences in cell per-
meability among protease inhibitors. For example, E-64d is
membrane permeable, whereas leupeptin and pepstatin A are
not (although there are derivatives that display greater perme-
ability such as pepstatin A methyl ester).1174 Thus, when ana-
lyzing whether a protein is an autophagy substrate, caution
should be taken in utilizing these protease inhibitors to block
autophagy.

As with the PtdIns3K inhibitors, many autophagy-suppres-
sive compounds are not specific. For example, okadaic acid1175

is a powerful general inhibitor of both type 1 (PPP1) and type
2A (PPP2) protein phosphatases.1176 Bafilomycin A1 and other
compounds that raise the lysosomal pH may have indirect
effects on any acidified compartments. Moreover, treatment
with bafilomycin A1 for extended periods (18 h) can cause sig-
nificant disruption of the mitochondrial network in cultured
cells (M.E. Gegg, personal communication), and either bafilo-
mycin A1 or concanamycin A cause swelling of the Golgi in
plants,1177 and increase cell death by apoptosis in cancer cells
(V.A. Rao, personal communication). Furthermore, bafilomy-
cin A1 may have off-target effects on the cell, particularly on
MTORC1.487,527,1178 Bafilomycin A1 is often used at a final con-
centration of 100 nM, but much lower concentrations such as
1 nM may be sufficient to inhibit autophagic-lysosomal degra-
dation and are less likely to cause indirect effects.157,225,1179 For
example, in pulmonary A549 epithelial cells bafilomycin A1

exhibits concentration-dependent effects on cellular

morphology and on protein expression; at concentrations of 10
and 100 nM the cells become more rounded accompanied by
increased expression of VIM (vimentin) and a decrease in
CDH1/E-cadherin (B. Yeganeh, M. Post and S. Ghavami,
unpublished observations). Thus, appropriate inhibitory con-
centrations should be empirically determined for each cell
type.231

Although these various agents can inhibit different steps of
the autophagic pathway, their potential side effects must be
considered in interpretation of the secondary consequences of
autophagy inhibition, especially in long-term studies. For
example, lysosomotropic compounds can increase the rate of
autophagosome formation by inhibiting MTORC1, as activa-
tion of lysosomally localized MTORC1 depends on an active
V-ATPase (as well as RRAG GTPases162).487,1180 Along these
lines, chloroquine treatment may cause an apparent increase
in the formation of autophagosomes possibly by blocking
fusion with the lysosome (F.C. Dorsey and J.L. Cleveland, per-
sonal communication). This conclusion is supported by the
finding that chloroquine reduces the colocalization of LC3
and LysoTracker despite the presence of autophagosomes and
lysosomes (A.K. Simon, personal communication). This mech-
anism might be cell-type specific, as other studies report that
chloroquine prevents autolysosome clearance and degradation
of cargo content, but not autophagosome-lysosome
fusion.1181-1184 Concanamycin A blocks sorting of vacuolar
proteins in plant cells in addition to inhibiting vacuolar acidi-
fication.1185 Furthermore, in addition to causing the accumula-
tion of autophagic compartments, many of these drugs seem
to stimulate sequestration in many cell types, especially in
vivo.79,326,924,1154,1158,1186-1190 Although it is clear why these
drugs cause the accumulation of autophagic compartments, it
is not known why they stimulate sequestration. One possibil-
ity, at least for hepatocytes, is that the inhibition of protein
degradation reduces the intracellular amino acid pool, which
in turn upregulates sequestration. A time-course study of the
changes in both the intra- and extracellular fractions may pro-
vide accurate information regarding amino acid metabolism.
For these various reasons, it is important to include appropri-
ate controls; along these lines, MTOR inhibitors such as rapa-
mycin or amino acid deprivation can be utilized as positive
controls for inducing autophagy. In many cell types, however,
the induction of autophagy by rapamycin is relatively slow, or
transient, allowing more time for indirect effects.

Several small molecule inhibitors, including torin1, PP242,
KU-0063794, PI-103 and NVP-BEZ235, have been developed
that target the catalytic domain of MTOR in an ATP-competi-
tive manner.225,1191-1195 In comparison to rapamycin, these cat-
alytic MTOR inhibitors are more potent, and hence are
stronger autophagy agonists in most cell lines.341,1193,1196 The
use of these second-generation MTOR inhibitors may reveal
that some reports of MTOR-independent autophagy may actu-
ally reflect the use of the relatively weak inhibitor rapamycin.
Furthermore, the use of these compounds has revealed a role
for MTORC1 and MTORC2 as independent regulators of
autophagy.1197

Neurons, however, seem to be a particular case in regard to
their response to MTOR inhibitors. Rapamycin may fail to acti-
vate autophagy in cultured primary neurons, despite its potent
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stimulation of autophagy in some cancer cell lines,75,544,1198

Interestingly, both rapamycin and catalytic MTOR inhibitors
do not induce a robust autophagy in either cultured primary
mouse neurons or human neuroblastoma SH-SY5Y cells, which
can differentiate into neuron-like cells, whereas the drugs do
elicit a potent autophagic response in cultured astrocytes (J.
Diaz-Nido and R. Gargini, personal communication). This sug-
gests a differential regulation of autophagy in neurons. It has
been suggested that control of neuronal autophagy may reflect
the particular physiological adaptations and metabolic require-
ments of neurons, which are very different from most periph-
eral cell types.1199 For example, acute starvation in transgenic
mice expressing GFP-LC3 leads to a potent induction of auto-
phagy in the liver, muscle and heart but not in the brain.153

Along these lines, glucose depletion may be much more effi-
cient at inducing autophagy than rapamycin or amino acid
starvation in neurons in culture (M. Germain and R. Slack, per-
sonal communication). Indeed treatment of cultured primary
mouse neurons and human neuroblastoma SH-SY5Y cells with
2-deoxy-glucose, which hampers glucose metabolism and leads
to activation of AMPK, results in robust autophagy induction
(J. Diaz-Nido and R. Gargini, personal communication). Inter-
estingly, a number of compounds can also be quite efficient
autophagy inducers in neurons including the CAPN/calpain
inhibitor calpeptin.1200-1202 Thus, it has been suggested that
autophagy induction in neurons may be achieved by molecular
mechanisms relying on AMPK or increases in intracellular cal-
cium concentration.1199 An example where changes in cytosolic
calcium levels, due to the incapacity of the mitochondria to
buffer Ca2C release, result in an increase in autophagy is seen
in a cellular model of the neurodegenerative disease Friedreich
ataxia, based on FXN/frataxin silencing in SH-SY5Y human
neuroblastoma cells.1203

Finally, a specialized class of compounds with
a,b-unsaturated ketone structure tends to induce autophagic
cell death, accompanied by changes in mitochondrial morphol-
ogy. Since the cytotoxic action of these compounds is efficiently
blocked by N-acetyl-L-cysteine, the b-position in the structure
may interact with an SH group of the targeted molecules.1204

Due to the potential pleiotropic effects of various drug treat-
ments, it is incumbent upon the researcher to demonstrate that
autophagy is indeed inhibited, by using the methodologies
described herein. Accordingly, it is critical to verify the effect of
a particular biochemical treatment with regard to its effects on
autophagy induction or inhibition when using a cell line that
was previously uncharacterized for the chemical being used.
Similarly, cytotoxicity of the relevant chemical should be
assessed.

The use of gene deletions/inactivations (e.g., in primary or
immortalized atg-/- MEFs,540 plant T-DNA or transposon inser-
tion mutants,282,1205 or in vivo using transgenic knockout mod-
els1206,1207 including Cre-lox based “conditional”
knockouts320,321) or functional knockdowns (e.g., with RNAi
against ATG genes) is the preferred approach when possible
because these methods allow a more direct assessment of the
resulting phenotype; however, different floxed genes are deleted
with varying efficiency, and the proportion deleted must be
carefully quantified.1208 Studies also suggest that microRNAs
may be used for blocking gene expression.243,645,646,1209,246-248

In most contexts, it is advisable when using a knockout or
knockdown approach to examine multiple autophagy-related
genes to exclude the possibility that the phenotype observed is
due to effects on a nonautophagic function(s) of the corre-
sponding protein, especially when examining the possibility of
autophagic cell death. This is particularly the case in evaluating
BECN1, which interacts with anti-apoptotic BCL2 family pro-
teins,566 or when low levels of a target protein are sufficient for
maintaining autophagy as is the case with ATG5.255 With
regard to ATG5, a better approach may be to use a dominant
negative (K130R) version.1144,1198,1210 Also noteworthy is the
role of ATG5 in mitotic catastrophe544 and several other non-
autophagic roles of ATG proteins (see Noncanonical use of
autophagy-related proteins).75 Along these lines, and as stated
above for the use of inhibitors, when employing a knockout or
especially a knockdown approach, it is again incumbent upon
the researcher to demonstrate that autophagy is actually inhib-
ited, by using the methodologies described herein.

Finally, we note that the long-term secondary consequen-
ces of gene knockouts or knockdowns are likely much more
complex than the immediate effects of the actual autophagy
inhibition. To overcome this concern, inducible knockout
systems might be useful.255,404 One additional caveat to
knockdown experiments is that PAMP recognition pathways
can be triggered by double-stranded RNAs (dsRNA), like
siRNA probes, or the viral vector systems that deliver
shRNA.1211 Some of these, like TLR-mediated RNA recogni-
tion,1212 can influence autophagy by either masking any
inhibitory effect or compromising autophagy independent
of the knockdown probe. Therefore, nontargeting (scram-
bled) siRNA or shRNA controls should be used with the
respective transfection or transduction methods in the
experiments that employ ATG knockdown. Another strategy
to specifically interfere with autophagy is to use dominant
negative inhibitors. Delivery of these agents by transient
transfection, adenovirus, or TAT-mediated protein trans-
duction offers the possibility of their use in cell culture or
in vivo.1210 However, since autophagy is an essential meta-
bolic process for many cell types and tissues, loss of viabil-
ity due to autophagy inhibition always has to be a concern
when analyzing cell death-unrelated questions. In this
respect it is noteworthy that some cell-types of the immune
system such as dendritic cells333 seem to tolerate loss of
autophagy fairly well, whereas others such as T and B cells
are compromised in their development and function after
autophagy inhibition.1213,1214

In addition to pharmacological inhibition, RNA silencing,
gene knockout and dominant negative RAB and ATG protein
expression, pathogen-derived autophagy inhibitors can also be
considered to manipulate autophagy. Along these lines
ICP34.5, viral BCL2 homologs and viral FLIP of herpesviruses
block autophagosome formation,566,892,1215 whereas M2 of
influenza virus and HIV-1 Nef block autophagosome degrada-
tion.362,902 However, as with other tools discussed in this sec-
tion, transfection or transduction of viral autophagy inhibitors
should be used in parallel with other means of autophagy
manipulation, because these proteins are used for the regula-
tion of usually more than one cellular pathway by the respective
pathogens.
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There are fewer compounds that act as inducers of auto-
phagy, but the initial characterization of this process was due in
large part to the inducing effects of glucagon, which appears to
act through indirect inhibition of MTOR via the activation of
STK11/LKB1-AMPK.935,936,1216 Currently, the most commonly
used inducer of autophagy is rapamycin, an allosteric inhibitor
of MTORC1 (although as mentioned above, catalytic inhibitors
such as torin1 are increasingly being used). Nevertheless, one
caution is that MTOR is a major regulatory protein that is part
of several signaling pathways, including for example those that
respond to INS/insulin, EGF/epidermal growth factor and
amino acids, and it thus controls processes other than auto-
phagy, so rapamycin will ultimately affect many metabolic
pathways.504,1217-1219 In particular, the strong effects of MTOR
on protein synthesis may be a confounding factor when analyz-
ing the effects of rapamycin. MTOR-independent regulation
can be achieved through lithium, sodium valproate and carba-
mazepine, compounds that lower the myo-inositol 1,4,5-tri-
phosphate levels,1220 as well as FDA-approved compounds
such as verapamil, trifluoperazine and clonidine.1221,1222 In
vivo treatment of embryos with cadmium results in an increase
in autophagy, probably to counter the stress, allowing cell sur-
vival through the elimination/recycling of damaged struc-
tures.956 Autophagy may also be regulated by the release of
calcium from the ER under stress conditions;297,1175,1223,1224

however, additional calcium signals from other stores such as
the mitochondria and lysosomes could also play an important
role in autophagy induction. The activation of the lysosomal
TPCN/two-pore channel (two pore segment channel), by nico-
tinic acid adenine dinucleotide phosphate (NAADP) induces
autophagy, which can selectively be inhibited by the TPCN
blocker NED-19, or by pre-incubation with BAPTA, showing
that lysosomal calcium also modulates autophagy.1225 Cell pen-
etrating autophagy-inducing peptides, such as Tat-vFLIP or
Tat-Beclin 1 (Tat-BECN1), are also potent inducers of auto-
phagy in cultured cells as well as in mice.1216,1227 Other cell
penetrating peptides, such as Tat-wtBH3D or Tat-dsBH3D,
designed to disrupt very specific regulatory interactions such as
the BCL2-BECN1 interaction, are potent, yet very specific,
inducers of autophagy in cultured cells.1227

In contrast to other PtdIns3K inhibitors, caffeine induces
macroautophagy in the food spoilage yeast Zygosaccharomyces
bailii,1228 mouse embryonic fibroblasts,1229 and S. cerevisiae1230

at millimolar concentrations. In higher eukaryotes this is
accompanied by inhibition of the MTOR pathway. Similarly, in
budding yeast caffeine is a potent TORC1 inhibitor suggesting
that this drug induces autophagy via inhibition of the TORC1
signalling pathway; however, as with other PtdIns3K inhibitors
caffeine targets other proteins, notably Mec1/ATR and Tel1/
ATM, and affects the cellular response to DNA damage.

Another autophagy inducer is the histone deacetylase inhibi-
tor valproic acid.1231,1232 The mechanism by which valproic
acid stimulates autophagy is not entirely clear but may occur
due to inhibition of the histone deacetylase Rpd3, which nega-
tively regulates the transcription of ATG genes (most notably
ATG81233) and, via deacetylation of Atg3, controls Atg8
lipidation.1234

It is also possible, depending on the organism or cell system,
to modulate autophagy through transcriptional control. For

example, this can be achieved either through overexpression or
post-translational activation of the gene encoding TFEB (see
Transcriptional and translational regulation), a transcriptional
regulator of the biogenesis of both lysosomes and autophago-
somes.625,635 Similarly, adenoviral-mediated expression of the
transcription factor CEBPB induces autophagy in hepatocytes.644

Recently, it has been shown that either the genetic ablation or
the knockdown of the nucleolar transcription factor RRN3/TIF-
IA, a crucial regulator of the recruitment of POLR1/RNA poly-
merase I to ribosomal DNA promoters, induces autophagy in
neurons and in MCF-7 cancer cells, respectively, linking ribo-
somal DNA transcription to autophagy.1235,1236

Relatively little is known about direct regulation via the ATG
proteins, but there is some indication that tamoxifen acts to
induce autophagy by increasing the expression of BECN1 in
MCF7 cells.1237 However, BECN1 does not appear to be upre-
gulated in U87MG cells treated with tamoxifen, whereas the
levels of LC3-II and SQSTM1 are increased, while LAMP2B is
downregulated and CTSD and CTSL activities are almost
completely blocked (K.S. Choi, personal communication).
Thus, the effect of tamoxifen may differ depending on the cell
type. Other data suggest that tamoxifen acts by blocking choles-
terol biosynthesis, and that the sterol balance may determine
whether autophagy acts in a protective versus cytotoxic man-
ner.1238,1239 Finally, screens have identified small molecules that
induce autophagy independently of rapamycin and allow the
removal of misfolded or aggregate-prone proteins,1222,1240 sug-
gesting that they may prove useful in therapeutic applications.
However, caution should be taken because of the crosstalk
between autophagy and the proteasomal system. For example,
trehalose, an MTOR-independent autophagy inducer,1241 can
compromise proteasomal activity in cultured primary
neurons.1242

Because gangliosides are implicated in autophagosome
morphogenesis, pharmacological or genetic impairment of
gangliosidic compartment integrity and function can provide
useful information in the analysis of autophagy. To deplete
cells of gangliosides, an inhibitor of CERS/ceramide synthase,
such as a fungal metabolite produced by Fusarium moniliforme
(fumonisin B1), or, alternatively, siRNA to CERS or ST8SIA1,
can be used.595

Finally, in addition to genetic and chemical compounds,
it was recently reported that electromagnetic fields can
induce autophagy in mammalian cells. Studies of biological
effects of novel therapeutic approaches for cancer therapy
based on the use of noninvasive radiofrequency fields
reveals that autophagy, but not apoptosis, is induced in
cancer cells in response to this treatment, which leads to
cell death.1244 This effect is tumor specific and different
from traditional ionizing radiation therapy that induces
apoptosis in cells.

Conclusion: Considering that pharmacological inhibitors
or activators of autophagy have an impact on many other
cellular pathways, the use of more than one methodology,
including molecular methods, is desirable. Rapamycin is
less effective at inhibiting MTOR and inducing autophagy
than catalytic inhibitors; however, it must be kept in mind
that catalytic inhibitors also affect MTORC2. The main
concern with pharmacological manipulations is pleiotropic
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effects of the compound being used. Accordingly, genetic
confirmation is preferred whenever possible.

3. Basal autophagy

Basal levels of LC3-II or GFP-LC3 puncta may change accord-
ing to the time after addition of fresh medium to cells, and this
can lead to misinterpretations of what basal autophagy means.
This is particularly important when comparing the levels of
basal autophagy between different cell populations (such as
knockout versus wild-type clones). If cells are very sensitive to
nutrient supply and display a high variability of basal auto-
phagy, the best experimental condition is to monitor the levels
of basal autophagy at different times after the addition of fresh
medium. One example is the chicken lymphoma DT40 cells
(see Chicken B-lymphoid DT40 cells) and their knockout variant
for all 3 ITPR isoforms.1244-1246 In these cells, no differences in
basal levels of LC3-II can be observed up to 4 h after addition
of fresh medium, but differences can be observed after longer
times (J.M. Vicencio and G. Szabadkai, personal communica-
tion). This concept should also be applied to experiments in
which the effect of a drug upon autophagy is the subject of
study. If the drugs are added after a time in which basal auto-
phagy is already high, then the effects of the drug can be
masked by the cell’s basal autophagy, and wrong conclusions
may be drawn. To avoid this, fresh medium should be added
first (followed by incubation for 2–4 h) in order to reduce and
equilibrate basal autophagy in cells under all conditions, and
then the drugs can be added. The basal autophagy levels of the
cell under study must be identified beforehand to know the
time needed to reduce basal autophagy.

A similar caution must be exercised with regard to cell cul-
ture density and hypoxia. When cells are grown in normoxic
conditions at high cell density, HIF1A/HIF-1a is stabilized at
levels similar to that obtained with low-density cultures under
hypoxic conditions.1247 This results in the induction of BNIP3
and BNIP3L and “hypoxia”-induced autophagy, even though
the conditions are theoretically normoxic.1248 Therefore,
researchers need to be careful about cell density to avoid acci-
dental induction of autophagy.

It should be realized that in yeast species, medium changes
can trigger a higher “basal” level of autophagy in the cells. In
the methylotrophic yeast species P. pastoris and Hansenula pol-
ymorpha a shift of cells grown in batch from glucose to metha-
nol results in stimulation of autophagy.1249,1250 A shift to a new
medium can be considered a stress situation. Thus, it appears
to be essential to cultivate the yeast cells for a number of hours
to stabilize the level of basal autophagy before performing
experiments intended to study levels of (selective) autophagy
(e.g., pexophagy). Finally, plant root tips cultured in nutrient-
sufficient medium display constitutive autophagic flux (i.e., a
basal level), which is enhanced in nutrient-deprived
medium.1132,1251,1252

Conclusion: The levels of basal autophagy can vary substan-
tially and can mask the effects of the experimental parameters
being tested. Changes in media and growth conditions need to
be examined empirically to determine the effects on basal auto-
phagy and the appropriate times for subsequent manipulations.

4. Experimental systems

Throughout these guidelines we have noted that it is not possi-
ble to state explicit rules that can be applied to all experimental
systems. For example, some techniques may not work in partic-
ular cell types or organisms. In each case, efficacy of autophagy
promoters, inhibitors and measurement techniques must be
empirically determined, which is why it is important to include
appropriate controls. Differences may also be seen between in
vivo or perfused organ studies and cell culture analyses. For
example, INS/insulin has no effect on proteolysis in suspended
rat hepatocytes, in contrast to the result with perfused rat liver.
The INS/insulin effect reappears, however, when isolated hepa-
tocytes are incubated in stationary dishes1253,1254 or are allowed
to settle down on the matrix (D. H€aussinger, personal commu-
nication). The reason for this might be that autophagy regula-
tion by insulin and some amino acids requires volume sensing
via integrin-matrix interactions and also intact microtu-
bules.1255-1257 Along these lines, the use of whole embryos
makes it possible to investigate autophagy in multipotent cells,
which interact among themselves in their natural environment,
bypassing the disadvantages of isolated cells that are deprived
of their normal network of interactions.956 In general, it is
important to keep in mind that results from one particular sys-
tem may not be generally applicable to others.

Conclusion: Although autophagy is conserved from yeast to
human, there may be tremendous differences in the specific
details among systems. Thus, results based on one system
should not be assumed to be applicable to another.

5. Nomenclature

To minimize confusion regarding nomenclature, we make
the following notes: In general, we follow the conventions
established by the nomenclature committees for each model
organism whenever appropriate guidelines are available, and
briefly summarize the information here using “ATG1” as an
example for yeast and mammals. The standard nomencla-
ture of autophagy-related wild-type genes, mutants and pro-
teins for yeast is ATG1, atg1 (or atg1D in the case of
deletions) and Atg1, respectively, according to the guide-
lines adopted by the Saccharomyces Genome Database
(http://www.yeastgenome.org/gene_guidelines.shtml). For
mammals we follow the recommendations of the International
Committee on Standardized Genetic Nomenclature for Mice
(http://www.informatics.jax.org/mgihome/nomen/), which dic-
tates the designations Atg1, atg1 and ATG1 (for all rodents),
respectively, and the guidelines for human genes established by
the HUGO Nomenclature Committee (http://www.genenames.
org/guidelines.html), which states that human gene symbols
are in the form ATG1 and recommends that proteins use the
same designation without italics, as with ATG1; mutants are
written for example as ATG1-/-.1258

C. Methods and challenges of specialized topics/
model systems

There are now a large number of model systems being used to
study autophagy. These guidelines cannot cover every detail,
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and as stated in the Introduction this article is not meant to
provide detailed protocols. Nonetheless, we think it is useful to
briefly discuss what techniques can be used in these systems
and to highlight some of the specific concerns and/or chal-
lenges. We also refer readers to the 3 volumes of Methods in
Enzymology that provide additional information for “nonstan-
dard”model systems.39-41

1. C. elegans

C. elegans has a single ortholog of most yeast Atg proteins;
however, 2 nematode homologs exist for Atg4, Atg8 and
Atg16.1260-1262 Multiple studies have established C. elegans as a
useful multicellular genetic model to delineate the autophagy
pathway and associated functions (see for example refs. 271,
633, 742, 743, 1263). The LGG-1/Atg8/LC3 reporter is the
most commonly used tool to detect autophagy in C. elegans.
Similar to Atg8, which is incorporated into the double mem-
brane of autophagic vacuoles during autophagy,148,269,600 the C.
elegans LGG-1 localizes into cytoplasmic puncta under condi-
tions known to induce autophagy. Fluorescent reporter fusions
of LGG-1/Atg8 with GFP, DsRED or mCherry have been used
to monitor autophagosome formation in vivo, in the nematode.
These reporters can be expressed either in specific cells and tis-
sues or throughout the animal.271,742,1263,1264 Caution should be
taken, however, when using protein markers fused to mCherry
in worms. mCherry aggregates in autophagy-inducing condi-
tions, such as fasting, even if not fused to LGG-1 or other auto-
phagy markers (E. O’Rourke, personal communication);
therefore mCherry puncta may not be a good readout to moni-
tor autophagy in C. elegans. LGG-2 is the second LC3 homolog
and is also a convenient marker for autophagy either using spe-
cific antibodies741 or fused to GFP,1265 especially when
expressed from an integrated transgene to prevent its germline
silencing.741 The exact function of LGG-1 versus LGG-2
remains to be addressed.1266

For observing autophagy by GFP-LGG-1/2 (LC3) fluores-
cence in C. elegans, it is best to use integrated versions of the
marker741,742,1267 (GFP::LGG-1 and GFP::LGG-2; Fig. 27)
rather than extrachromosomal transgenic strains271,1265 because
the latter show variable expression among different animals or
mosaic expression (C. Kang, personal communication; V. Galy,
personal communication). Nevertheless, evaluation of GFP::
LGG-1 puncta is mostly restricted to seam cells, which is
tedious because of a small number of puncta/cell even in auto-
phagy-inducing conditions (<5/cell), error prone due to high
background levels in the GFP channel, and extremely difficult
to visualize in the adult. To increase signal to noise, it is also
possible to carry out indirect immunofluorescence microscopy
using antibodies against endogenous LGG-1, 633,742 or LGG-
2;741 however, anti-LGG-1 and anti-LGG-2 antibodies are not
commercially available. In addition, with the integrated version,
or with antibodies directed against endogenous LGG-1, it is
possible to perform a western blot analysis for lipidation, at
least in embryos (LGG-1-I is the nonlipidated soluble form and
LGG-1-II/LGG-1–PE is the lipidated form).1267,742,633

The LGG-1 precursor accumulates in the atg-4.1 mutant,
but is undetectable in wild-type embryos.1260 Moreover, the
banding pattern of LGG-1 or LGG-1 fused to fluorescent

proteins in western blots may not be easy to interpret in larvae
or the adult C. elegans because enrichment for a fast running
band (the lipidated form) is not observed in some autophagy-

Figure 27. GFP::LGG-1 and GFP::LGG-2 are autophagy markers in C. elegans. (A–F)
Animals were generated that carry an integrated transgene expressing a GFP-
tagged version of lgg-1, the C. elegans ortholog of mammalian MAP1LC3. Repre-
sentative green fluorescence images in the pharyngeal muscles of (A) control RNAi
animals without starvation, (B) control RNAi animals after 9 d of starvation, (C) atg-
7 RNAi animals after 9 d of starvation, (D) starvation-hypersensitive gpb-2 mutants
without leucine after 3 d of starvation, and (E) gpb-2 mutants with leucine after 3
d of starvation. The arrows show representative GFP::LGG-1-positive punctate areas
that label pre-autophagosomal and autophagosomal structures. (F) The relative
levels of PE-conjugated and unconjugated GFP::LGG-1 were determined by west-
ern blotting. These figures were modified from data previously published in ref.
1267, Kang, C., Y.J. You, and L. Avery. 2007. Dual roles of autophagy in the survival
of Caenorhabditis elegans during starvation. Genes & Development. 21:2161–2171,
Copyright © 2007, Genes & Development by Cold Spring Harbor Laboratory Press
and Kang, C., and L. Avery. 2009. Systemic regulation of starvation response in Cae-
norhabditis elegans. Genes & Development. 23:12–17, Copyright © 2011, Genes &
Development by Cold Spring Harbor Laboratory Press, www.genesdev.org. (G–H)
GFP:LGG-2 serves as a marker for autophagosomes in early C. elegans embryos. (G)
GFP::LGG-2 expressed in the germline from an integrated transgene reveals the
formation of autophagosomes (green) around sperm-inherited membranous
organelles (red). DNA of the 2 pronuclei is stained (blue). (H) Later during develop-
ment, GFP::LGG-2-positive structures are present in all cells of the embryo. Scale
bar: 10 mm. Images provided by V. Galy.
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inducing conditions, such as fasting. In the embryos of some
autophagy mutants, including epg-3, epg-4, epg-5, and epg-6
mutants, levels of LGG-1-I and LGG-1-II are ele-
vated.563,633,1268,1269 In an immunostaining assay, endogenous
LGG-1 forms distinct punctate structures, mostly at the »64-
to 100-cell embryonic stage. LGG-1 puncta are absent in atg-
3, atg-7, atg-5 and atg-10mutant embryos,633,1261 but dramati-
cally accumulate in other autophagy mutants.563,633 The
widely used GFP::LGG-1 reporter forms aggregates in atg-3
and atg-7 mutant embryos, in which endogenous LGG-1
puncta are absent, indicating that GFP::LGG-1 could be incor-
porated into protein aggregates during embryogenesis. Immu-
nostaining for endogenous VPS-34 is also a useful marker of
autophagy induction in C. elegans embryos.1270

A variety of protein aggregates, including PGL granules
(PGL-1-PGL-3-SEPA-1) and the C. elegans SQSTM1 homolog
SQST-1, are selectively degraded by autophagy during embryo-
genesis; impaired autophagy activity results in their accumula-
tion and the generation of numerous aggregates.633,1262 Thus,
degradation of these autophagy substrates can also be used to
monitor autophagy activity, with similar cautionary notes to
those described in section A3 (see SQSTM1 and related LC3
binding protein turnover assays) for the SQST-1 turnover assay.
Similar tomammalian cells, the total amount of GFP::LGG-1 along
with SQST-1::GFP transcriptional expression coupledwith its post-
transcriptional accumulation can be informative with regard to
autophagic flux in the embryo and in adult animals (again with the
same cautionary notes described in section A3).629,1271

As with its mammalian counterpart, loss of the C. elegans
TP53 ortholog, cep-1, increases autophagosome accumula-
tion1272 and extends the animal’s life span.1273 bec-1- and cep-1-
regulated autophagy is also required for optimal life-span exten-
sion and to reduce lipid accumulation in response to silencing
FRH-1/frataxin, a protein involved in mitochondrial respiratory
chain functionality.1274 FRH-1 silencing also induces mitophagy
in an evolutionarily conserved manner.1271 Moreover, the prod-
ucts of C. elegans mitophagy regulatory gene homologs (PDR-1/
PARK2, PINK-1/PINK1, DCT-1/BNIP3, and SQST-1/SQSTM1)
are required for induction of mitophagy (monitored through
the Rosella biosensor1275) and life-span extension following
FRH-1 silencing and iron deprivation.1271 The TFEB ortholog
HLH-30 transcriptionally regulates macroautophagy and pro-
motes lipid degradation,624,824 and worm life-span analyses
uncovered a direct role for HLH-30/TFEB in life-span regula-
tion in C. elegans, and likely in mammals.624,629,823

For a more complete review of methods for monitoring
autophagy in C. elegans see ref. 1276. Note that most of these
approaches have been optimized to monitor autophagy in
embryos or early larval stages, and that autophagy markers in
the adult C. elegans are currently rather poorly characterized or
lacking.

2. Chicken B-lymphoid DT40 cells, retina and inner ear

The chicken B-lymphoid DT40 cell line represents a suitable
tool for the analysis of autophagic processes in a nonmamma-
lian vertebrate system. In DT40 cells, foreign DNA integrates
with a very high frequency by homologous recombination com-
pared to random integration. This makes the cell line a valuable

tool for the generation of cellular gene knockouts. Generally,
the complete knockout of genes encoding autophagy-regulatory
proteins is preferable compared to RNAi-mediated knockdown,
because in some cases these proteins function normally when
expressed at reduced levels.255 Different Atg-deficient DT40
cell lines already exist, including atg13-/-, ulk1-/-, ulk2-/-,
ulk1/2-/-,1278 becn1-/-, and rb1cc1/fip200-/- (B. Stork, personal
communication). Many additional non-autophagy-related gene
knockout DT40 cell lines have been generated and are commer-
cially available.1278

DT40 cells are highly proliferative (the generation time is
approximately 10 h), and knockout cells can be easily reconsti-
tuted with cDNAs by retroviral gene transfer for the mutational
analysis of signaling pathways. DT40 cells mount an autophagic
response upon starvation in EBSS,1277 and autophagy can be
analyzed by a variety of assays in this cell line. Steady state
methods that can be used include TEM, LC3 western blotting
and fluorescence microscopy; flux measurements include mon-
itoring LC3-II turnover and tandem mRFP/mCherry-GFP-LC3
fluorescence microscopy. Using atg13-/- and ulk1/2-/- DT40
cells, it was shown that ATG13 and its binding capacity for
RB1CC1/FIP200 are mandatory for both basal and starvation-
induced autophagy, whereas ULK1/2 and in vitro-mapped
ULK1-dependent phosphorylation sites of ATG13 appear to be
dispensable for these processes.1277

Another useful system is chick retina, which can be used for
monitoring autophagy at different stages of development. For
example, lipidation of LC3 is observed during starvation, and
can be blocked with a short-term incubation with 3-MA.393,394

LEP-100 antibody is commercially available for the detection of
this lysosomal protein. In the developing chicken inner ear,
LC3 flux can be detected in otic vesicles cultured in a serum-
free medium exposed to either 3-MA or chloroquine.395

One of the salient features of chicken cells, including pri-
mary cells such as chicken embryo fibroblasts, is the capacity of
obtaining rapid, efficient and sustained transcript/protein
downregulation with replication-competent retrovirus for
shRNA expression.1279 In chicken embryo fibroblasts, nearly
complete and general (i.e., in nearly all cells) protein downregu-
lation can be observed within a few days after transfection of
the shRNA retroviral vector.167

Cautionary notes: Since the DT40 cell line derives from a
chicken bursal lymphoma, not all ATG proteins and auto-
phagy-regulatory proteins are detected by the commercially
available antibodies produced against their mammalian ortho-
logs; however, commercially available antibodies for mamma-
lian LC3 and GABARAP have been reported to detect the
chicken counterparts in western blots.167 The chicken genome
is almost completely assembled, which facilitates the design of
targeting constructs. However, in the May 2006 chicken (Gallus
gallus) v2.1 assembly, 5% of the sequence has not been
anchored to specific chromosomes, and this might also include
genes encoding autophagy-regulatory proteins. It is possible
that there is some divergence within the signaling pathways
between mammalian and nonmammalian model systems. One
example might be the role of ULK1/2 in starvation-induced
autophagy described above. Additionally, neither rapamycin
nor torin1 seem to be potent inducers of autophagy in DT40
cells, although MTOR activity is completely repressed as
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detected by the level of phosphorylated RPS6KB via western
blotting.1277 Finally, DT40 cells represent a transformed cell
line, being derived from an avian leukosis virus-induced bursal
lymphoma. Thus, DT40 cells release avian leukosis virus into
the medium, and the 30-long terminal repeat has integrated
upstream of the MYC gene, leading to increased MYC expres-
sion.1280 Both circumstances might influence basal and starva-
tion-induced autophagy.

3. Chlamydomonas

The unicellular green alga Chlamydomonas reinhardtii is an
excellent model system to investigate autophagy in photosyn-
thetic eukaryotes. Most of the ATG genes that constitute the
autophagy core machinery including the ATG8 and ATG12
ubiquitin-like systems are conserved as single-copy genes in the
nuclear genome of this model alga. Autophagy can be moni-
tored in Chlamydomonas by western blotting through the
detection of Atg8 lipidation as well as an increase in the abun-
dance of this protein in response to autophagy activation.292

Localization of Atg8 by immunofluorescence microscopy can
also be used to study autophagy in Chlamydomonas since the
cellular distribution of this protein changes drastically upon
autophagy induction. The Atg8 signal is weak and usually
detected as a single spot in nonstressed cells, whereas auto-
phagy activation results in the localization of Atg8 in multiple
spots with a very intense signal.292,1281,1282 Finally, enhanced
expression of ATG8 and other ATG genes has also been
reported in stressed Chlamydomonas cells.1281 These methodo-
logical approaches have been used to investigate the activation
of autophagy in Chlamydomonas under different stress condi-
tions including nutrient (nitrogen or carbon) limitation, rapa-
mycin treatment, ER stress, oxidative stress, photo-oxidative
damage or high light stress.292,1281,1282

4. Drosophila

Drosophila provides an excellent system for in vivo analysis of
autophagy, partly because the problem of animal-to-animal
variability can be circumvented by the use of clonal mutant cell
analysis, a major advantage of this model system. In this sce-
nario, somatic clones of cells are induced that either overex-
press the gene of interest, or silence the gene through
expression of a transgenic RNA interference construct, or
homozygous mutant cells are generated. These gain- or loss-of-
function clones are surrounded by wild-type cells, which serve
as an internal control for autophagy induction. In such an anal-
ysis, autophagy in these genetically distinct cells is always com-
pared to neighboring cells of the same tissue, thus eliminating
most of the variability and also ruling out potential non-cell-
autonomous effects that may arise in mutant animals. Along
these lines, clonal analysis should be an integral part of in vivo
Drosophila studies when possible. Multiple steps of the auto-
phagic pathway can now be monitored in Drosophila due to
the recent development of useful markers, corresponding to
every step of the process. Interested readers may find further
information in 2 reviews with a detailed discussion of the cur-
rently available assays and reagents for the study of autophagy
in Drosophila.135,1283

A commercial rabbit monoclonal anti-GABARAP (anti-
Atg8) antibody can be used to detect endogenous levels of Dro-
sophila Atg8a in both immunostaining and immunoblotting
experiments.1284 Western blotting and fluorescence microscopy
have been used successfully in Drosophila by monitoring flies
expressing human GFP-LC3,88,279 GFP-Atg8a1285 or using any
of several antibodies directed against the endogenous Atg8 pro-
tein.510,623,1286 In addition, cultured Drosophila (S2) cells can be
stably transfected with GFP fused to Drosophila Atg8a, which
generates easily resolvable GFP-Atg8a and GFP-Atg8a–PE
forms that respond to autophagic stimuli (S. Wilkinson, per-
sonal communication); stable S2 cells with GFP-Atg8a under
the control of a 2-kb Atg8a 50 UTR are also available.1287 Simi-
larly, cultured Drosophila cells (l[2]mbn or S2) stably trans-
fected with EGFP-HsLC3B respond to autophagy stimuli
(nutrient deprivation) and inhibitors (3-MA, bafilomycin A1)
as expected, and can be used to quantify GFP-LC3 puncta,
which works best using fixed cells with the aid of an anti-GFP
antibody.1288 However, in the Drosophila eye, overexpression of
GFP-Atg8 results in a significant increase in Atg8–PE by west-
ern blot, and this occurs even in control flies in which punctate
GFP-Atg8 is not detected by immunofluorescence (M. Fanto,
unpublished results), and in transfected Drosophila Kc167 cells,
uninducible but persistent GFP-Atg8 puncta are detected (A.
Kiger, unpublished results). In contrast, expression of GFP-
LC3 under the control of the ninaE/rh1 promoter in wild-type
flies does not result in the formation of LC3-II detectable by
western blot, nor the formation of punctate staining; however,
increased GFP-LC3 puncta by immunofluorescence or LC3-II
by western blot are observed upon activation of autophagy.442

Autophagy can also be monitored with mCherry-Atg18, which
is displayed in punctate patterns that are very similar to
mCherry-Atg8a.135 Tandem fluorescence reporters have been
established in Drosophila in vivo, where GFP-mCherry-Atg8a
can be expressed in the nurse cells of the developing egg cham-
ber or in other cell types.135,1077 A Drosophila transgenic line
(UAS-Ref[2]P-GFP) and different specific antibodies against
Ref(2)P, the Drosophila SQSTM1 homolog, are available to fol-
low Ref(2)P expression and localization.402,423,1289 The advan-
tage of UAS-Ref(2)P-GFP over the antibody against
endogenous Ref(2)P is that its accumulation is independent of
Ref(2)P promoter regulation and unambiguously reflects auto-
phagy impairment (M. Robin and B. Mollereau, unpublished
results). Finally, it is worth noting that Atg5 antibody can be
used in the Drosophila eye and the staining is similar to GFP-
LC3.1290 In addition, Atg5-GFP and Atg6-GFP constructs are
available in Drosophila.1291

5. Erythroid cells

The unique morphology of red blood cells (RBCs) is instru-
mental to their function. These cells have a bi-concave shape
provided by a highly flexible membrane and a cytoplasm defi-
cient in organelles. This architecture allows unimpeded circula-
tion of the RBC even through the thinnest blood vessels,
thereby delivering O2 to all the tissues of the body. Erythroid
cells acquire this unique morphology upon terminal erythroid
maturation, which commences in the bone marrow and is com-
pleted in the circulation. This process involves extrusion of the
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pycnotic nucleus through a specialized form of asymmetric
division, and degradation of the ribosome and mitochondria
machinery via a specialized form of autophagy (Fig. 28). In the
context of RBC biogenesis, autophagy exerts a unique function
to sculpt the cytoplasm, with the mature autophagic vacuoles
engulfing and degrading organelles, such as mitochondria and
ribosomes, whose presence would impair the flexibility of the
cells.

Another unique feature of erythropoiesis is that expression
of genes required for autophagosome assembly/function, such
as LC3B, does not appear to be regulated by nutrient depriva-
tion, but rather is upregulated by the erythroid-specific tran-
scription factor GATA1.641 FOXO3, a transcription factor that
modulates RBC production based on the levels of O2 present in
the tissues,1292 amplifies GATA1-mediated activation of auto-
phagy genes641 and additional genes required for erythroid
maturation.1293 Furthermore, lipidation of the cytosolic form of
LC3B into the lipidated LC3-II form is controlled by EPO
(erythropoietin), the erythroid-specific growth factor that
ensures survival of the maturing erythroid cells. The fact that
the genes encoding the autophagic machinery are controlled by
the same factors that regulate expression of genes encoding
important red cell constituents (such as red blood cell antigens
and cytoskeletal components, globin, and proteins mediating
heme biosynthesis),1294-1296 ensures that the process of terminal
maturation progresses in a highly ordered fashion.

The importance of autophagy for RBC production has been
established through the use of mutant mouse strains lacking
genes encoding proteins of the autophagy machinery (BNIP3L,
ULK1, ATG7).1297-1300 These mutant mice exhibit erythroid
cells blocked at various stages of terminal erythroid maturation
and are anemic. Abnormalities of the autophagic machinery
are also linked to anemia observed in certain human diseases,
especially those categorized as ribosomopathies. As in other
cell types, in erythroid cells TP53 activation may influence the
functional consequences of autophagy—to determine cell death

rather than maturation. TP53, through MDM2, is the gate-
keeper to ensure normal ribosome biosynthesis by inducing
death of cells lacking sufficient levels of ribosomal proteins.
Diseases associated with congenic or acquired loss-of-function
mutations of genes encoding ribosomal proteins, such as Dia-
mond-Blackfan anemia or myelodysplastic syndrome, are char-
acterized by activated TP53 and abnormally high levels of
autophagic death of erythroid cells and anemia. Conversely, the
anemia of at least certain Diamond-Blackfan anemia patients
may be treated with glucocorticoids that inhibit TP53 activity.

6. Filamentous fungi

As in yeast, autophagy is involved in nutrient recycling during
starvation.275,276,1301-1306 In addition, macroautophagy seems to
be involved in many normal developmental processes such as
sexual and asexual reproduction, where there is a need for reallo-
cation of nutrients from one part of the mycelium to another to
supply the developing spores and spore-bearing struc-
tures.276,726,1301,1302,1304,1307-1309 Similarly, autophagy also affects
conidial germination under nitrogen-limiting conditions.276 In
Podospora anserina, autophagy has been studied in relation to
incompatibility reactions between mating strains where it seems
to play a prosurvival role.274,1307 During aging of this long-stand-
ing aging model, autophagy is increased (numbers of GFP-Atg8
puncta and increased autophagy-dependent degradation of a
GFP reporter protein) and acts as a prosurvival pathway.1310 Of
special interest to many researchers of autophagy in filamentous
fungi has been the possible involvement of autophagy in plant
and insect pathogen infection and growth inside the
host.275,709,1301,1302,1311-1314 Autophagy also appears to be neces-
sary for the development of aerial hyphae,276,1302,1307,1312 and for
appresorium function in M. oryzae, Colletotrichum orbiculare
and Metarhizium robertsii.275,1311,1312,1314 Some of these effects
could be caused by the absence of autophagic processing of stor-
age lipids (lipophagy) to generate glycerol for increasing turgor
and recycling the contents of spores into the incipient appresso-
rium, as a prerequisite to infection.1301,1312,1313

Methods for functional analysis of autophagy have been cov-
ered in a review article (see ref. 1315). Most studies on auto-
phagy in filamentous fungi have involved deleting some of the
key genes necessary for autophagy, followed by an investigation
of what effects this has on the biology of the fungus. Most com-
monly, ATG1, ATG4 and/or ATG8 have been
deleted.275,1301,1302,1304,1305,1307,1312,1314,1316,1317 To confirm that
the deletion(s) affects autophagy, the formation of autophagic
bodies in the wild type and the mutant can be compared. In fil-
amentous fungi the presence of autophagic bodies can be
detected using MDC staining,275,1301 TEM275,1302 or fluores-
cence microscopy to monitor Atg8 tagged with a fluorescent
protein.276,1304,1307 This type of analysis is most effective after
increasing the number of autophagic bodies by starvation or
alternatively by adding the autophagy-inducing drug rapamy-
cin,276,1301 in combination with decreasing the degradation of
the autophagic bodies through the use of the protease inhibitor
PMSF.275,1302,1304,1307 In filamentous fungi it might also be pos-
sible to detect the accumulation of autophagic bodies in the
vacuoles using differential interference contrast microscopy,
especially following PMSF treatment.1304,1307 Additional

Figure 28. Transmission electron micrograph of erythroblasts obtained from the
blood of regular donors after 10 days of culture in the presence of KITLG/SCF, IL3,
EPO and dexamethasone. Original magnification 3000X. This figure shows 2 eryth-
roblasts containing autophagic vacuoles. One erythroblast (red arrow) has the mor-
phology of a live cell with several autophagic vacuoles that have engulfed
cytoplasmic organelles. The other erythroblast (black arrow) has the electron-
dense cytoplasm characteristic of a dead cell and is in the process of shedding its
autolysosomes from the cytoplasm to the extracellular space. Image provided by
A.R. Migliaccio and M. Zingariello.
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information regarding the timing of autophagy induction can
be gained by monitoring transcript accumulation of ATG1
and/or ATG8 using qRT-PCR.1302

Autophagy has been investigated intensively in Aspergilli, and
in particular in the genetically amenable species Aspergillus nidu-
lans, which is well suited to investigate intracellular traffic.1318 In
A. oryzae, autophagy has been monitored by the rapamycin-
induced and Atg8-dependent delivery of DsRed2, which is nor-
mally cytosolic, to the vacuoles.276 In A. nidulans, autophagy has
been monitored by the more “canonical” GFP-Atg8 proteolysis
assays, by monitoring the delivery of GFP-Atg8 to the vacuole
(by time-lapse microscopy), and by directly following the bio-
genesis of GFP-Atg8-labeled phagophores and autophagosomes,
which can be tracked in large numbers using kymographs traced
across the hyphal axis. In these kymographs, the autophagosome
cycle starting from a PAS “draws” a cone whose apex and base
correspond to the “parental” PAS punctum and to the diameter
of the “final” autophagosome, respectively.1319 Genetic analyses
revealed that autophagosomes normally fuse with the vacuole in
a Rab7-dependent manner. However, should Rab7 fusogenic
activity be mutationally inactivated, autophagosomes can traffic
to the endosomes in a RabB/Rab5- and CORVET-dependent
manner.1319 An important finding was that RabO/Rab1 plays a
key role in A. nidulans autophagy (and actually can be observed
on the phagophore membranes). This finding agrees with previ-
ous work in S. cerevisiae demonstrating that Ypt1 (the homolog
of RAB1) is activated by the Trs85-containing version of TRAPP,
TRAPPIII, for autophagy.1320,1321 This crucial involvement of
RabO/Ypt1 points at the ER as one source of membrane for
autophagosomes. The suitability of A. nidulans for in vivo
microscopy has been exploited to demonstrate that nascent
phagophores are cradled by ER-associated structures resembling
mammalian omegasomes.1319 The macroautophagic degradation
of whole nuclei that has been observed in A. oryzae721 might be
considered as a specialized version of reticulophagy. Finally,
autophagosome biogenesis has also been observed using a
PtdIns3P-binding GFP-tagged FYVE domain probe in mutant
cells lacking RabB/Rab5. Under these genetic conditions Vps34
cannot be recruited to endosomes and is entirely at the disposi-
tion of autophagy,1320 such that PtdIns3P is only present in auto-
phagic membranes.

Mitophagy has been studied in M. oryzae, by detecting the
endogenous level of porin (a mitochondrial outer membrane pro-
tein) by western blot, and by microscopy observation of vacuolar
accumulation of mito-GFP.709 Mitophagy is involved in regulating
the dynamics of mitochondrial morphology and/or mitochondrial
quality control, during asexual development and invasive growth
inM. oryzae. Pexophagy has also been studied in rice-blast fungus
and it serves no obvious biological function, but is naturally
induced during appressorial development, likely for clearance of
excessive peroxisomes prior to cell death.1322 Methods to monitor
pexophagy in M. oryzae include microscopy observation of the
vacuolar accumulation of GFP-SRL (peroxisome-localized GFP),
and detection of the endogenous thiolase,1323 or Pex14 levels.

7. Food biotechnology

Required for yeast cell survival under a variety of stress condi-
tions, autophagy has the potential to contribute to the outcome

of many food fermentation processes. For example, autophagy
induction is observed during the primary fermentation of syn-
thetic grape must1323 and during sparkling wine production
(secondary fermentation).1324 A number of genome-wide stud-
ies have identified vacuolar functions and autophagy as relevant
processes during primary wine fermentation or for ethanol tol-
erance, based on gene expression data or cell viability of knock-
out yeast strains.1323,1325-1329 However, determining the
relevance of autophagy to yeast-driven food fermentation pro-
cesses requires experimentation using some of the methods
available for S. cerevisiae as described in these guidelines.

Autophagy is a target for some widespread food preserva-
tives used to prevent yeast-dependent spoilage. For example,
the effect of benzoic acid is exacerbated when concurrent with
nitrogen starvation.1330 This observation opened the way to
devise strategies to improve the usefulness of sorbic and ben-
zoic acid, taking advantage of their combination with stress
conditions that would require functional autophagy for yeast
cell survival.1228 Practical application of these findings would
also require extending this research to other relevant food
spoilage yeast species, which would be of obvious practical
interest.

In the food/health interface, the effect of some food bioactive
compounds on autophagy in different human cell types has
already attracted some attention.1331,1332 Interpreting the results
of this type of research, however, warrants 2 cautionary
notes.1333 First, the relationship between health status and auto-
phagic activity is obviously far from being direct. Second,
experimental design in this field must take into account the
actual levels of these molecules in the target organs after inges-
tion, as well as exposure time and their transformations in the
human body. In addition, attention must be paid to the fact
that several mechanisms might contribute to the observed bio-
logical effects. Thus, relevant conclusions about the actual
involvement of autophagy on the health-related effect of food
bioactive compounds would only be possible by assaying the
correct molecules in the appropriate concentrations.

8. Honeybee

The reproductive system of bees, or insects whose ovaries
exhibit a meroistic polytrophic developmental cycle can be a
useful tool to analyze and monitor physiological autophagy.
Both queen and worker ovaries of Africanized A. mellifera dis-
play time-regulated features of cell death that are, however,
linked to external stimuli.1334 Features of apoptosis and auto-
phagy are frequently associated with the degeneration process
in bee organs, but only more recently has the role of autophagy
been highlighted in degenerating bee tissues. The primary
method currently being used to monitor autophagy is following
the formation of autophagosomes and autolysosomes by TEM.
This technique can be combined with cytochemical and immu-
nohistochemical detection of acid phosphatase as a marker for
autolysosomes.1335,1336 Acidotropic dyes can also be used to fol-
low autophagy in bee organs, as long as the cautions noted in
this article are followed. The honeybee genome has been
sequenced, and differential gene expression has been used to
monitor Atg18 in bees parasitized by Varroa destructor.1337
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9. Human

Considering that much of the research conducted today is
directed at understanding the functioning of the human body, in
both normal and disease states, it is pertinent to include humans
and primary human tissues and cells as important models for
the investigation of autophagy. Although clinical studies are not
readily amenable to these types of analyses, it should be kept in
mind that the MTORC1 inhibitor rapamycin, the lysosomal
inhibitors chloroquine and hydroxychloroquine, and the micro-
tubule depolymerizing agent colchicine are all available as clini-
cally approved drugs. However, these drugs have serious side
effects, which often impede their clinical use to study autophagy
(e.g., severe immunosuppressive effects of rapamycin; gastroin-
testinal complaints, bone marrow depression, neuropathy and
acute renal failure induced by colchicine; gastrointestinal com-
plaints, neuropathy and convulsions, and retinopathy induced
by [hydroxy]chloroquine). Theses side effects may in part be
exacerbated by potential inhibition of macroautophagy in itself
by these drugs.1338 In cancer treatment, for example, autophagy-
inhibiting drugs are used in combination with other anticancer
drugs to increase their potency. Conversely, normal tissues such
as kidney induce macroautophagy in response to anticancer
drugs to resist their toxicity;1339 additional blockade of auto-
phagy could worsen normal tissue toxicity and cause serious side
effects. Therefore, the potential for serious adverse effects and
toxicity of these drugs warrants caution, especially when study-
ing a role of autophagy in high-risk patients, such as the critically
ill. Fortunately, it is possible to obtain fresh biopsies of some
human tissues. Blood, in particular, as well as samples of adipose
and muscle tissues, can be obtained from needle biopsies or
from elective surgery. For example, in a large study, adipocytes
were isolated from pieces of adipose tissue (obtained during sur-
gery) and examined for INS/insulin signaling and autophagy. It
was demonstrated that autophagy was strongly upregulated
(based on LC3 flux, EM, and lipofuscin degradation) in adipo-
cytes obtained from obese patients with type 2 diabetes com-
pared with nondiabetic subjects.294 In another study utilizing
human adipose tissue biopsies and explants, elevated autophagic
flux in obesity was associated with increased expression of sev-
eral autophagy genes.217,609

The study of autophagy in the blood has revealed that SNCA
may represent a further marker to evaluate the autophagy level
in T lymphocytes isolated from peripheral blood.1340 In these
cells it has been shown that (a) knocking down the SNCA gene
results in increased macroautophagy, (b) autophagy induction
by energy deprivation is associated with a significant decrease
of SNCA levels, (c) macroautophagy inhibition (e.g., with
3-MA or knocking down ATG5) leads to a significant increase
of SNCA levels, and d) SNCA levels negatively correlate with
LC3-II levels. Thus, SNCA, and in particular the 14-kDa mono-
meric form, can be detected by western blot as a useful tool for
the evaluation of macroautophagy in primary T lymphocytes.
In contrast, the analysis of SQSTM1 or NBR1 in freshly isolated
T lymphocytes fails to reveal any correlation with either LC3-II
or SNCA, suggesting that these markers cannot be used to eval-
uate basal macroautophagy in these primary cells. Conversely,
LC3-II upregulation is correlated with SQSTM1 degradation in
neutrophils, as demonstrated in a human sepsis model.1034

A major caveat of the work concerning autophagy on
human tissue is the problem of postmortem times, agonal state,
premortem clinical history (medication, diet, etc.) and tissue
fixation. Time to fixation is typically longer in autopsy material
than when biopsies are obtained. For tumors, careful sampling
to avoid necrosis, hemorrhagic areas and non-neoplastic tissue
is required. The problem of fixation is that it can diminish the
antibody binding capability; in addition, especially in autopsies,
material is not obtained immediately after death.1341,1342 The
possibilities of postmortem autolysis and fixation artifacts must
always be taken into consideration when interpreting changes
attributed to autophagy.1343 Analyses of these types of samples
require not only special antigen retrieval techniques, but also
histopathological experience to interpret autophagy studies by
IHC, immunofluorescence or TEM. Nonetheless, at least one
recent study demonstrated that LC3 and SQSTM1 accumula-
tion can be readily detected in autopsy-derived cardiac tissue
from patients with chloroquine- and hydroxychloroquine-
induced autophagic vacuolar cardiomyopathy.962 Despite sig-
nificant postmortem intervals, sections of a few millimeters
thickness cut from fresh autopsy brain and fixed in appropriate
glutaraldehyde-formalin fixative for EM, can yield TEM images
of sufficient ultrastructural morphology to discriminate differ-
ent autophagic vacuole subtypes and their relative regional
abundance in some cases (R. Nixon, personal communication).

The situation is, however, typically problematic with TEM,
where postmortem delays can cause vacuolization. Researchers
experienced in the analysis of TEM images corresponding to
autophagy should be able to identify these potential artifacts
because autophagic vacuoles should contain cytoplasm. While
brain biopsies may be usable for high quality TEM (Fig. 29,
30), this depends upon proper handling at the intraoperative
consultation stage, and such biopsies are performed infre-
quently except for brain tumor diagnostic studies. Conversely,
biopsies of organs such as the digestive tract, the liver, muscle
and the skin are routinely performed and thus nearly always
yield high-quality TEM images. When possible, nonsurgical
biopsies are preferable since surgery is usually performed in

Figure 29. A large dystrophic neurite from a brain biopsy of a patient with Gerst-
mann-Str€aussler-Scheinker disease not unlike those reported for Alzheimer dis-
ease.60 This structure is filled with innumerable autophagic vacuoles, some of
which are covered by a double membrane. Electron dense lysosomal-like struc-
tures are also visible. The red arrow points to a double-membrane autophagic vac-
uole. Scale bar: 200 nm. Image provided by P. Liberski.
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anesthetized and fasting patients, 2 conditions possibly affect-
ing autophagy. Moreover, certain surgical procedures require
tissue ischemia-reperfusion strategies that can also affect auto-
phagy level.1344 An analysis that examined liver and skeletal
muscle from critically ill patients utilized tissue biopsies that
were taken within 30 § 20 min after death and were flash-fro-
zen in liquid nitrogen followed by storage at -80�C.1061 Samples
could subsequently be used for EM and western blot analysis.

A major limitation of studying patient biopsies is that only
static measurements can be performed. This limitation does
not apply, however, for dynamic experiments on tissue biopsies
or cells derived from biopsies, as described above.294 Multiple
measurements over time, especially when deep (vital) organs
are involved, are impossible and ethically not justifiable. Hence,
quantitative flux measurements are virtually impossible in
patients. To overcome these problems to the extent possible
and to gain a more robust picture of the autophagic status,
observational studies need to include 2 different aspects. First, a
static marker for phagophore or autophagosome formation
needs to be measured. This can be done by assessing ultrastruc-
tural changes with TEM and/or on the molecular level by mea-
suring LC3-II protein levels. Second, accumulation of
autophagy substrates, such as SQSTM1 and (poly)ubiquitinated
proteins, can provide information on the overall efficacy of the
pathway and can be a surrogate marker of the consequences of
altered autophagic flux, especially when autophagy is insuffi-
cient, although these changes can also be affected by the ubiqui-
tin-proteasome system as mentioned above. In addition, and
even more so when problems with specific pathways are sus-
pected (e.g., mitophagy), specific substrates of these pathways
should be determined. Again, none of these measurements on
its own provides enough information on (the efficacy of) auto-
phagy, because other processes may confound every single
parameter. However, the combination of multiple analyses
should be informative. Of note, there has been recent interest
in assessing markers of autophagy and autophagic flux in right
atrial biopsy samples obtained from patients undergoing car-
diac surgery.1345,1346 Evidence to date suggests that cardiac sur-
gery may be associated with an increase in autophagic flux, and
that this response may protect the heart from perioperative

cardiac ischemia-reperfusion injury.1345 Although still in its
infancy with regard to autophagy, it is worth pointing out that
mathematical modeling has the power to bridge whole body in
vivo data with in vitro data from tissues and cells. The useful-
ness of so-called hierarchical or multilevel modeling has thus
been demonstrated when examining the relevance of INS/insu-
lin signaling to glucose uptake in primary human adipocytes
compared with whole-body glucose homeostasis.1347

Lipophagy is an important pathway of lipid droplet clear-
ance in hepatocytes, and the extent of lipophagy modulates the
lipid content in these cells. Hepatocytes break down lipid drop-
lets through lipophagy as a pathway of endogenous lipid clear-
ance in response to hormones or daily rhythms of nutrient
supply.1062 LC3-II colocalizes with lipid droplets, indicating a
role for autophagy in the mobilization of free fatty acids.817 Lit-
tle is known regarding the changes of lipophagy under patho-
logical conditions, such as drug toxicity, alcoholic
steatohepatitis or nonalcoholic steatohepatitis (NASH). The
accumulation of lipid droplets in hepatocytes activates ATG5
in the droplets, and initiates a lipophagy process; in addition,
increased influx of fatty acids in hepatocytes results in oxidant
stress, ER stress and autophagy,1348,1349 as indicated by the fact
that there is enhanced staining of LC3-II in NASH tis-
sue.1348,1350 However, autophagic flux is impaired in liver speci-
mens of NASH patients as indicated by increased levels of
SQSTM1.1351 Therefore, the value of using LC3-II staining in
tissue as an indication of autophagy or lipophagy is in question.

A stepwise process can be proposed for linking changes in
the autophagic pathway to changes in disease outcome. First, in
an observational study, the changes in the autophagic pathway
(see above) should be quantified and linked to changes in dis-
ease outcome. To prove causality, a subsequent autophagy-
modifying intervention should be tested in a randomized study.
Before an intervention study is performed in human patients,
the phenotype of (in)active autophagy contributing to poor
outcome should be established in a validated animal model of
the disease. For the validation of the hypothesis in an animal
model, a similar 2-step process is suggested, with the assess-
ment of the phenotype in a first stage, followed by a proof-of-
concept intervention study (see Large animals).

10. Hydra

Hydra is a freshwater cnidarian animal that provides a unique
model system to test autophagy. The process can be analyzed
either in the context of nutrient deprivation, as these animals
easily survive several weeks of starvation,1352,1353 or in the con-
text of regeneration, because in the absence of protease inhibi-
tors, bisection of the animals leads to an uncontrolled wave of
autophagy. In the latter case, an excess of autophagy in the
regenerating tip immediately after amputation is deleteri-
ous.1354-1356 Most components of the autophagy and MTOR
pathways are evolutionarily conserved in Hydra.1353 For
steady-state measurements, autophagy can be monitored by
western blot for ATG8/LC3, by immunofluorescence (using
antibodies to ATG8/LC3, lysobisphosphatidic acid or RPS6KA/
RSK), or with dyes such as MitoFluor Red 589 and LysoTracker
Red. Flux measurements can be made by following ATG8/LC3
turnover using lysosomal protease inhibitors (leupeptin and

Figure 30. A high-power electron micrograph from a brain biopsy showing auto-
phagic vacuoles in a case of ganglioglioma. Scale bar: 200 nm. Image provided by
P. Liberski.
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pepstatin A) or in vivo labeling using LysoTracker Red. It is
also possible to monitor MTOR activity with phosphospecific
antibodies to RPS6KB and EIF4EBP1 or to examine gene
expression by semiquantitative RT-PCR, using primers that are
designed for Hydra. Autophagy can be induced by RNAi-medi-
ated knockdown of Kazal1,1354,1355 or with rapamycin treat-
ment, and can be inhibited with wortmannin or bafilomycin
A1.

1352,1353

11. Large animals

This section refers in particular to mammals other than
humans. Assessment of autophagy (and, in particular, autopha-
gic flux) in clinically relevant large animal models is critical in
establishing its (patho)physiological role in multiple disease
states. For example, evidence obtained in swine suggests that
upregulation of autophagy may protect the heart against dam-
age caused by acute myocardial infarction/heart attack.1357

Ovine models of placental insufficiency leading to intrauterine
growth restriction have shown that there is no change in the
expression of markers of autophagy in the fetus in late gesta-
tion1358 or in the lamb at 21 d after birth.1359 Furthermore,
there is an increase in markers of autophagy in the placenta of
human intrauterine growth restriction pregnancies.1360 Studies
in rabbits suggest a protective role of upregulated autophagy
against critical illness-induced multiple organ failure and mus-
cle weakness,1361,1362 which is corroborated by human stud-
ies.1060,1061 Conversely, autophagy may contribute to the
pathogenesis of some types of tissue injury, at least in the
lung.1363,1364

Autophagy also plays an important role in the development
and remodeling of the bovine mammary gland. In vitro studies
with the use of a 3-dimensional culture model of bovine mam-
mary epithelial cells (MECs) have shown that this process is
involved in the formation of fully developed alveoli-like struc-
tures.1365 Earlier studies show that intensified autophagy is
observed in bovine MECs at the end of lactation and during the
dry period, when there is a decrease in the levels of lactogenic
hormones, increased expression of auto/paracrine apoptogenic
peptides, increased influence of sex steroids and enhanced
competition between the intensively developing fetus and the
mother organism for nutritional and bioactive com-
pounds.1366,1367 These studies were based on some of the meth-
ods described elsewhere in these guidelines, including GFP-
Atg8/LC3 fluorescence microscopy, TEM, and western blotting
of LC3 and BECN1. Creation of a specific GFP-LC3 construct
by insertion of cDNA encoding bovine LC3 into the pEGFP-C1
vector makes it possible to observe induction of autophagy in
bovine MECs in a more specific manner than can be achieved
by immunofluorescence techniques, in which the antibodies do
not show specific reactivity to bovine cells and tissues.1365,1367

However, it is important to remember that definitive confirma-
tion of cause-and-effect is challenging for studies on large ani-
mals, given the lack or poor availability of specific antibodies
and other molecular tools, the frequent inability to utilize
genetic approaches, and the often prohibitive costs of adminis-
tering pharmacological inhibitors in these translational
preparations.

In contrast with cell culture experiments, precise monitoring
of autophagic flux is practically impossible in vivo in large ani-
mals. Theoretically, repetitive analyses of small tissue biopsies
should be performed to study ultrastructural and molecular
alterations over time in the presence or absence of an auto-
phagy inhibitor (e.g., chloroquine). However, several practical
problems impede applicability of this approach. First, repetitive
sampling of small needle biopsies in the same animal (a major
challenge by itself) could be assumed to induce artifacts follow-
ing repetitive tissue destruction, especially when deep (vital)
organs are involved. In addition, chemical inhibitors of auto-
phagy have considerable side effects and toxicity, hampering
their usage. Also, the general physical condition of an animal
may confound results obtained with administration of a certain
compound, for instance altered uptake of the compound when
perfusion is worse.

Therefore, in contrast to cells, where it is more practical to
accurately document autophagic flux, we suggest the use of a
stepwise approach in animal models to provide a proof of con-
cept with an initial evaluation of sequellae of (in)active auto-
phagy and the relation to the outcome of interest.

First, prior to an intervention, the static ultrastructural and
molecular changes in the autophagic pathway should be docu-
mented and linked to the outcome of interest (organ function,
muscle mass or strength, survival, etc.). These changes can be
evaluated by light microscopy, EM and/or by molecular
markers such as LC3-II. In addition, the cellular content of spe-
cific substrates normally cleared by autophagy should be quan-
tified, as, despite its static nature, such measurement could
provide a clue about the results of altered autophagic flux in
vivo. These autophagic substrates can include SQSTM1 and
(poly)ubiquitinated substrates or aggregates, but also specific
substrates such as damaged mitochondria. As noted above,
measurement of these autophagic substrates is mainly informa-
tive when autophagic flux is prohibited/insufficient, and, indi-
vidually, all have specific limitations for interpretation. As
mentioned several times in these guidelines, no single measure-
ment provides enough information on its own to reliably assess
autophagy, and all measurements should be interpreted in view
of the whole picture. In every case, both static measurements
reflecting the number of autophagosomes (ultrastructural and/
or molecular) and measurements of autophagic substrates as
surrogate markers of autophagic flux need to be combined.
Depending on the study hypothesis, essential molecular
markers can further be studied to pinpoint at which stage of
the process autophagy may be disrupted.

Second, after having identified a potential role of autophagy
in mediating an outcome in a clinically relevant large animal
model, an autophagy-modifying intervention should be tested.
For this purpose, an adequately designed, randomized con-
trolled study of sufficient size on the effect of a certain interven-
tion on the phenotype and outcome can be performed in a large
animal model. Alternatively, the effect of a genetic intervention
can be studied in a small animal model with clinical relevance
to the studied disease.

As mentioned above, exact assessment of autophagic flux
requires multiple time points, which cannot be done in the
same animal. Alternatively, different animals can be studied for
different periods of time. Due to the high variability between
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animals, however, it is important to include an appropriate
control group and a sufficiently high number of animals per
time point as corroborated by statistical power analyses. This
requirement limits feasibility and the number of time points
that can be investigated. The right approach to studying auto-
phagy in large animals likely differs depending on the question
that is being addressed. Several shortcomings regarding the
methodology, inherent to working with large animals, can be
overcome by an adequate study design. As for every study ques-
tion, the use of an appropriate control group with a sufficient
number of animals is crucial in this regard.

12. Lepidoptera

Some of the earliest work in the autophagy field was carried out
in the area of insect metamorphosis.1084 Microscopy and bio-
chemical research revealed autophagy during the metamorpho-
sis of American silkmoths and the tobacco hornworm,
Manduca sexta, and included studies of the intersegmental
muscles, but they did not include molecular analysis of auto-
phagy. Overall, these tissues cannot be easily maintained in cul-
ture, and antibodies against mammalian proteins often do not
work. Accordingly, these studies were confined to biochemical
measurements and electron micrographs. During metamor-
phosis, the bulk of the larval tissue is removed by autophagy
and other forms of proteolysis.1368 Bombyx mori is now used as
a representative model among Lepidoptera, for studying not
only the regulation of autophagy in a developmental setting,
but also the relations between autophagy and apoptosis. The
advantages of this model are the large amount of information
gathered on its developmental biology, physiology and endocri-
nology, the availability of numerous genetic and molecular
biology tools, and a completely sequenced genome.1369 The
basic studies of B. mori autophagy have been carried out in 4
main larval systems: the silk gland, the fat body, the midgut
and the ovary.

The techniques used for these studies are comparatively sim-
ilar, starting from EM, which is the most widely used method to
follow the changes of various autophagic structures and other
features of the cytosol and organelles that are degraded during
autophagy.619,1370-1373 Immuno-TEM also can be used, when
specific antibodies for autophagic markers are available. As in
other model systems the use of Atg8 antibodies has been
reported in Lepidoptera. In B. mori midgut619 and fat body,620

as well as in various larval tissues of Galleria mellonella1374 and
Helicoverpa armigera,1375 the use of custom antibodies makes it
possible to monitor Atg8 conversion to Atg8–PE by western
blotting. Moreover transfection of GFP-Atg8 or mCherry-GFP-
Atg8 has been used to study autophagy in several lepidopteran
cell lines.1375 Activation of TOR can be monitored with a phos-
phospecific antibody against EIF4EBP1.620 Acidotropic dyes
such as MDC and LysoTracker Red staining have been used as
markers for autophagy in silkmoth egg chambers combined
always with additional assays.1370,1371 Acid phosphatase also
can be used as a marker for autolysosomal participation in
these tissues.619,1372,1376 Systematic cloning and analysis
revealed that homologs of most of the Atg genes identified in
other insect species such as Drosophila are present in B. mori,
and 14 Atg genes have now been identified in the silkworm

genome, as well as other genes involved in the TOR signal
transduction pathway.1377-1379 Variations in the expression of
several of these genes have been monitored not only in silk-
worm larval organs, where autophagy is associated with devel-
opment,619,1377,1378,1380 but also in the fat body of larvae
undergoing starvation.1377,1381

In the IPLB-LdFB cell line, derived from the fat body of the
caterpillar of the gypsy moth Lymantria dispar, indirect immu-
nofluorescence experiments have demonstrated an increased
number of Atg8-positive dots in cells with increased autophagic
activity; however, western blotting did not reveal the conver-
sion of Atg8 into Atg8–PE. Instead, a single band with an
approximate molecular mass of 42 kDa was observed that was
independent of the percentage of cells displaying punctate Atg8
(D. Malagoli, unpublished results). In contrast, with B. mori
midgut, the use of an antibody specific for BmAtg8 makes it
possible to monitor BmAtg8 processing to BmAtg8–PE by
western blotting.619 Thus, the utility of monitoring Atg8 in
insects may depend on the particular organism and antibody.

13. Marine invertebrates

The invaluable diversity of biological properties in marine
invertebrates offers a unique opportunity to explore the differ-
ent facets of autophagy at various levels from cell to tissue, and
throughout development and evolution. For example, work on
the tunicate Ciona intestinalis has highlighted the key role of
autophagy during the late phases of development in lecithotro-
phic organisms (larvae during metamorphosis feed exclusively
from the egg yolk resources).278,1382 This work has also helped
in pinpointing the coexistence of autophagy and apoptosis in
cells as well as the beneficial value of combining complemen-
tary experimental data such as LC3 immunolabeling and
TUNEL detection. This type of approach could shed a new light
on the close relationship between autophagy and apoptosis and
provide valuable information about how molecular mecha-
nisms control the existing continuum between these 2 forms of
programmed cell death. Autophagy plays a key role in the resis-
tance to nutritional stress as is known to be the case in many
Mediterranean bivalve molluscs in the winter. For example, the
European clam Ruditapes decussatus is able to withstand strict
fasting for 2 mo, and this resistant characteristic is accompa-
nied by massive macroautophagy in the digestive gland
(Fig. 31). This phenomenon, observed by TEM, demonstrates
once again the advantage of using this classical ultrastructural
method to study autophagy in unconventional biological mod-
els for which molecular tools may not be operational. Finally,
autophagy also appears to play a role in the cell renewal process
observed during the regeneration of the carnivorous sponge
Asbestopluma hypogea.1383 The presence of the autophagic
machinery in this sister group of Eumetazoans should incite
interest into considering the study of the molecular networks
that regulate autophagy within an evolutionary framework.

14. Neotropical teleosts

In tropical environments, fish have developed different repro-
ductive strategies, and many species have the potential for use
as a biological model in cell and molecular biology, especially
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for studying the mechanisms that regulate gametogenesis and
embryo development. In these fish, the ovary is a suitable
experimental model system for studying autophagy and its
interplay with cell death programs due to the presence of post-
ovulatory follicles (POFs) and atretic follicles, which follow dif-
ferent routes during ovarian remodeling after spawning.1384 In
the fish reproductive biology, POFs are excellent morphological
indicators of spawning, whereas atretic follicles are relevant
biomarkers of environmental stress. In addition, many freshwa-
ter teleosts of commercial value do not spawn spontaneously in
captivity, providing a suitable model for studying the mecha-
nisms of follicular atresia under controlled conditions.1385

When these species are subjected to induced spawning, the final
oocyte maturation (resumption of meiosis) occurs, and POFs
are formed and quickly reabsorbed in ovaries after spawn-
ing.1386 Assessment of autophagy in fish has been primarily
made using TEM at different times of ovarian regression.1387

Due to the difficulty of obtaining antibodies specific for each
fish species, immunodetection of ATG-proteins (mainly LC3
and BECN1) by IHC associated with analyses by western blot-
ting can be performed using antibodies that are commercially
available for other vertebrates.396 Such studies suggest dual
roles for autophagy in follicular cells;1384 however, evaluation
of the autophagic flux in different conditions is critical for
establishing its physiological role during follicular regression
and ovarian remodeling after spawning. Given the ease of
obtaining samples and monitoring them during development,
embryos of these fish are also suitable models for studying
autophagy that is activated in response to different environ-
mental stressors, particularly in studies in vivo.

15. Odontoblasts

Odontoblasts are long-lived dentin-forming postmitotic cells,
which evolved from neural crest cells early during vertebrate

evolution. These cells are aligned at the periphery of the dental
pulp and are maintained during the entire healthy life of a
tooth. As opposed to other permanent postmitotic cells such as
cardiac myocytes or central nervous system neurons, odonto-
blasts are significantly less protected from environmental insult
such as dental caries and trauma. Mature odontoblasts develop
a well-characterized autophagy-lysosomal system, including a
conspicuous autophagic vacuole that ensures turnover and deg-
radation of cell components. Immunocytochemical and TEM
studies make it possible to monitor age-related changes in auto-
phagic activity in human odontoblasts.1388

16. Planarians

Because planarians are one of the favorite model systems in
which to study regeneration and stem cell biology, these flat-
worms represent a unique model where it is possible to investi-
gate autophagy in the context of regeneration, stem cells and
growth. Currently the method used to detect autophagy is
TEM. A detailed protocol adapted to planarians has been
described.1389,1390 However, complementary methods to detect
autophagy are also needed, since TEM cannot easily distinguish
between activation and blockage of autophagy, which would
both be observed as an accumulation of autophagosomes.
Other methods to detect autophagy are being developed (C.
Gonz�alez-Est�evez, personal communication), including IHC
and western blotting approaches for the planarian homolog of
LC3. Several commercial antibodies against human LC3 have
been tried for cross-reactivity without success, and 3 planarian-
specific antibodies have been generated. Some preliminary
results show that LysoTracker Red can be a useful reagent to
analyze whole-mount planarians. Most of the components of
the autophagy and MTOR signaling machinery are evolution-
arily conserved in planarians. Whether autophagy genes vary at
the mRNA level during starvation and after depletion of
MTOR signaling components is still to be determined.

17. Plants

As stated above with regard to other organisms, staining with
MDC or derivatives (such as monodansylamylamine) is not
sufficient for detection of autophagy, as these stains also detect
vacuoles. The same is true for the use of LysoTracker Red, Neu-
tral Red or acridine orange. The fluorophore of the red fluores-
cent protein shows a relatively high stability under acidic pH
conditions. Thus, chimeric RFP fusion proteins that are seques-
tered within autophagosomes and delivered to the plant vacu-
ole can be easily detected by fluorescence microscopy.
Furthermore, fusion proteins with some versions of RFP tend
to form intracellular aggregates, allowing the development of a
visible autophagic assay for plant cells.1391 For example, fusion
of cytochrome b5 and the original (tetrameric) RFP generate
an aggregated cargo protein that displays cytosolic puncta of
red fluorescence and, following vacuolar delivery, diffuse stain-
ing throughout the vacuolar lumen. However, it is not certain
whether these puncta represent autophagosomes or small
vacuoles, and therefore these data should be combined with
immuno-TEM or with conventional TEM using high-pressure
frozen and freeze-substituted samples.1392

Figure 31. Macroautophagy in the digestive gland of Ruditapes decussatus (Mol-
lusca, Bivalvia) subjected to a strict starvation of 2 months. Image provided by S.
Baghdiguian.
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In plant studies, GFP-Atg8 fluorescence is typically assumed
to correspond to autophagosomes; however, as with other sys-
tems, caution needs to be exercised because it cannot be ruled
out that Atg8 is involved in processes other than autophagy.
Immunolabeled GFP-Atg8 can be detected both on the inner
and outer membrane of an autophagosome in an Arabidopsis
root cell, using chemical fixation (see Fig. 6b in ref. 1393), sug-
gesting that it will be a useful marker to monitor autophagy.
Arabidopsis cells can be stably transfected with GFP fused to
plant ATG8, and the lipidated and nonlipidated forms can be
separated by SDS-PAGE.214 Furthermore, the GFP-ATG8
processing assay is particularly robust in Arabidopsis and can
be observed by western blotting.215,256 Two kinds of GFP-
ATG8 transgenic seeds are currently available from the Arabi-
dopsis Biological Resource Center, each expressing similar
GFP-ATG8a transgenes but having different promoter strength.
One transgene is under the control of the stronger Cauliflower
mosaic virus 35S promoter,542 while the other uses a promoter
of the Arabidopsis ubiquitin10 gene.1394 In the GFP-ATG8
processing assay, the former has a higher ratio of GFP-ATG8a
band intensity to that of free GFP than does the latter.1394 Since
free GFP level reflects vacuolar delivery of GFP-ATG8, the
ubiquitin promoter line may be useful when studying an inhibi-
tory effect of a drug/mutation on autophagic delivery. Likewise,
the 35S promoter line may be used for testing potential auto-
phagy inducers.

Thus, as with other systems, autophagosome formation in
plants can be monitored through the combined use of fluores-
cent protein fusions to ATG8, immunolabeling and TEM
(Fig. 32). A tandem fluorescence reporter system is also avail-
able in Arabidopsis.1395 The number of fluorescent Atg8-labeled
vesicles can be increased by pretreatment with concanamycin
A, which inhibits vacuolar acidification;1095,1393 however, this
may interfere with the detection of MDC and LysoTracker Red.
It is also possible to use plant homologs of SQSTM1 and NBR1
in Arabidopsis1395 (the NBR1 homolog is called JOKA2 in
tobacco1396) as markers for selective autophagy when con-
structed as fluorescent chimeras. In addition, detection of the
NBR1 protein level by western blot, preferably accompanied by
qPCR analysis of its transcript level, provides reliable semi-
quantitative data about autophagic flux in plant cells.1397

It has been assumed that, just as in yeast, autophagic bodies
are found in the vacuoles of plant cells, since both

microautophagy and macroautophagy are detected in plant
cells.1398 The data supporting this conclusion are mainly based
on EM studies showing vesicles filled with material in the vacu-
ole of the epidermis cells of Arabidopsis roots; these vesicles are
absent in ATG4a and ATG4b mutant plants.282 However, it
cannot be excluded that these vacuolar vesicles are in fact cyto-
plasmic/protoplasmic strands, or that they arrived at the vacu-
ole independent of macroautophagy; although the amount of
such strands would not be expected to increase following treat-
ment with concanamycin. Immunolabeling with an antibody to
detect ATG8 could clarify this issue.

Other methods described throughout these guidelines can
also be used in plants.1399 For example, in tobacco cells cultured
in sucrose starvation medium, the net degradation of cellular
proteins can be measured by a standard protein assay; this deg-
radation is inhibited by 3-MA and E-64c (an analog of E-64d),
and is thus presumed to be due to autophagy.1400-1402

Cautionary notes: Although the detection of vacuolar RFP
can be applied to both plant cell lines and to intact plants, it is
not practical to measure RFP fluorescence in intact plant leaves,
due to the very high red autofluorescence of chlorophyll in the
chloroplasts. Furthermore, different autophagic induction con-
ditions cause differences in protein synthesis rates; thus, special
care should be taken to monitor the efficiency of autophagy by
quantifying the intact and processed cargo proteins.

18. Protists

An essential role of autophagy during the differentiation of par-
asitic protists (formerly called protozoa) is clearly emerging.
Only a few of the known ATG genes are present in these organ-
isms, which raises the question about the minimal system that
is necessary for the normal functioning of autophagy. The
reduced complexity of the autophagic machinery in many pro-
tists provides a simplified model to investigate the core mecha-
nisms of autophagosome formation necessary for selective
proteolysis; accordingly, protist models have the potential to
open a completely new area in autophagy research. Some of the
standard techniques used in other systems can be applied to
protists including indirect immunofluorescence using antibod-
ies generated against ATG8 and the generation of stable lines
expressing mCherry- or GFP-fused ATG8 for live microscopy
and immuno-TEM analyses. Extrachromosomal constructs of

Figure 32. Detection of macroautophagy in tobacco BY-2 cells. (A) Induction of autophagosomes in tobacco BY-2 cells expressing YFP-NtAtg8 (shown in green for ease of
visualization) under conditions of nitrogen limitation (Induced). Arrowheads indicate autophagosomes that can be seen as a bright green dot. No such structure was
found in cells grown in normal culture medium (Control). Scale bar: 10 mm. N, nucleus; V, vacuole. (B) Ultrastructure of an autophagosome in a tobacco BY-2 cell cultured
for 24 h without a nitrogen source. Scale bar: 200 mm. AP, autophagosome; CW, cell wall; ER, endoplasmic reticulum; P, plastid. Image provided by K. Toyooka.
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GFP-ATG8 also work well with lower eukaryotes,287,288,1403 as
do other fluorescently tagged ATG proteins including ATG5
and ATG12.

The unicellular amoeba Dictyostelium discoideum pro-
vides another useful system for monitoring autophagy.1404

The primary advantage of Dictyostelium is that it has a
unique life cycle that involves a transition from a unicellu-
lar to a multicellular form. Upon starvation, up to 100,000
single cells aggregate by chemotaxis and form a multicellu-
lar structure that undergoes morphogenesis and cell-type
differentiation. Development proceeds via the mound stage,
the tipped aggregate and a motile slug, and culminates with
the formation of a fruiting body that is composed of a ball
of spores supported by a thin, long stalk made of vacuolized
dead cells. Development is dependent on autophagy and, at
present, all of the generated mutants in Dictyostelium auto-
phagy genes display developmental phenotypes of varying
severity.1404,1405 D. discoideum is also a versatile model to
study infection with human pathogens and the role of auto-
phagy in the infection process. The susceptibility of D. dis-
coideum to microbial infection and its strategies to
counteract pathogens are similar to those in higher eukar-
yotes.1406 Along these lines, Dictyostelium utilizes some of
the proteins involved in autophagy that are not present in
S. cerevisiae including ATG101 and VMP1, in addition to
the core Atg proteins. The classical markers GFP-ATG8
and GFP-ATG18 can be used to detect autophagosomes
by fluorescence microscopy. Flux assays based on the pro-
teolytic cleavage of cytoplasmic substrates are also
available.37,322

One cautionary note with regard to the use of GFP-ATG8 in
protists is that these organisms display some “nonclassical” var-
iations in their ATG proteins (see LC3-associated apicoplast)
and possibly a wide phylogenetic variation since they constitute
a paraphyletic taxon.1407 For example, Leishmania contains
many apparent ATG8-like proteins (the number varying per
species; e.g., up to 25 in L. major) grouped in 4 families, but
only one labels true autophagosomes even though the others
form puncta,287 and ATG12 requires truncation to provide the
C-terminal glycine before it functions in the canonical way.
Unusual variants in protein structures also exist in other pro-
tists, including apicomplexan parasites, for example, the
malaria parasite Plasmodium spp. or Toxoplasma gondii, which
express ATG8 with a terminal glycine not requiring cleavage to
be membrane associated.1408 Thus, in each case care needs to
be applied and the use of the protein to monitor autophagy val-
idated. In addition, due to possible divergence in the upstream
signaling kinases, classical inhibitors such as 3-MA, or inducers
such as rapamycin, which are not as potent for trypano-
somes1409 or apicomplexan parasites as in mammalian cells or
yeast, must be used with caution (I. Coppens, personal commu-
nication);1403 however, RNAi knockdown of TORC1 (e.g.,
TOR1 or RPTOR) is effective in inducing autophagy in trypa-
nosomes. In addition, small molecule inhibitors of the protein-
protein interaction of ATG8 and ATG3 in Plasmodium falcipa-
rum have been discovered that are potent in cell-based assays
and useable at 1–10 mM final concentration.1410,1411 Note that
although the lysosomal protease inhibitors E64 and pepstatin
block lysosomal degradative activity in Plasmodium, these

inhibitors do not affect ATG8 levels and associated structures,
suggesting a need for alternate methodologies to investigate
autophagy in this model system.1412

In conventional autophagy, the final destination of autopha-
gosomes is their fusion with lysosomes for intracellular degra-
dation. However, T. gondii and certain stages of Plasmodium
(insect and hepatic) lack degradative lysosomes, which makes
questionable the presence of canonical autophagosomes and a
process of autophagy in these parasites. Nevertheless, if protists
employ their autophagic machineries in unconventional man-
ners, studies of their core machinery of autophagy will provide
information as to how autophagy has changed and adapted
through evolution.

The scuticociliate Philasterides dicentrarchi has proven to be
a good experimental organism for identifying autophagy-
inducing drugs or for autophagy initiation by starvation-like
conditions, since this process can be easily induced and visual-
ized in this ciliate.1413 In scuticociliates, the presence of auto-
phagic vacuoles can be detected by TEM, fluorescence
microscopy or confocal laser scanning microscopy by using
dyes such as MitoTracker Deep Red FM and MDC.

Finally, a novel autophagy event has been found in Tetra-
hymena thermophila, which is a free-living ciliated protist. A
remarkable, virtually unique feature of the ciliates is that
they maintain spatially differentiated germline and somatic
nuclear genomes within a single cell. The germline genome
is housed in the micronucleus, while the somatic genome is
housed in the macronucleus. These nuclei are produced dur-
ing sexual reproduction (conjugation), which involves not
only meiosis and mitosis of the micronucleus and its prod-
ucts, but also degradation of some of these nuclei as well as
the parental old macronucleus. Hence, there should be a
mechanism governing the degradation of these nuclei. The
inhibition of PtdIns3Ks with wortmannin or LY294002
results in the accumulation of additional nuclei during con-
jugation.1414 During degradation of the parental old macro-
nucleus, the envelope of the nucleus becomes MDC- and
LysoTracker Red-stainable without sequestration of the
nucleus by a double membrane and with the exposure of cer-
tain sugars and phosphatidylserine on the envelope.1415 Sub-
sequently, lysosomes fuse only to the old parental
macronucleus, but other co-existing nuclei such as develop-
ing new macro- and micronuclei are unaffected.1415 Using
gene technology it has been shown that ATG8 and VPS34
play critical roles in nuclear degradation.1416,1417 Knockout
mutations of the corresponding genes result in a block in
nuclear acidification, suggesting that these proteins function
in lysosome-nucleus fusion. In addition, the envelope of the
nucleus in the VPS34 knockout mutant does not become
stainable with MDC. This evidence suggests that selective
autophagy may be involved in the degradation of the paren-
tal macronucleus and implies a link between VPS34 and
ATG8 in controlling this event.

19. Rainbow trout

Salmonids (e.g., salmon, rainbow trout) experience long peri-
ods of fasting often associated with seasonal reductions in
water temperature and prey availability or spawning
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migrations. As such, they represent an interesting model sys-
tem for studying and monitoring the long-term induction of
autophagy. Moreover, the rainbow trout (Oncorhynchus
mykiss) displays unusual metabolic features that may allow
us to gain a better understanding of the nutritional regula-
tion of this degradative system (i.e., a high dietary protein
requirement, an important use of amino acids as energy
sources, and an apparent inability to metabolize dietary car-
bohydrates). It is also probably one of the most deeply stud-
ied fish species with a long history of research carried out in
physiology, nutrition, ecology, genetics, pathology, carcino-
genesis and toxicology.1418 Its relatively large size compared
to model fish, such as zebrafish or medaka, makes rainbow
trout a particularly well-suited alternative model to carry out
biochemical and molecular studies on specific tissues or cells
that are impossible to decipher in small fish models. The
genomic resources in rainbow trout are now being exten-
sively developed; a high-throughput DNA sequencing pro-
gram of EST has been initiated associated with numerous
transcriptomics studies,1419-1422 and the full genome
sequence is now available.

Most components of the autophagy and associated sig-
naling pathways (AKT, TOR, AMPK, FOXO) are evolution-
arily conserved in rainbow trout;628,1423-1425 however, not all
ATG proteins and autophagy-regulatory proteins are
detected by the commercially available antibodies produced
against their mammalian orthologs. Nonetheless, the
expressed sequence transcript databases facilitate the design
of targeting constructs. For steady-state measurement, auto-
phagy can be monitored by western blot or by immunofluo-
rescence using antibodies to ATG8/LC3.1425 Flux
measurements can be made in a trout cell culture model
(for example, in primary culture of trout myocytes) by fol-
lowing ATG8/LC3 turnover in the absence and presence of
bafilomycin A1. It is also possible to monitor the mRNA
levels of ATG genes by real-time PCR using primer sequen-
ces chosen from trout sequences available in the above-
mentioned expressed sequence transcript database. A major
challenge in the near future will be to develop for this
model the use of RNAi-mediated gene silencing to analyze
the role of some signaling proteins in the control of auto-
phagy, and also the function of autophagy-related proteins
in this species.

20. Sea urchin

Sea urchin embryo is an appropriate model system for
studying and monitoring autophagy and other defense
mechanisms activated during physiological development
and in response to stress.956 This experimental model offers
the possibility of detecting LC3 through both western blot
and immunofluorescence in situ analysis. Furthermore, in
vivo staining of autolysosomes with acidotropic dyes can
also be carried out. Studies on whole embryos make it pos-
sible to obtain qualitative and quantitative data for auto-
phagy and also to get information about spatial localization
aspects in cells that interact among themselves in their nat-
ural environment. Furthermore, since embryogenesis of this
model system occurs simply in a culture of sea water, it is

very easy to study the effects of inducers or inhibitors of
autophagy by adding these substances directly into the cul-
ture. Exploiting this potential, it has recently been possible
to understand the functional relationship between auto-
phagy and apoptosis induced by cadmium stress during sea
urchin development. In fact, inhibition of autophagy by 3-
MA results in a concurrent reduction of apoptosis; however,
using a substrate for ATP production, methyl pyruvate,
apoptosis (assessed by TUNEL assay and cleaved CASP3
immunocytochemistry) is substantially induced in cad-
mium-treated embryos where autophagy is inhibited. There-
fore, autophagy could play a crucial role in the stress
response of this organism since it could energetically con-
tribute to apoptotic execution through its catabolic role.1426

Cautionary notes include the standard recommendation
that it is always preferable to combine molecular and mor-
phological parameters to validate the data.

21. Ticks

In the hard tick Haemaphysalis longicornis, endogenous auto-
phagy-related proteins (Atg6 and Atg12) can be detected by
western blotting and/or by immunohistochemical analysis of
midgut sections.1427,1428 It is also possible to detect endoge-
nous Atg3 and Atg8 by western blotting using antibodies pro-
duced against the H. longicornis proteins (R. Umemiya-
Shirafuji, unpublished results). Commercial antibodies against
mammalian ATG orthologs (ATG3, ATG5, and BECN1) can
also be used for western blotting. However, when the tick
samples include blood of a host animal, the animal species
immunized with autophagy-related proteins should be
checked before use to avoid nonspecific background cross-
reactivity. In addition to these methods, TEM is recom-
mended to detect autophagosomes and autolysosomes.
Although acidotropic dyes can be useful as a marker for auto-
lysosomes in some animals, careful attention should be taken
when using the dyes in ticks. Since the midgut epithelial cells
contain acidic organelles (e.g., lysosomes) that are related to
blood digestion during blood feeding, this method may cause
confusion. It is difficult to distinguish between autophagy
(autolysosomes) and blood digestion (lysosomes) with acido-
tropic dyes. Another available monitoring method is to assess
the mRNA levels of tick ATG genes by real-time PCR.1429,1430

However, this method should be used along with other
approaches such as western blotting, immunostaining, and
TEM as described in this article. Unlike model insects, such as
Drosophila, powerful genetic tools to assess autophagy are still
not established in ticks. However, RNAi-mediated gene silenc-
ing is now well established in ticks,1431 and is currently being
developed to analyze the function of autophagy-related genes
in ticks during nonfeeding periods (R. Umemiya-Shirafuji,
unpublished results) and in response to pathogen infection.
Recently, “omics” technologies such as transcriptomics and
proteomics have been applied to the study of apoptosis path-
ways in Ixodes scapularis ticks in response to infection with
Anaplasma phagocytophilum.1432 I. scapularis, the vector of
Lyme disease and human granulocytic anaplasmosis, is the
only tick species for which genome sequence information is
available (assembly JCVI_ISG_i3_1.0; http://www.ncbi.nlm.
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nih.gov/nuccore/NZ_ABJB000000000). For related tick species
such as I. ricinus, mapping to the I. scapularis genome sequence
is possible,1433 but for other tick species more sequence infor-
mation is needed for these analyses.

22. Zebrafish

Zebrafish (Danio rerio) have many characteristics that make
them a valuable vertebrate model organism for the analysis of
autophagy. For example, taking advantage of the transparency
of embryos, autophagosome formation can be visualized in
vivo during development using transgenic GFP-Lc3 and GFP-
Gabarap fish.36,1434,1435 Visualization of later-stage embryos is
enhanced when medium is supplemented with 1-phenyl-2-
thiourea, which inhibits melanogenesis, or through the use of
strains with mutations affecting pigment production. Lyso-
somes can also be readily detected in vivo by the addition of
LysoTracker Red to fish media prior to visualization. Addition-
ally, protocols have been developed to monitor Lc3 protein lev-
els and conjugation to PE by western blot analysis using
commercially available Lc3 antibodies.36,1436

Because of their translucent character and external fertilization
and development, zebrafish have proven to be an exceptional
choice for developmental research. In situ hybridization of whole
embryos can be performed to determine expression patterns.
Knockdown of gene function is performed by treatment with mor-
pholinos; the core autophagy machinery protein Gabarap,1437 and
regulatory proteins such as the phosphoinositide phosphatase
Mtmr14,1438 Raptor and Mtor,1439 have all been successfully
knocked down by morpholino treatment. The CRISPR/Cas system
is now being used for efficient targeted gene deletions.

Zebrafish are ideal organisms for in vivo drug discovery and/or
verification because of their relatively small size and aqueous habi-
tat, and several chemicals have been identified that modulate
zebrafish autophagy activity.1436 Many chemicals can be added to
the media and are absorbed directly through the skin. Because of
simple drug delivery and rapid embryonic development, zebrafish
are a promising organism for the study of autophagy’s role in dis-
ease including Huntington disease,1201 Alzheimer disease,1440 and
myofibrillar myopathy.1441,1442 In the case of infection, studies in
zebrafish have made important contributions to understanding
the role of bacterial autophagy in vivo.1443,1444 Zebrafish studies
have also contributed to understanding the role of autophagy in
different aspects of development, including cardiac morphogene-
sis, caudal fin regeneration,1445 and muscle and brain
development.1434,1446,1447

D. Noncanonical use of autophagy-related proteins

1. LC3-associated phagocytosis

Although the lipidation of LC3 to form LC3-II is a commonly
used marker of macroautophagy, studies have established that
LC3-II can also be targeted to phagosomes to promote matura-
tion independently of traditional autophagy, in a noncanonical
autophagic process termed LC3-associated phagocytosis.1,26,1448

LAP occurs upon engulfment of particles that engage a recep-
tor-mediated signaling pathway, resulting in the recruitment of
some but not all of the autophagic machinery to the

phagosome. These autophagic components facilitate rapid
phagosome maturation and degradation of engulfed cargo, and
play roles in the generation of signaling molecules and regula-
tion of immune responses.179,180,1449 LAP thus represents a
unique process that marries the ancient pathways of phagocy-
tosis and autophagy.

Despite overlap in molecular machinery, there currently
exist several criteria by which to differentiate LAP from
macroautophagy: (a) Whereas LC3-decorated autophagosomes
can take hours to form, LC3 can be detected on LAP-engaged
phagosomes as early as 10 min after phagocytosis, and
PtdIns3P can also be seen at LAP-engaged phagosomes
minutes after phagocytosis.180,182,1449 (b) EM analysis reveals
that LAP involves single-membrane structures.182 In contrast,
macroautophagy is expected to generate double-membrane
structures surrounding cargo. (c) Whereas most of the core
autophagy components are required for LAP, the 2 processes
can be distinguished by the involvement of the pre-initiation
complex. RB1CC1, ATG13, and ULK1 are dispensable for
LAP, which provides a convenient means for distinguishing
between the 2 processes.180,1449 (d) LAP involves LC3 recruit-
ment in a manner that requires ROS production by the
NADPH oxidase family, notably CYBB/NOX2/gp91phox. It
should be noted that most cells express at least one member of
the NADPH oxidase family. Silencing of the common subunits,
CYBB or CYBA/p22phox, is an effective way to disrupt NADPH
oxidase activity and therefore LAP. It is anticipated that more
specific markers of LAP will be identified as this process is fur-
ther characterized.

Finally, an ATG5- and CTSL-dependent cell death process
has been reported that can be activated by the small molecule
NID-1; this process depends on PtdIns3K signaling, generates
LC3B puncta and single-membrane vacuoles, and results in the
clearance of SQSTM1. Thus, LAP and/or related processes can
be co-opted to cause cell death in some cases.1450

2. LC3-associated apicoplast

In the Apicomplexa parasitic protists (e.g., T. gondii and Plas-
modium spp.), the single ATG8 homolog localizes to an endo-
symbiotic nonphotosynthetic plastid, called the
apicoplast.1408,1451-1454 This organelle is the product of a sec-
ondary endosymbiotic event, in which a red alga was endocy-
tosed by an auxotrophic eukaryote (ancestor of an
apicomplexan parasite); the apicoplast is the main remnant of
this red alga. This organelle is approximately 300 nm in diame-
ter, and is composed of 4 membranes that trace their ancestry
to 3 different organisms. The outermost membranes of the api-
coplast are derived from the plasma membrane of the auxotro-
phic eukaryote and the plasma membrane of the internalized
alga. ATG8 is located in the outermost membranes that are
enriched in PtdIns3P, which marks autophagic structures in
mammalian cells; at that location it plays a role in the centro-
some-mediated inheritance of the organelle in daughter cells
during parasite division (M. L�evêque and S. Besteiro, unpub-
lished results). Consequently, caution must be taken when
identifying stress-induced autophagosomes by electron micros-
copy or by fluorescence microscopy with ATG8 labeling in
these parasites.
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3. LC3 conjugation system for IFNG-mediated pathogen
control

Similar to LAP, LC3 localizes on the parasitophorus vacuole
membrane (PVM) of T. gondii.181 The parasitophorus vacuole
is a vesicle-like structure formed from host plasma membrane
during the invasion of T. gondii, and it sequesters and protects
the invasive T. gondii from the hostile host cytoplasm. The cell-
autonomous immune system uses IFNG-induced effectors,
such as immunity related GTPases and guanylate binding pro-
teins (GBPs), to attack and disrupt this type of membrane
structure; consequently, naked T. gondii in the cytoplasm are
killed by a currently unknown mechanism. Intriguingly, proper
targeting of these effectors onto the PVM of T. gondii requires
the autophagic ubiquitin-like conjugation system, including
ATG7, ATG3, and the ATG12–ATG5-ATG16L1 complex,
although the necessity of LC3-conjugation itself for the target-
ing is not yet clear. In contrast, up- or downregulation of
canonical autophagy using rapamycin, wortmannin, or starva-
tion do not significantly affect the IFNG-mediated control of T.
gondii. Furthermore, the degradative function or other compo-
nents of the autophagy pathway, such as ULK1/2 and ATG14,
are dispensable. Many groups have confirmed the essential
nature of the LC3-conjugation system for the control of T. gon-
dii,1455-1457 and the same or a similar mechanism also functions
against other pathogens such as murine norovirus and Chla-
mydia trachomatis.1208,1455 Although topologically and mecha-
nistically similar to LAP, the one notable difference is that the
parasitophorous vacuole of T. gondii is actively made by the
pathogen itself using host membrane, and the LC3-conjugation
system-dependent targeting happens even in nonphagocytic
cells. GBP-mediated lysis of pathogen-containing vacuoles is
important for the activation of noncanonical inflamma-
somes,1458 but the targeting mechanism of GBPs to the vacuoles
is unknown. Considering the necessity of the LC3-conjugation
system to target GBPs to the PVM of T. gondii, this system
may play crucial roles in the general guidance of various effec-
tor molecules to target membranes as well as in selective auto-
phagosome-dependent sequestration, phagophore membrane
expansion and autophagosome maturation.

4. Intracellular trafficking of bacterial pathogens

Some ATG proteins are involved in the intracellular trafficking
and cell-to-cell spread of bacterial pathogens by noncanonical
autophagic pathways. For example, ATG9 and WIPI1, but not
ULK1, BECN1, ATG5, ATG7 or LC3B are required for the
establishment of an endoplasmic reticulum-derived replicative
niche after cell invasion with Brucella abortus.1459 In addition,
the cell-to-cell transmission of B. abortus seems to be depen-
dent on ULK1, ATG14 and PIK3C3/VPS34, but independent
of ATG5, ATG7, ATG4B and ATG16L1.1460

5. Other processes

ATG proteins are involved in various other nonautophagic pro-
cesses, particularly apoptosis and noncanonical protein secre-
tion, as discussed in various papers.27,75,76,544,572,1449,1461-1465,1466

E. Interpretation of in silico assays for monitoring
autophagy

The increasing availability of complete (or near complete)
genomes for key species spanning the eukaryotic domain pro-
vides a unique opportunity for delineating the spread of auto-
phagic machinery components in the eukaryotic world.1467,1468

Fast and sensitive sequence similarity search procedures are
already available; an increasing number of experimental biolo-
gists are now comfortable “BLASTing” their favorite sequences
against the ever-increasing sequence databases for identifying
putative homologs in different species.1469 Nevertheless, several
limiting factors and potential pitfalls need to be taken into
account.

In addition to sequence comparison approaches, a number
of computational tools and resources related to autophagy have
become available online. All the aforementioned methods and
approaches may be collectively considered as “in silico assays”
for monitoring autophagy, in the sense that they can be used to
identify the presence of autophagy components in different
species and provide information on their known or predicted
associations.

In the following sections we briefly present relevant in silico
approaches, highlighting their strengths while underscoring
some inherent limitations, with the hope that this information
will provide guidelines for the most appropriate usage of these
resources.

1. Sequence comparison and comparative genomics
approaches

Apart from the generic shortcomings when performing
sequence comparisons (discussed in ref. 1470), there are some
important issues that need to be taken into account, especially
for autophagy-related proteins. Since autophagy components
seem to be conserved throughout the eukaryotic domain of life,
the deep divergent relations of key subunits may reside in the
so called “midnight zone” of sequence similarity: i.e., genuine
orthologs may share even less than 10% sequence identity at
the amino acid sequence level.1471 This is the case with auto-
phagy subunits in protists1472,1473 and with other universally
conserved eukaryotic systems, as for example the nuclear pore
complex.1474 This low sequence identity is especially pro-
nounced in proteins that contain large intrinsically disordered
regions.1475 In such cases, sophisticated (manual) iterative data-
base search protocols, including proper handling of composi-
tionally biased subsequences and considering domain
architecture may assist in eliminating spurious similarities or in
the identification of homologs that share low sequence identity
with the search molecule.1473-1475

Genome-aware comparative genomics methods1476 can also
provide invaluable information on yet unidentified components
of autophagy. However, care should be taken to avoid possible
Next Generation Sequencing artifacts (usually incorrect
genome assemblies): these may directly (via a similarity to a
protein encoded in an incorrectly assembled genomic region)
or indirectly (via propagating erroneous annotations in data-
bases) give misleading homolog assignments (V.J. Promponas,
I. Iliopoulos and C.A. Ouzounis, submitted). In addition, taking
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into account other types of high-throughput data available in
publicly accessible repositories (e.g., EST/RNAseq data, expres-
sion data) can provide orthogonal evidence for validation pur-
poses when sequence similarities are marginal.1474

2. Web-based resources related to autophagy

A number of autophagy-related resources are now available
online, providing access to diverse data types ranging from
gene lists and sequences to comprehensive catalogs of physical
and indirect interactions. In the following we do not attempt to
review all functionalities offered by the different servers, but to
highlight those that (a) offer possibilities for identifying novel
autophagy-related proteins or (b) characterize features that
may link specific proteins to autophagic processes. Two com-
ments regarding biological databases in general also apply to
autophagy-related resources as well: (a) the need for regular
updates, and (b) data and annotation quality. Nevertheless,
these issues are not discussed further herein.

a. The THANATOS database
THANATOS (THe Apoptosis, Necrosis, AuTophagy Orches-
tratorS) is a resource being developed by the CUCKOO Work-
group at the Huazhong University of Science and Technology
(Wuhan, Hubei,China). THANATOS is still under develop-
ment (Y. Xue, personal communication) and it is focused on
the integration of sequence data related to the main mecha-
nisms leading to programmed cell death in eukaryotes. A sim-
ple web interface assists in data retrieval, using keyword
searches, browsing by species and cell death type, performing
BLAST searches with user-defined sequences, and by request-
ing the display of orthologs among predefined species. A Java
application is also available to download for standalone usage
of the THANATOS resource. The THANATOS database is
publicly available online at the URL http://thanatos.biocuckoo.
org/.

b. The Human Autophagy Database (HADb)
The human autophagy database, developed in the Laboratory of
Experimental Hemato-Oncology (Luxembourg), lists over 200
human genes/proteins related to autophagy.604 These entries
have been manually collected from the biomedical literature
and other online resources604 and there is currently no infor-
mation that the initially published list has been further updated.
For each gene there exists information on its sequence, tran-
scripts and isoforms (including exon boundaries) as well as
links to external resources. HADb provides basic search and
browsing functionalities and is publicly available online at the
URL http://autophagy.lu/.

c. The Autophagy Database
The Autophagy Database is a multifaceted online resource pro-
viding information for proteins related to autophagy and their
homologs across several eukaryotic species, with a focus on
functional and structural data.1477 It is developed by the
National Institute of Genetics (Japan) under the Targeted Pro-
teins Research Program of the Ministry of Education, Culture,
Sports, Science and Technology (http://www.tanpaku.org/).
This resource is regularly updated and as of August 2014

contained information regarding 312 reviewed protein entries;
when additional data regarding orthologous/homologous pro-
teins from more than 50 eukaryotes is considered, the total
number of entries reaches approximately 9,000. In addition to
the browse functionalities offered under the “Protein List” and
the “Homologs” menus, an instance of the NCBI-BLAST soft-
ware facilitates sequence-based queries against the database
entries. Moreover, interested users may download the gene list
or the autophagy dump files licensed under a Creative Com-
mons Attribution-ShareAlike 2.1 Japan License. The Auto-
phagy Database is publicly available online at the URL http://
www.tanpaku.org/autophagy/index.html.

d. The Autophagy Regulatory Network (ARN)
The most recent addition to the web-based resources relevant
to autophagy research is the Autophagy Regulatory Network
(ARN), developed at the E€otv€os Lor�and University and Sem-
melweis University (Budapest, Hungary) in collaboration with
the Institute of Food Research and The Genome Analysis Cen-
tre (Norfolk, UK). Maintanence and hosting the ARN resource
is secured at The Genome Analysis Centre until at least 2019.
ARN is an integrated systems-level resource aiming to collect
and provide an interactive user interface enabling access to vali-
dated or predicted protein-protein, transcription factor-gene
and miRNA-mRNA interactions related to autophagy in
human.1479 ARN contains data from 26 resources, including an
in-house extensive manual curation, the dataset of the ChIP-
MS study of Behrends et al.,464 ADB and ELM. As of June
2015, a total of more than 14,000 proteins and 386 miRNAs are
present in ARN, including 38 core autophagy proteins and 113
predicted regulators. Importantly, all autophagy-related pro-
teins are linked to major signaling pathways. A flexible—in
terms of both content and format—download functionality
enables users to locally use the ARN data under the Creative
Commons Attribution-NonCommercial-ShareAlike 3.0
Unported License. The autophagy regulatory network resource
is publicly available online at the URL http://autophagy-regula
tion.org.

e. Prediction of Atg8-family interacting proteins
Being central components of the autophagic core machinery,
Atg8-family members (e.g., LC3 and GABARAP in mammals)
and their interactome have attracted substantial inter-
est.464,1479,1480 During the last decade, a number of proteins
have been shown to interact with Atg8 homologs via a short
linear peptide; depending on context, different research groups
have described this peptide as the LIR,319 the LC3 recognition
sequence (LRS),661 or the AIM.1481 Recently, 2 independent
efforts resulted in the first online available tools for identifica-
tion of these motifs (LIR-motifs for brevity) in combination
with other sequence features, which may signify interesting tar-
gets for further validation (see below).

f. The iLIR server
The iLIR server is a specialized web server that scans an input
sequence for the presence of a degenerate version of LIR, the
extended LIR-motif (xLIR).1482 Currently, the server also
reports additional matches to the “canonical” LIR motif
(WxxL), described by the simple regular expression x(2)-
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[WFY]-x(2)-[LIV]. Kalvari and colleagues have also compiled a
position-specific scoring matrix (PSSM) based on validated
instances of the LIR motif, demonstrating that many of the false
positive hits (i.e., spurious matches to the xLIR motif) are elimi-
nated when a PSSM score >15 is sought. In addition, iLIR also
overlays the aforementioned results to segments that reside in
or are adjacent to disordered regions and are likely to form sta-
bilizing interactions upon binding to another globular protein
as predicted by the ANCHOR package.1483 A combination of
an xLIR match with a high PSSM score (>13) and/or an over-
lap with an ANCHOR segment is shown to give reliable predic-
tions.1482 It is worth mentioning that, intentionally, iLIR does
not provide explicit predictions of functional LIR-motifs but
rather displays all the above information accompanied by a
graphical depiction of query matches to known protein
domains and motifs; it is up to the user to interpret the iLIR
output. As mentioned in the original iLIR publication, a limita-
tion of this tool is that it does not handle any noncanonical LIR
motifs at present. The iLIR server was jointly developed by the
University of Warwick and University of Cyprus and is freely
available online at the URL http://repeat.biol.ucy.ac.cy/iLIR.

g. The Eukaryotic Linear Motif resource (ELM)
The Eukaryotic Linear Motif resource1484 is a generic resource
for examining functional sites in proteins in the form of short
linear motifs, which have been manually curated from the liter-
ature. Sophisticated filters based on known (or predicted) query
features (such as taxonomy, subcellular localization, structural
context) are used to narrow down the results lists, which can be
very long lists of potential matches due to the short lengths of
ELMs. This resource has incorporated 4 entries related to the
LIR-motif (since May 2014; http://elm.eu.org/infos/news.html),
while another 3 are being evaluated as candidate ELM additions
(Table 3). Again, the ELM resource displays matches to any
motifs and users are left with the decision as to which of them
are worth studying further. ELM is developed/maintained by a
consortium of European groups coordinated by the European
Molecular Biology Laboratory and is freely available online at
the URL http://elm.eu.org.

h. The ncRNA-associated cell death database (ncRDeathDB)
The noncoding RNA (ncRNA)-associated cell death database
(ncRDeathDB),1485 most recently developed at the Harbin

Medical University (Harbin, China) and Shantou University
Medical College (Shantou, China), documents a total of more
than 4,600 ncRNA-mediated programmed cell death entries.
Compared to previous versions of the miRDeathDB,1486-1488

the ncRDeathDB further collected a large amount of published
data describing the roles of diverse ncRNAs (including micro-
RNA, long noncoding RNA/lncRNA and small nucleolar
RNA/snoRNA) in programmed cell death for the purpose of
archiving comprehensive ncRNA-associated cell death interac-
tions. The current version of ncRDeathDB provides an
all-inclusive bioinformatics resource on information detailing
the ncRNA-mediated cell death system and documents 4,615
ncRNA-mediated programmed cell death entries (including
1,817 predicted entries) involving 12 species, as well as 2,403
apoptosis-associated entries, 2,205 autophagy-associated
entries and 7 necrosis-associated entries. The ncRDeathDB
also integrates a variety of useful tools for analyzing RNA-
RNA and RNA-protein binding sites and for network visuali-
zation. This resource will help researchers to visualize and
navigate current knowledge of the noncoding RNA compo-
nent of cell death and autophagy, to uncover the generic orga-
nizing principles of ncRNA-associated cell death systems, and
to generate valuable biological hypotheses. The ncRNA-associ-
ated cell death interactions resource is publicly available
online at the URL http://www.rna-society.org/ncrdeathdb.

3. Dynamic and mathematical models of autophagy

Mathematical modeling methods and approaches can be used
as in silico models to study autophagy. For example, a systems
pharmacology approach has been used to build an integrative
dynamic model of interaction between macroautophagy and
apoptosis in mammalian cells.1489 This model is a general pre-
dictive in silico model of macroautophagy, and the model has
translated the signaling networks that control cell fate concern-
ing the crosstalk of macroautophagy and apoptosis to a set of
ordinary differential equations.1489,1490 The model can be
adapted for any type of cells including cancer cell lines and
drug interventions by adjusting the numerical parameters
based on experimental data.1490 Another example is seen with
an agent-based mathematical model of autophagy that focuses
on the dynamic process of autophagosome formation and deg-
radation in cells,1491 and there is a mathematical model of

Table 3. Eukaryotic linear motif entries related to the LIR-motif (obtained from http://elm.eu.org/).

ELM identifier ELM Description Status

LIG_LIR_Gen_1 [EDST].{0,2}[WFY]..[ILV] Canonical LIR motif that binds to Atg8 protein family members to mediate
processes involved in autophagy.

ELM

LIG_LIR_Apic_2 [EDST].{0,2}[WFY]..P Apicomplexa-specific variant of the canonical LIR motif that binds to Atg8
protein family members to mediate processes involved in autophagy.

ELM

LIG_LIR_Nem_3 [EDST].{0,2}[WFY]..[ILVFY] Nematode-specific variant of the canonical LIR motif that binds to Atg8
protein family members to mediate processes involved in autophagy.

ELM

LIG_LIR_LC3C_4 [EDST].{0,2}LVV Noncanonical variant of the LIR motif that binds to Atg8 protein family
members to mediate processes involved in autophagy.

ELM

LIG_AIM [WY]..[ILV] Atg8-family interacting motif found in Atg19, SQSTM1/p62, ATG4B and CALR/
calreticulin, involved in autophagy-related processes.

Candidate

LIG_LIR WxxL or [WYF]xx[LIV] The LIR might link ubiquitinated substrates that should be degraded to the
autophagy-related proteins in the phagophore membrane.

Candidate

LIG_GABARAP W.FL GABAA receptor binding to clathrin and CALR; possibly linked to trafficking. Candidate
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macroautophagy that can be used to interpret the formation of
autophagosomes in single cells.1492 As this aspect of the field
progresses we will likely start to see these models used to help
predict and understand autophagic responses to new therapeu-
tic treatments.

Conclusions and future perspectives

There is no question that research on the topic of autophagy
has expanded dramatically since the publication of the first set
of guidelines.2 To help keep track of the field we have published
a glossary of autophagy-related molecules and pro-
cesses,1493,1494 and now include the glossary as part of these
guidelines.

With this continued influx of new researchers we think it is
critical to try to define standards for the field. Accordingly, we
have highlighted the uses and caveats of an expanding set of
recommended methods for monitoring macroautophagy in a
wide range of systems (Table 4). Importantly, investigators
need to determine whether they are evaluating levels of early or
late autophagic compartments, or autophagic flux. If the ques-
tion being asked is whether a particular condition changes
autophagic flux (i.e., the rate of delivery of autophagy substrates

to lysosomes or the vacuole, followed by degradation and
efflux), then assessment of steady state levels of autophago-
somes (e.g., by counting GFP-LC3 puncta, monitoring the
amount of LC3-II without examining turnover, or by single
time point electron micrographs) is not sufficient as an isolated
approach. In this case it is also necessary to directly measure
the flux of autophagosomes and/or autophagy cargo (e.g., in
wild-type cells compared to autophagy-deficient cells, the latter
generated by treatment with an autophagy inhibitor or result-
ing from ATG gene knockdowns). Collectively, we strongly rec-
ommend the use of multiple assays whenever possible, rather
than relying on the results from a single method.

As a final reminder, we stated at the beginning of this article
that this set of guidelines is not meant to be a formulaic compi-
lation of rules, because the appropriate assays depend in part
on the question being asked and the system being used. Rather,
these guidelines are presented primarily to emphasize key
issues that need to be addressed such as the difference between
measuring autophagy components, and flux or substrate clear-
ance; they are not meant to constrain imaginative approaches
to monitoring autophagy. Indeed, it is hoped that new methods
for monitoring autophagy will continue to be developed, and
new findings may alter our view of the current assays. Similar

Table 4. Recommended methods for monitoring autophagy.

Method Description

1. Electron microscopy Quantitative electron microscopy, immuno-TEM; monitor autophagosome
number, volume, and content/cargo.

2. Atg8/LC3 western blotting Western blot. The analysis is carried out in the absence and presence of
lysosomal protease or fusion inhibitors to monitor flux; an increase in the
LC3-II amount in the presence of the inhibitor is usually indicative of flux.

3. GFP-Atg8/LC3 lysosomal delivery and proteolysis Western blotC/¡ lysosomal fusion or degradation inhibitors; the generation
of free GFP indicates lysosomal/vacuolar delivery.

4. GFP-Atg8/LC3 fluorescence microscopy Fluorescence microscopy, flow cytometry to monitor vacuolar/lysosomal
localization. Also, increase in punctate GFP-Atg8/LC3 or Atg18/WIPI, and
live time-lapse fluorescence microscopy to track the dynamics of GFP-
Atg8/LC3-positive structures.

5. Tandem mRFP/mCherry-GFP fluorescence microscopy, Rosella Flux can be monitored as a decrease in green/red (yellow) fluorescence
(phagophores, autophagosomes) and an increase in red fluorescence
(autolysosomes).

6. Autophagosome quantification FACS/flow cytometry.
7. SQSTM1 and related LC3 binding protein turnover The amount of SQSTM1 increases when autophagy is inhibited and

decreases when autophagy is induced, but the potential impact of
transcriptional/translational regulation or the formation of insoluble
aggregates should be addressed in individual experimental systems.

8. MTOR, AMPK and Atg1/ULK1 kinase activity Western blot, immunoprecipitation or kinase assays.
9. WIPI fluorescence microscopy Quantitative fluorescence analysis using endogenous WIPI proteins, or GFP-

or MYC-tagged versions. Suitable for high-throughput imaging
procedures.

10. Bimolecular fluorescence complementation Can be used to monitor protein-protein interaction in vivo.
11. FRET Interaction of LC3 with gangliosides to monitor autophagosome formation.
12. Transcriptional and translational regulation Northern blot, or qRT-PCR, autophagy-dedicated microarray.
13. Autophagic protein degradation Turnover of long-lived proteins to monitor flux.
14. Pex14-GFP, GFP-Atg8, Om45-GFP, mitoPho8D60 A range of assays can be used to monitor selective types of autophagy. These

typically involve proteolytic maturation of a resident enzyme or
degradation of a chimera, which can be followed enzymatically or by
western blot.

15. Autophagic sequestration assays Accumulation of cargo in autophagic compartments in the presence of
lysosomal protease or fusion inhibitors by biochemical or multilabel
fluorescence techniques.

16. Turnover of autophagic compartments Electron microscopy with morphometry/stereology at different time points.
17. Autophagosome-lysosome colocalization and dequenching assay Fluorescence microscopy.
18. Sequestration and processing assays in plants Chimeric RFP fluorescence and processing, and light and electron

microscopy.
19. Tissue fractionation Centrifugation, western blot and electron microscopy.
20. Degradation of endogenous lipofuscin Fluorescence microscopy.
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to the process of autophagy, this is a dynamic field, and we
need to remain flexible in the standards we apply.

Acknowledgments

In a rapidly expanding and highly dynamic field such as autophagy, it is
possible that some authors who should have been included on this article
have been missed. D.J.K. extends his apologies to researchers in the field of
autophagy who, due to oversight or any other reason, could not be
included on this article. I also note that two of our colleagues on this man-
uscript have passed away: Arlette Darfeuille-Michaud and Wouter van
Doorn.

Funding

This work was supported in part by the National Institutes of Health,
including Public Health Service grant GM053396 to D.J.K. Due to space
and other limitations, it is not possible to include all other sources of
financial support.

Disclaimer

The views expressed in this article are those of the authors and do not
necessarily reflect the official policy or position of the Department of
Veterans Affairs, the U.S. Food and Drug Administration or the Depart-
ment of Health and Human Services, nor does mention of trade names,
commercial products, or organizations imply endorsement by the U.S.
government.

References

1. Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-
Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-
Ghiso JA, et al. Guidelines for the use and interpretation of assays
for monitoring autophagy. Autophagy 2012; 8:445-544; http://dx.
doi.org/10.4161/auto.19496.

2. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G,
Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A, et al.
Guidelines for the use and interpretation of assays for monitoring
autophagy in higher eukaryotes. Autophagy 2008; 4:151-75; http://
dx.doi.org/10.4161/auto.5338.

3. Klionsky DJ, Cuervo AM, Seglen PO. Methods for monitoring
autophagy from yeast to human. Autophagy 2007; 3:181-206;
http://dx.doi.org/10.4161/auto.3678.

4. Xia HG, Najafov A, Geng J, Galan-Acosta L, Han X, Guo Y, Shan B,
Zhang Y, Norberg E, Zhang T, et al. Degradation of HK2 by chaper-
one-mediated autophagy promotes metabolic catastrophe and cell
death. J Cell Biol 2015; 210:705-16; http://dx.doi.org/10.1083/
jcb.201503044.

5. Klionsky DJ. The autophagosome is overrated! Autophagy 2011;
7:353-4; http://dx.doi.org/10.4161/auto.7.4.14730.

6. Eskelinen E-L, Reggiori F, Baba M, Kovacs AL, Seglen PO. Seeing is
believing: The impact of electron microscopy on autophagy
research. Autophagy 2011; 7:935-56; http://dx.doi.org/10.4161/
auto.7.9.15760.

7. Seglen PO. Regulation of autophagic protein degradation in isolated
liver cells. In: Glaumann H and Ballard FJ, eds. Lysosomes:
Their Role in Protein Breakdown. London: Academic Press, 1987:
369-414.

8. de Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol
1966; 28:435-92; http://dx.doi.org/10.1146/annurev.ph.28.030166.
002251.

9. Gordon PB, Seglen PO. Prelysosomal convergence of autophagic
and endocytic pathways. Biochem Biophys Res Commun 1988;
151:40-7; http://dx.doi.org/10.1016/0006-291X(88)90556-6.

10. Dice JF, Klionsky DJ. Artophagy, the art of autophagy–macroauto-
phagy. Autophagy 2010; 6.

11. Lucocq JM, Hacker C. Cutting a fine figure: On the use of thin sec-
tions in electron microscopy to quantify autophagy. Autophagy
2013; 9:1443-8; http://dx.doi.org/10.4161/auto.25570.

12. Kov�acs J, Fellinger E, Karpati AP, Kov�acs AL, Laszlo L, R�ez G. Mor-
phometric evaluation of the turnover of autophagic vacuoles after
treatment with Triton X-100 and vinblastine in murine pancreatic
acinar and seminal vesicle epithelial cells. Virchows Arch B Cell
Pathol Incl Mol Pathol 1987; 53:183-90; http://dx.doi.org/10.1007/
BF02890242.

13. Kov�acs J, Fellinger E, Karpati PA, Kov�acs AL, Laszlo L. The turn-
over of autophagic vacuoles: evaluation by quantitative electron
microscopy. Biomed Biochim Acta 1986; 45:1543-7.

14. Kov�acs J, Laszlo L, Kov�acs AL. Regression of autophagic vacuoles in
pancreatic acinar, seminal vesicle epithelial, and liver parenchymal
cells: a comparative morphometric study of the effect of vinblastine
and leupeptin followed by cycloheximide treatment. Exp Cell Res
1988; 174:244-51; http://dx.doi.org/10.1016/0014-4827(88)90158-9.

15. Chu CT. Autophagic stress in neuronal injury and disease. J Neuro-
pathol Exp Neurol 2006; 65:423-32; http://dx.doi.org/10.1097/01.
jnen.0000229233.75253.be.

16. Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z. Microtubules
support production of starvation-induced autophagosomes but not
their targeting and fusion with lysosomes. J Biol Chem 2006;
281:36303-16; http://dx.doi.org/10.1074/jbc.M607031200.

17. Kov�acs AL, Reith A, Seglen PO. Accumulation of autophagosomes
after inhibition of hepatocytic protein degradation by vinblastine,
leupeptin or a lysosomotropic amine. Exp Cell Res 1982; 137:191-
201; http://dx.doi.org/10.1016/0014-4827(82)90020-9.

18. Bestebroer J, V’Kovski P, Mauthe M, Reggiori F. Hidden behind
autophagy: the unconventional roles of ATG proteins. Traffic 2013;
14:1029-41; http://dx.doi.org/10.1111/tra.12091.

19. Luo SM, Ge ZJ, Wang ZW, Jiang ZZ, Wang ZB, Ouyang YC, Hou
Y, Schatten H, Sun QY. Unique insights into maternal mitochon-
drial inheritance in mice. Proc Natl Acad Sci USA 2013; 110:13038-
43; http://dx.doi.org/10.1073/pnas.1303231110.

20. Politi Y, Gal L, Kalifa Y, Ravid L, Elazar Z, Arama E. Paternal mito-
chondrial destruction after fertilization is mediated by a common
endocytic and autophagic pathway in Drosophila. Dev Cell 2014;
29:305-20; http://dx.doi.org/10.1016/j.devcel.2014.04.005.

21. Toth S, Nagy K, Palfia Z, Rez G. Cellular autophagic capacity
changes during azaserine-induced tumour progression in the rat
pancreas. Up-regulation in all premalignant stages and down-regu-
lation with loss of cycloheximide sensitivity of segregation along
with malignant transformation. Cell Tissue Res 2002; 309:409-16;
http://dx.doi.org/10.1007/s00441-001-0506-7.

22. Loos B, Engelbrecht AM. Cell death: a dynamic response concept.
Autophagy 2009; 5:590-603; http://dx.doi.org/10.4161/auto.5.5.
8479.

23. Seglen PO, Gordon PB, Grinde B, Solheim A, Kovacs AL, Poli A.
Inhibitors and pathways of hepatocytic protein degradation. Acta
Biol Med Ger 1981; 40:1587-98.

24. Ktistakis NT, Andrews S, Long J. What is the advantage of a tran-
sient precursor in autophagosome biogenesis? Autophagy 2011;
7:118-22; http://dx.doi.org/10.4161/auto.7.1.13697.

25. Kov�acs AL, R�ez G, P�alfia Z, Kov�acs J. Autophagy in the epithelial
cells of murine seminal vesicle in vitro. Formation of large sheets of
nascent isolation membranes, sequestration of the nucleus and inhi-
bition by wortmannin and 3-ethyladenine. Cell Tissue Res 2000;
302:253-61; http://dx.doi.org/10.1007/s004410000275.

26. Mizushima N, Yoshimori T. How to interpret LC3 immunoblot-
ting. Autophagy 2007; 3:542-5; http://dx.doi.org/10.4161/auto.4600.

27. Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kana-
seki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Discovery of
Atg5/Atg7-independent alternative macroautophagy. Nature 2009;
461:654-8; http://dx.doi.org/10.1038/nature08455.

28. Kanki T, Kang D, Klionsky DJ. Monitoring mitophagy in yeast: the
Om45-GFP processing assay. Autophagy 2009; 5:1186-9; http://dx.
doi.org/10.4161/auto.5.8.9854.

29. Grander D, Kharaziha P, Laane E, Pokrovskaja K, Panaretakis T.
Autophagy as the main means of cytotoxicity by glucocorticoids in

122 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.19496
http://dx.doi.org/10.4161/auto.5338
http://dx.doi.org/10.4161/auto.3678
http://dx.doi.org/10.1083/jcb.201503044
http://dx.doi.org/10.1083/jcb.201503044
http://dx.doi.org/10.4161/auto.7.4.14730
http://dx.doi.org/10.4161/auto.7.9.15760
http://dx.doi.org/10.4161/auto.7.9.15760
http://dx.doi.org/10.1146/annurev.ph.28.030166.<?A3B2 re3j?>002251
http://dx.doi.org/10.1146/annurev.ph.28.030166.<?A3B2 re3j?>002251
http://dx.doi.org/10.1016/0006-291X(88)90556-6
http://dx.doi.org/10.4161/auto.25570
http://dx.doi.org/10.1007/BF02890242
http://dx.doi.org/10.1007/BF02890242
http://dx.doi.org/10.1016/0014-4827(88)90158-9
http://dx.doi.org/10.1097/01.jnen.0000229233.75253.be
http://dx.doi.org/10.1097/01.jnen.0000229233.75253.be
http://dx.doi.org/10.1074/jbc.M607031200
http://dx.doi.org/10.1016/0014-4827(82)90020-9
http://dx.doi.org/10.1111/tra.12091
http://dx.doi.org/10.1073/pnas.1303231110
http://dx.doi.org/10.1016/j.devcel.2014.04.005
http://dx.doi.org/10.1007/s00441-001-0506-7
http://dx.doi.org/10.4161/auto.5.5.<?A3B2 re3j?>8479
http://dx.doi.org/10.4161/auto.5.5.<?A3B2 re3j?>8479
http://dx.doi.org/10.4161/auto.7.1.13697
http://dx.doi.org/10.1007/s004410000275
http://dx.doi.org/10.4161/auto.4600
http://dx.doi.org/10.1038/nature08455
http://dx.doi.org/10.4161/auto.5.8.9854


hematological malignancies. Autophagy 2009; 5:1198-200; http://
dx.doi.org/10.4161/auto.5.8.10122.

30. Welter E, Thumm M, Krick R. Quantification of nonselective bulk
autophagy in S. cerevisiae using Pgk1-GFP. Autophagy 2010; 6:794-
7; http://dx.doi.org/10.4161/auto.6.6.12348.

31. Raju D, Jones NL. Methods to monitor autophagy in H. pylori
vacuolating cytotoxin A (VacA)-treated cells. Autophagy 2010;
6:138-43; http://dx.doi.org/10.4161/auto.6.1.10222.

32. Geng J, Klionsky DJ. Determining Atg protein stoichiometry at the
phagophore assembly site by fluorescence microscopy. Autophagy
2010; 6:144-7; http://dx.doi.org/10.4161/auto.6.1.10249.

33. Swanlund JM, Kregel KC, Oberley TD. Investigating autophagy:
quantitative morphometric analysis using electron microscopy.
Autophagy 2010; 6:270-7; http://dx.doi.org/10.4161/auto.6.2.10439.

34. Zhang J, Ney PA. Reticulocyte mitophagy: monitoring mitochon-
drial clearance in a mammalian model. Autophagy 2010; 6:405-8;
http://dx.doi.org/10.4161/auto.6.3.11245.

35. Seglen PO, Brinchmann MF. Purification of autophagosomes from
rat hepatocytes. Autophagy 2010; 6:542-7; http://dx.doi.org/
10.4161/auto.6.4.11272.

36. He C, Klionsky DJ. Analyzing autophagy in zebrafish. Autophagy
2010; 6.

37. Calvo-Garrido J, Carilla-Latorre S, Mesquita A, Escalante R. A pro-
teolytic cleavage assay to monitor autophagy in Dictyostelium dis-
coideum. Autophagy 2011; 7:1063-8; http://dx.doi.org/10.4161/
auto.7.9.16629.

38. Xu F, Liu XH, Zhuang FL, Zhu J, Lin FC. Analyzing autophagy in
Magnaporthe oryzae. Autophagy 2011; 7:525-30; http://dx.doi.org/
10.4161/auto.7.5.15020.

39. Klionsky DJ. Autophagy: Lower Eukaryotes and Non-Mammalian
Systems, Part A. Amsterdam: Academic Press/Elsevier, 2008.

40. Klionsky DJ. Autophagy in Disease and Clinical Applications, Part
C. Amsterdam: Academic Press/Elsevier, 2008.

41. Klionsky DJ. Autophagy in Mammalian Systems, Part B. Amster-
dam: Academic Press/Elsevier, 2008.

42. Zhu J, Dagda RK, Chu CT. Monitoring mitophagy in neuronal cell
cultures. Methods Mol Biol 2011; 793:325-39; http://dx.doi.org/
10.1007/978-1-61779-328-8.

43. Klionsky DJ. Protocol URL.
44. Chu CT, Plowey ED, Dagda RK, Hickey RW, Cherra SJ, 3rd, Clark

RS. Autophagy in neurite injury and neurodegeneration: in vitro
and in vivo models. Methods Enzymol 2009; 453:217-49; http://dx.
doi.org/10.1016/S0076-6879(08)04011-1.

45. Singh PK, Singh S. Changing shapes of glycogen-autophagy nexus
in neurons: perspective from a rare epilepsy. Front Neurol 2015;
6:14; http://dx.doi.org/10.3389/fneur.2015.00014.

46. Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen auto-
phagy. Microscopy Res Tech 2004; 64:10-20; http://dx.doi.org/
10.1002/jemt.20046.

47. Kotoulas OB, Kalamidas SA, Kondomerkos DJ. Glycogen auto-
phagy in glucose homeostasis. Pathol Res Pract 2006; 202:631-8;
http://dx.doi.org/10.1016/j.prp.2006.04.001.

48. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. Monitoring
autophagy by electron microscopy in mammalian cells. Methods
Enzymol 2009; 452:143-64; http://dx.doi.org/10.1016/S0076-6879
(08)03610-0.

49. Eskelinen E-L. Maturation of autophagic vacuoles in mammalian
cells. Autophagy 2005; 1:1-10; http://dx.doi.org/10.4161/auto.1.1.1270.

50. Eskelinen E-L. To be or not to be? Examples of incorrect identifica-
tion of autophagic compartments in conventional transmission
electron microscopy of mammalian cells. Autophagy 2008; 4:257-
60; http://dx.doi.org/10.4161/auto.5179.

51. Eskelinen E-L, Kovacs AL. Double membranes vs. lipid bilayers,
and their significance for correct identification of macroautophagic
structures. Autophagy 2011; 7:931-2; http://dx.doi.org/10.4161/
auto.7.9.16679.

52. Biazik J, Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL. Ultra-
structural relationship of the phagophore with surrounding organ-
elles. Autophagy 2015; 11:439-51; http://dx.doi.org/10.1080/
15548627.2015.1017178.

53. Eskelinen E-L. Fine structure of the autophagosome. In: Deretic V,
ed. Autophagosome and Phagosome. Totowa, NJ: Humana Press,
2008:11-28; http://dx.doi.org/10.1007/978-1-59745-157-4.

54. Berg TO, Fengsrud M, Stromhaug PE, Berg T, Seglen PO. Isolation
and characterization of rat liver amphisomes. Evidence for fusion
of autophagosomes with both early and late endosomes. J Biol
Chem 1998; 273:21883-92; http://dx.doi.org/10.1074/jbc.273.34.
21883.

55. Eskelinen E-L. Macroautophagy in mammalian cells. In: Saftig P, ed.
Lysosomes. Georgetown, TX: LandesBioscience/Eurekah.com, 2005.

56. Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular mem-
brane vesicles as a mechanism of cell-to-cell communication:
advantages and disadvantages. Am J Physiol Cell Phys 2014; 306:
C621-33; http://dx.doi.org/10.1152/ajpcell.00228.2013.

57. Yang DS, Lee JH, Nixon RA. Monitoring autophagy in Alzheimer’s
disease and related neurodegenerative diseases. Methods
Enzymol 2009; 453:111-44; http://dx.doi.org/10.1016/S0076-6879
(08)04006-8.

58. Yokota S, Himeno M, Kato K. Immunocytochemical localization of
acid phosphatase in rat liver. Cell Struct Funct 1989; 14:163-71;
http://dx.doi.org/10.1247/csf.14.163.

59. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA.
Autophagy induction and autophagosome clearance in neurons:
relationship to autophagic pathology in Alzheimer’s disease. J
Neurosci 2008; 28:6926-37; http://dx.doi.org/10.1523/JNEUROSCI.
0800-08.2008.

60. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A,
Cuervo AM. Extensive involvement of autophagy in Alzheimer dis-
ease: an immuno-electron microscopy study. J Neuropath Exp
Neuro 2005; 64:113-22.

61. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe
DM, Martinez-Vicente M, Massey AC, Sovak G, et al. Lysosomal
proteolysis and autophagy require presenilin 1 and are disrupted by
Alzheimer-related PS1 mutations. Cell 2010; 141:1146-58; http://
dx.doi.org/10.1016/j.cell.2010.05.008.

62. Lee JH, McBrayer MK, Wolfe DM, Haslett LJ, Kumar A, Sato Y, Lie
PP, Mohan P, Coffey EE, Kompella U, et al. Presenilin 1 maintains
lysosomal Ca2+ homeostasis via TRPML1 by regulating vATPase-
mediated lysosome acidification. Cell Rep 2015; 12:1430-44.

63. Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann
S, Yaganoglu S, Li B, Herrmann US, Wieland B, et al. The
toxicity of antiprion antibodies is mediated by the flexible tail of the
prion protein. Nature 2013; 501:102-6; http://dx.doi.org/10.1038/
nature12402.

64. Luzio JP, Pryor PR, Bright NA. Lysosomes: fusion and function.
Nature Rev Mol Cell Biol 2007; 8:622-32; http://dx.doi.org/10.1038/
nrm2217.

65. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in
autophagosome formation. Annu Rev Cell Dev Biol 2011; 27:107-
32; http://dx.doi.org/10.1146/annurev-cellbio-092910-154005.

66. Lee S, Sato Y, Nixon RA. Lysosomal proteolysis inhibition selec-
tively disrupts axonal transport of degradative organelles and causes
an Alzheimer’s-like axonal dystrophy. J Neurosci 2011; 31:7817-30;
http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011.

67. Rabouille C, Strous GJ, Crapo JD, Geuze HJ, Slot JW. The differen-
tial degradation of two cytosolic proteins as a tool to monitor auto-
phagy in hepatocytes by immunocytochemistry. J Cell Biol 1993;
120:897-908; http://dx.doi.org/10.1083/jcb.120.4.897.

68. Kov�acs AL, P�alfia Z, R�ez G, Vellai T, Kov�acs J. Sequestration revis-
ited: integrating traditional electron microscopy, de novo assembly
and new results. Autophagy 2007; 3:655-62; http://dx.doi.org/
10.4161/auto.4590.

69. Gao W, Kang JH, Liao Y, Ding WX, Gambotto AA, Watkins SC,
Liu YJ, Stolz DB, Yin XM. Biochemical isolation and characteriza-
tion of the tubulovesicular LC3-positive autophagosomal compart-
ment. J Biol Chem 2010; 285:1371-83; http://dx.doi.org/10.1074/
jbc.M109.054197.

70. Lajoie P, Guay G, Dennis JW, Nabi IR. The lipid composition of
autophagic vacuoles regulates expression of multilamellar bodies. J
Cell Sci 2005; 118:1991-2003; http://dx.doi.org/10.1242/jcs.02324.

AUTOPHAGY 123

http://dx.doi.org/10.4161/auto.5.8.10122
http://dx.doi.org/10.4161/auto.6.6.12348
http://dx.doi.org/10.4161/auto.6.1.10222
http://dx.doi.org/10.4161/auto.6.1.10249
http://dx.doi.org/10.4161/auto.6.2.10439
http://dx.doi.org/10.4161/auto.6.3.11245
http://dx.doi.org/10.4161/auto.6.4.11272
http://dx.doi.org/10.4161/auto.7.9.16629
http://dx.doi.org/10.4161/auto.7.9.16629
http://dx.doi.org/10.4161/auto.7.5.15020
http://dx.doi.org/10.1007/978-1-61779-328-8
http://dx.doi.org/10.1016/S0076-6879(08)04011-1
http://dx.doi.org/10.3389/fneur.2015.00014
http://dx.doi.org/10.1002/jemt.20046
http://dx.doi.org/10.1016/j.prp.2006.04.001
http://dx.doi.org/10.1016/S0076-6879(08)03610-0
http://dx.doi.org/10.1016/S0076-6879(08)03610-0
http://dx.doi.org/10.4161/auto.1.1.1270
http://dx.doi.org/10.4161/auto.5179
http://dx.doi.org/10.4161/auto.7.9.16679
http://dx.doi.org/10.4161/auto.7.9.16679
http://dx.doi.org/10.1080/15548627.2015.1017178
http://dx.doi.org/10.1080/15548627.2015.1017178
http://dx.doi.org/10.1007/978-1-59745-157-4
http://dx.doi.org/10.1074/jbc.273.34.<?A3B2 re3j?>21883
http://dx.doi.org/10.1074/jbc.273.34.<?A3B2 re3j?>21883
http://dx.doi.org/10.1152/ajpcell.00228.2013
http://dx.doi.org/10.1016/S0076-6879(08)04006-8
http://dx.doi.org/10.1016/S0076-6879(08)04006-8
http://dx.doi.org/10.1247/csf.14.163
http://dx.doi.org/10.1523/JNEUROSCI.<?A3B2 re3j?>0800-08.2008
http://dx.doi.org/10.1523/JNEUROSCI.<?A3B2 re3j?>0800-08.2008
http://dx.doi.org/10.1016/j.cell.2010.05.008
http://dx.doi.org/10.1038/nature12402
http://dx.doi.org/10.1038/nature12402
http://dx.doi.org/10.1038/nrm2217
http://dx.doi.org/10.1038/nrm2217
http://dx.doi.org/10.1146/annurev-cellbio-092910-154005
http://dx.doi.org/10.1523/JNEUROSCI.6412-10.2011
http://dx.doi.org/10.1083/jcb.120.4.897
http://dx.doi.org/10.4161/auto.4590
http://dx.doi.org/10.1074/jbc.M109.054197
http://dx.doi.org/10.1074/jbc.M109.054197
http://dx.doi.org/10.1242/jcs.02324


71. Mayhew TM. Quantitative immunoelectron microscopy: alternative
ways of assessing subcellular patterns of gold labeling. Methods Mol
Biol 2007; 369:309-29; http://dx.doi.org/10.1007/978-1-59745-294-6.

72. Mayhew TM, Lucocq JM, Griffiths G. Relative labelling index: a
novel stereological approach to test for non-random immunogold
labelling of organelles and membranes on transmission electron
microscopy thin sections. J Microsc 2002; 205:153-64; http://dx.doi.
org/10.1046/j.0022-2720.2001.00977.x.

73. Isidoro C, Biagioni F, Giorgi FS, Fulceri F, Paparelli A, Fornai F.
The role of autophagy on the survival of dopamine neurons. Curr
Top Med Chem 2009; 9:869-79.

74. Schmid D, Pypaert M, M€unz C. Antigen-loading compartments for
major histocompatibility complex class II molecules continuously
receive input from autophagosomes. Immunity 2007; 26:79-92;
http://dx.doi.org/10.1016/j.immuni.2006.10.018.

75. Subramani S, Malhotra V. Non-autophagic roles of autophagy-
related proteins. EMBO Rep 2013; 14:143-51; http://dx.doi.org/
10.1038/embor.2012.220.

76. Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic
V. Secretory autophagy. Curr Opin Cell Biol 2015; 35:106-16;
http://dx.doi.org/10.1016/j.ceb.2015.04.016.

77. Saito T, Asai K, Sato S, Takano H, Adach A, Sasaki Y, Namimatsu S,
Mizuno K. Proof of myocardial autophagy by combining antigen
retrieval and the avidin-biotin peroxidase complex method. Int J
Cardiol 2013; 168:4843-4; http://dx.doi.org/10.1016/j.ijcard.2013.
07.032.

78. Kov�acs J. Regression of autophagic vacuoles in seminal vesicle cells
following cycloheximide treatment. Exp Cell Res 1983; 144:231-4;
http://dx.doi.org/10.1016/0014-4827(83)90460-3.

79. R�ez G, Csak J, Fellinger E, Laszlo L, Kov�acs AL, Oliva O, Kov�acs J.
Time course of vinblastine-induced autophagocytosis and changes
in the endoplasmic reticulum in murine pancreatic acinar cells: a
morphometric and biochemical study. Eur J Cell Biol 1996; 71:
341-50.

80. Kov�acs AL, Grinde B, Seglen PO. Inhibition of autophagic vacuole
formation and protein degradation by amino acids in isolated hepa-
tocytes. Exp Cell Res 1981; 133:431-6; http://dx.doi.org/10.1016/
0014-4827(81)90336-0.

81. Mortimore GE, Hutson NJ, Surmacz CA. Quantitative correlation
between proteolysis and macro- and microautophagy in mouse
hepatocytes during starvation and refeeding. Proc Natl Acad Sci
USA 1983; 80:2179-83; http://dx.doi.org/10.1073/pnas.80.8.2179.

82. Mortimore GE, Lardeux BR, Adams CE. Regulation of microauto-
phagy and basal protein turnover in rat liver. Effects of short-term
starvation. J Biol Chem 1988; 263:2506-12.

83. Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT.
Regulation of autophagy by extracellular signal-regulated protein
kinases during 1-methyl-4-phenylpyridinium-induced cell death.
Amer J Pathol 2007; 170:75-86; http://dx.doi.org/10.2353/
ajpath.2007.060524.

84. Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn
A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates
degraded by autophagy and has a protective effect on huntingtin-
induced cell death. J Cell Biol 2005; 171:603-14; http://dx.doi.org/
10.1083/jcb.200507002.

85. Orvedahl A, Sumpter R, Jr., Xiao G, Ng A, Zou Z, Tang Y, Nari-
matsu M, Gilpin C, Sun Q, Roth M, et al. Image-based genome-
wide siRNA screen identifies selective autophagy factors. Nature
2011; 480:113-7; http://dx.doi.org/10.1038/nature10546.

86. Razi M, Tooze SA. Correlative light and electron microscopy. Meth-
ods Enzymol 2009; 452:261-75; http://dx.doi.org/10.1016/S0076-
6879(08)03617-3.

87. Shu X, Lev-Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW,
Jin Y, Ellisman MH, Tsien RY. A genetically encoded tag for corre-
lated light and electron microscopy of intact cells, tissues, and
organisms. PLoS Biol 2011; 9:e1001041.

88. Castillo K, Rojas-Rivera D, Lisbona F, Caballero B, Nassif M, Court
F, Schuck S, Ibar C, Walter P, Sierralta J, et al. BAX inhibitor-1 reg-
ulates autophagy by controlling the IRE1a branch of the unfolded
protein response. EMBO J 2011; 30:4465-78.

89. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. 3D tomography
reveals connections between the phagophore and endoplasmic
reticulum. Autophagy 2009; 5:1180-5; http://dx.doi.org/10.4161/
auto.5.8.10274.

90. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T,
Yamamoto A. Electron tomography reveals the endoplasmic reticu-
lum as a membrane source for autophagosome formation. Auto-
phagy 2010; 6:301-3; http://dx.doi.org/10.4161/auto.6.2.11134.

91. Duke EM, Razi M, Weston A, Guttmann P, Werner S, Henzler K,
Schneider G, Tooze SA, Collinson LM. Imaging endosomes and
autophagosomes in whole mammalian cells using correlative cryo-
fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultra-
microscopy 2014; 143:77-87; http://dx.doi.org/10.1016/j.ultramic.
2013.10.006.

92. Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM. Consequen-
ces of the selective blockage of chaperone-mediated autophagy.
Proc Natl Acad Sci USA 2006; 103:5805-10; http://dx.doi.org/
10.1073/pnas.0507436103.

93. Baba M, Osumi M, Ohsumi Y. Analysis of the membrane structures
involved in autophagy in yeast by freeze-replica method. Cell Struct
Funct 1995; 20:465-71; http://dx.doi.org/10.1247/csf.20.465.

94. Rez G, Meldolesi J. Freeze-fracture of drug-induced autophagocyto-
sis in the mouse exocrine pancreas. Lab Investig 1980; 43:269-77.

95. Punnonen E-L, Pihakaski K, Mattila K, Lounatmaa K, Hirsi-
maki P. Intramembrane particles and filipin labelling on the
membranes of autophagic vacuoles and lysosomes in mouse
liver. Cell Tissue Res 1989; 258:269-76; http://dx.doi.org/
10.1007/BF00239447.

96. Fengsrud M, Erichsen ES, Berg TO, Raiborg C, Seglen PO. Ultra-
structural characterization of the delimiting membranes of isolated
autophagosomes and amphisomes by freeze-fracture electron
microscopy. Eur J Cell Biol 2000; 79:871-82; http://dx.doi.org/
10.1078/0171-9335-00125.

97. Dickey JS, Gonzalez Y, Aryal B, Mog S, Nakamura AJ, Redon CE,
Baxa U, Rosen E, Cheng G, Zielonka J, et al. Mito-tempol and dex-
razoxane exhibit cardioprotective and chemotherapeutic effects
through specific protein oxidation and autophagy in a syngeneic
breast tumor preclinical model. PloS One 2013; 8:e70575.

98. Rao VA, Klein SR, Bonar SJ, Zielonka J, Mizuno N, Dickey JS, Kel-
ler PW, Joseph J, Kalyanaraman B, Shacter E. The antioxidant tran-
scription factor Nrf2 negatively regulates autophagy and growth
arrest induced by the anticancer redox agent mitoquinone. J Biol
Chem 2010; 285:34447-59; http://dx.doi.org/10.1074/jbc.M110.133579.

99. Klionsky DJ. Autophagy: from phenomenology to molecular under-
standing in less than a decade. Nature Rev Mol Cell Biol 2007;
8:931-7; http://dx.doi.org/10.1038/nrm2245.

100. Krick R, M(u)he Y, Prick T, Bredschneider M, Bremer S, Wenzel D,
Eskelinen E-L, Thumm M. Piecemeal microautophagy of the
nucleus: genetic and morphological traits. Autophagy 2009; 5:270-
2; http://dx.doi.org/10.4161/auto.5.2.7639.

101. Meschini S, Condello M, Calcabrini A, Marra M, Formisano G,
Lista P, De Milito A, Federici E, Arancia G. The plant alkaloid
voacamine induces apoptosis-independent autophagic cell death
on both sensitive and multidrug resistant human osteosarcoma cells.
Autophagy 2008; 4:1020-33; http://dx.doi.org/10.4161/auto.6952.

102. Proikas-Cezanne T, Robenek H. Freeze-fracture replica immuno-
labelling reveals human WIPI-1 and WIPI-2 as membrane proteins
of autophagosomes. J Cell Mol Med 2011; 15:2007-10; http://dx.doi.
org/10.1111/j.1582-4934.2011.01339.x.

103. Kovacs J, Rez G, Kovacs AL, Csak J, Zboray G. Autophagocytosis:
freeze-fracture morphology, effects of vinblastine and influence of
transcriptional and translational inhibitors. Acta Biol Med German-
ica 1982; 41:131-5.

104. Hirsimaki Y, Hirsimaki P, Lounatmaa K. Vinblastine-induced auto-
phagic vacuoles in mouse liver and Ehrlich ascites tumor cells as
assessed by freeze-fracture electron microscopy. Eur J Cell Biol
1982; 27:298-301.

105. Backues SK, Chen D, Ruan J, Xie Z, Klionsky DJ. Estimating the
size and number of autophagic bodies by electron microscopy.
Autophagy 2014; 10:155-64; http://dx.doi.org/10.4161/auto.26856.

124 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1007/978-1-59745-294-6
http://dx.doi.org/10.1046/j.0022-2720.2001.00977.x
http://dx.doi.org/10.1016/j.immuni.2006.10.018
http://dx.doi.org/10.1038/embor.2012.220
http://dx.doi.org/10.1016/j.ceb.2015.04.016
http://dx.doi.org/10.1016/j.ijcard.2013.<?A3B2 re3j?>07.032
http://dx.doi.org/10.1016/j.ijcard.2013.<?A3B2 re3j?>07.032
http://dx.doi.org/10.1016/0014-4827(83)90460-3
http://dx.doi.org/10.1016/0014-4827(81)90336-0
http://dx.doi.org/10.1016/0014-4827(81)90336-0
http://dx.doi.org/10.1073/pnas.80.8.2179
http://dx.doi.org/10.2353/ajpath.2007.060524
http://dx.doi.org/10.2353/ajpath.2007.060524
http://dx.doi.org/10.1083/jcb.200507002
http://dx.doi.org/10.1038/nature10546
http://dx.doi.org/10.1016/S0076-6879(08)03617-3
http://dx.doi.org/10.1016/S0076-6879(08)03617-3
http://dx.doi.org/10.4161/auto.5.8.10274
http://dx.doi.org/10.4161/auto.5.8.10274
http://dx.doi.org/10.4161/auto.6.2.11134
http://dx.doi.org/10.1016/j.ultramic.<?A3B2 re3j?>2013.10.006
http://dx.doi.org/10.1016/j.ultramic.<?A3B2 re3j?>2013.10.006
http://dx.doi.org/10.1073/pnas.0507436103
http://dx.doi.org/10.1247/csf.20.465
http://dx.doi.org/10.1007/BF00239447
http://dx.doi.org/10.1078/0171-9335-00125
http://dx.doi.org/10.1074/jbc.M110.133579
http://dx.doi.org/10.1038/nrm2245
http://dx.doi.org/10.4161/auto.5.2.7639
http://dx.doi.org/10.4161/auto.6952
http://dx.doi.org/10.1111/j.1582-4934.2011.01339.x
http://dx.doi.org/10.4161/auto.26856


106. Cheong H, Yorimitsu T, Reggiori F, Legakis JE, Wang C-W, Klion-
sky DJ. Atg17 regulates the magnitude of the autophagic response.
Mol Biol Cell 2005; 16:3438-53; http://dx.doi.org/10.1091/mbc.E04-
10-0894.

107. Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion
during autophagosome formation. Mol Biol Cell 2008; 19:3290-8;
http://dx.doi.org/10.1091/mbc.E07-12-1292.

108. Sigmond T, Feher J, Baksa A, Pasti G, Palfia Z, Takacs-Vellai K,
Kovacs J, Vellai T, Kovacs AL. Qualitative and quantitative charac-
terization of autophagy in Caenorhabditis elegans by electron
microscopy. Methods Enzymol 2008; 451:467-91; http://dx.doi.org/
10.1016/S0076-6879(08)03228-X.

109. Kov�acs AL, Vellai T, M€uller F. Autophagy in Caenorhabditis ele-
gans. In: Klionsky DJ, ed. Autophagy. Georgetown, Texas: Landes
Bioscience, 2004:217-23.

110. Weibel ER. Practical Methods for Biological Morphometry. Aca-
demic Press, New York, 1979.

111. Williams MA. Quantitative methods in biology: Practical methods
in electron microscopy. Amsterdam, New York, Oxford: North-
Holland Publishing Company, 1977.

112. Howard V, Reed MG. Unbiased stereology; three dimensional mea-
surement in microscopy. U Bios Scientific Publishers, 1998.

113. Kovacs AL. A simple method to estimate the number of autophagic
elements by electron microscopic morphometry in real cellular
dimensions. BioMed Res Intl 2014; 2014:578698.

114. Xie Z, Nair U, Geng J, Szefler MB, Rothman ED, Klionsky DJ. Indi-
rect estimation of the area density of Atg8 on the phagophore.
Autophagy 2009; 5:217-20; http://dx.doi.org/10.4161/auto.5.2.7201.

115. Punnonen EL, Reunanen H. Effects of vinblastine, leucine, and his-
tidine, and 3-methyladenine on autophagy in Ehrlich ascites cells.
Exp Mol Pathol 1990; 52:87-97; http://dx.doi.org/10.1016/0014-
4800(90)90061-H.

116. Kovacs AL, Laszlo L, Fellinger E, Jakab A, Orosz A, Rez G, Kovacs J.
Combined effects of fasting and vinblastine treatment on serum
insulin level, the size of autophagic-lysosomal compartment, pro-
tein content and lysosomal enzyme activities of liver and exocrine
pancreatic cells of the mouse. Comp Biochem Phys B Comp Bio-
chem 1989; 94:505-10; http://dx.doi.org/10.1016/0305-0491(89)
90189-2.

117. Griffiths G. Fine structure immunocytochemistry Heidelberg, Ger-
many: Springer-Verlag, 1993; http://dx.doi.org/10.1007/978-3-642-
77095-1.

118. Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS.
Delivery of prolamins to the protein storage vacuole in maize aleu-
rone cells. Plant Cell 2011; 23:769-84; http://dx.doi.org/10.1105/
tpc.110.082156.

119. Dunn WA, Jr., Cregg JM, Kiel JAKW, van der Klei IJ, Oku M, Sakai
Y, Sibirny AA, Stasyk OV, Veenhuis M. Pexophagy: the selective
autophagy of peroxisomes. Autophagy 2005; 1:75-83; http://dx.doi.
org/10.4161/auto.1.2.1737.

120. Wang K, Klionsky DJ. Mitochondria removal by autophagy. Auto-
phagy 2011; 7:297-300; http://dx.doi.org/10.4161/auto.7.3.
14502.

121. Belanger M, Rodrigues PH, Dunn WA, Jr., Progulske-Fox A. Auto-
phagy: a highway for Porphyromonas gingivalis in endothelial cells.
Autophagy 2006; 2:165-70; http://dx.doi.org/10.4161/auto.2828.

122. Birmingham CL, Brumell JH. Autophagy recognizes intracellular
Salmonella enterica serovar Typhimurium in damaged vacuoles.
Autophagy 2006; 2:156-8; http://dx.doi.org/10.4161/auto.2825.

123. Colombo MI, Gutierrez MG, Romano PS. The two faces of auto-
phagy: Coxiella and Mycobacterium. Autophagy 2006; 2:162-4;
http://dx.doi.org/10.4161/auto.2827.

124. Ogawa M, Sasakawa C. Shigella and autophagy. Autophagy 2006;
2:171-4; http://dx.doi.org/10.4161/auto.2829.

125. Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, de Haro S,
Naylor J, Davis A, Delgado M, et al. Autophagy in immune defense
against Mycobacterium tuberculosis. Autophagy 2006; 2:175-8;
http://dx.doi.org/10.4161/auto.2830.

126. Yoshimori T. Autophagy vs. Group A Streptococcus. Autophagy
2006; 2:154-5; http://dx.doi.org/10.4161/auto.2822.

127. Gorbunov NV, McDaniel DP, Zhai M, Liao PJ, Garrison BR, Kiang
JG. Autophagy and mitochondrial remodelling in mouse mesenchy-
mal stromal cells challenged with Staphylococcus epidermidis. J
Cell Mol Med 2015; 19:1133-50; http://dx.doi.org/10.1111/
jcmm.12518.

128. Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for
selective autophagy. FEBS Lett 2010; 584:1359-66; http://dx.doi.org/
10.1016/j.febslet.2010.02.013.

129. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T,
Cossart P, Higgins DE, Brumell JH. Listeria monocytogenes evades
killing by autophagy during colonization of host cells. Autophagy
2007; 3:442-51; http://dx.doi.org/10.4161/auto.4450.

130. Klionsky DJ. Protein transport from the cytoplasm into the vacuole.
J Membr Biol 1997; 157:105-15; http://dx.doi.org/10.1007/
s002329900220.

131. Baba M, Osumi M, Scott SV, Klionsky DJ, Ohsumi Y. Two distinct
pathways for targeting proteins from the cytoplasm to the vacuole/
lysosome. J Cell Biol 1997; 139:1687-95; http://dx.doi.org/10.1083/
jcb.139.7.1687.

132. Dini L, Pagliara P, Carla EC. Phagocytosis of apoptotic cells by liver:
a morphological study. Micros Res Tech 2002; 57:530-40; http://dx.
doi.org/10.1002/jemt.10107.

133. Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandena-
beele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA,
et al. Classification of cell death: recommendations of the Nomen-
clature Committee on Cell Death. Cell Death Differ 2005; 12:1463-
7; http://dx.doi.org/10.1038/sj.cdd.4401724.

134. Rez G, Palfia Z, Fellinger E. Occurrence and inhibition by cyclohex-
imide of apoptosis in vinblastine-treated murine pancreas. A role
for autophagy? Acta Biol Hungarica 1991; 42:133-40.

135. Nagy P, Varga A, Kov�acs AL, Tak�ats S, Juh�asz G. How and why to
study autophagy in Drosophila: It’s more than just a garbage chute.
Methods 2015; 75:151-61; http://dx.doi.org/10.1016/j.ymeth.2014.
11.016.

136. Giammarioli AM, Gambardella L, Barbati C, Pietraforte D, Tinari
A, Alberton M, Gnessi L, Griffin RJ, Minetti M, Malorni W. Differ-
ential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the
activity of pro-apoptotic agents in metastatic melanoma cells, and
induction of a cytoprotective autophagic response. Intl J Cancer
2012; 131:E337-47.

137. Sou YS, Tanida I, Komatsu M, Ueno T, Kominami E. Phosphatidyl-
serine in addition to phosphatidylethanolamine is an in vitro target
of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16.
J Biol Chem 2006; 281:3017-24; http://dx.doi.org/10.1074/jbc.
M505888200.

138. Le Grand JN, Chakrama FZ, Seguin-Py S, Fraichard A, Delage-
Mourroux R, Jouvenot M, Boyer-Guittaut M. GABARAPL1
(GEC1): Original or copycat? Autophagy 2011; 7:1098-107; http://
dx.doi.org/10.4161/auto.7.10.15904.

139. Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL. A single protease,
Apg4B, is specific for the autophagy-related ubiquitin-like proteins
GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003;
278:51841-50; http://dx.doi.org/10.1074/jbc.M308762200.

140. Tanida I, Sou YS, Ezaki J, Minematsu-Ikeguchi N, Ueno T, Komi-
nami E. HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl ter-
mini of three human Atg8 homologues and delipidates
microtubule-associated protein light chain 3- and GABAA recep-
tor-associated protein-phospholipid conjugates. J Biol Chem 2004;
279:36268-76; http://dx.doi.org/10.1074/jbc.M401461200.

141. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S,
Ohsumi Y, Yoshimori T. LC3, GABARAP and GATE16 localize to
autophagosomal membrane depending on form-II formation. J Cell
Sci 2004; 117:2805-12; http://dx.doi.org/10.1242/jcs.01131.

142. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z.
LC3 and GATE-16/GABARAP subfamilies are both essential yet
act differently in autophagosome biogenesis. EMBO J 2010;
29:1792-802; http://dx.doi.org/10.1038/emboj.2010.74.

143. Szalai P, Hagen LK, Saetre F, Luhr M, Sponheim M, Overbye A,
Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of
cytosolic cargo is independent of LC3, but requires GABARAPs.

AUTOPHAGY 125

http://dx.doi.org/10.1091/mbc.E04-10-0894
http://dx.doi.org/10.1091/mbc.E04-10-0894
http://dx.doi.org/10.1091/mbc.E07-12-1292
http://dx.doi.org/10.1016/S0076-6879(08)03228-X
http://dx.doi.org/10.4161/auto.5.2.7201
http://dx.doi.org/10.1016/0014-4800(90)90061-H
http://dx.doi.org/10.1016/0014-4800(90)90061-H
http://dx.doi.org/10.1016/0305-0491(89)90189-2
http://dx.doi.org/10.1016/0305-0491(89)90189-2
http://dx.doi.org/10.1007/978-3-642-77095-1
http://dx.doi.org/10.1007/978-3-642-77095-1
http://dx.doi.org/10.1105/tpc.110.082156
http://dx.doi.org/10.1105/tpc.110.082156
http://dx.doi.org/10.4161/auto.1.2.1737
http://dx.doi.org/10.4161/auto.7.3.<?A3B2 re3j?>14502
http://dx.doi.org/10.4161/auto.7.3.<?A3B2 re3j?>14502
http://dx.doi.org/10.4161/auto.2828
http://dx.doi.org/10.4161/auto.2825
http://dx.doi.org/10.4161/auto.2827
http://dx.doi.org/10.4161/auto.2829
http://dx.doi.org/10.4161/auto.2830
http://dx.doi.org/10.4161/auto.2822
http://dx.doi.org/10.1111/jcmm.12518
http://dx.doi.org/10.1111/jcmm.12518
http://dx.doi.org/10.1016/j.febslet.2010.02.013
http://dx.doi.org/10.4161/auto.4450
http://dx.doi.org/10.1007/s002329900220
http://dx.doi.org/10.1007/s002329900220
http://dx.doi.org/10.1083/jcb.139.7.1687
http://dx.doi.org/10.1083/jcb.139.7.1687
http://dx.doi.org/10.1002/jemt.10107
http://dx.doi.org/10.1038/sj.cdd.4401724
http://dx.doi.org/10.1016/j.ymeth.2014.<?A3B2 re3j?>11.016
http://dx.doi.org/10.1016/j.ymeth.2014.<?A3B2 re3j?>11.016
http://dx.doi.org/10.1074/jbc.M505888200
http://dx.doi.org/10.1074/jbc.M505888200
http://dx.doi.org/10.4161/auto.7.10.15904
http://dx.doi.org/10.1074/jbc.M308762200
http://dx.doi.org/10.1074/jbc.M401461200
http://dx.doi.org/10.1242/jcs.01131
http://dx.doi.org/10.1038/emboj.2010.74


Exp Cell Res 2015; 333:21-38; http://dx.doi.org/10.1016/j.yexcr.
2015.02.003.

144. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Ina-
gaki F. The crystal structure of microtubule-associated protein light
chain 3, a mammalian homologue of Saccharomyces cerevisiae
Atg8. Genes Cells 2004; 9:611-8; http://dx.doi.org/10.1111/j.1356-
9597.2004.00750.x.

145. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA,
Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D,
et al. Cardiolipin externalization to the outer mitochondrial
membrane acts as an elimination signal for mitophagy in neu-
ronal cells. Nat Cell Biol 2013; 15:1197-205; http://dx.doi.org/
10.1038/ncb2837.

146. Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y,
Kageyama S, Suzuki M, Saito I, Mizushima T, et al. Structural deter-
minants in GABARAP required for the selective binding and
recruitment of ALFY to LC3B-positive structures. EMBO Rep 2014;
15:557-65; http://dx.doi.org/10.1002/embr.201338003.

147. von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein A, Bloor S,
Rutherford TJ, Freund SM, Komander D, Randow F. LC3C, bound
selectively by a noncanonical LIR motif in NDP52, is required for
antibacterial autophagy. Mol Cell 2012; 48:329-42; http://dx.doi.
org/10.1016/j.molcel.2012.08.024.

148. Huang W-P, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle
component, Aut7p/Cvt5p, terminates in the yeast vacuole via the
autophagy/Cvt pathways. J Biol Chem 2000; 275:5845-51; http://dx.
doi.org/10.1074/jbc.275.8.5845.

149. Cai Q, Lu L, Tian J-H, Zhu Y-B, Qiao H, Sheng Z-H. Snapin-regu-
lated late endosomal transport is critical for efficient autophagy-
lysosomal function in neurons. Neuron 2010; 68:73-86; http://dx.
doi.org/10.1016/j.neuron.2010.09.022.

150. Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C. Chelation
of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma
cells from hydrogen peroxide toxicity by precluding autophagy and
Akt dephosphorylation. Toxicol Sci 2011:523-41; http://dx.doi.org/
10.1093/toxsci/kfr179.

151. Michiorri S, Gelmetti V, Giarda E, Lombardi F, Romano F, Maron-
giu R, Nerini-Molteni S, Sale P, Vago R, Arena G, et al. The Parkin-
son-associated protein PINK1 interacts with Beclin1 and promotes
autophagy. Cell Death Differ 2010; 17:962-74; http://dx.doi.org/
10.1038/cdd.2009.200.

152. Yang DS, Stavrides P, Mohan PS, Kaushik S, Kumar A, Ohno M,
Schmidt SD, Wesson D, Bandyopadhyay U, Jiang Y, et al. Reversal
of autophagy dysfunction in the TgCRND8 mouse model of
Alzheimer’s disease ameliorates amyloid pathologies and memory
deficits. Brain 2011; 134:258-77; http://dx.doi.org/10.1093/brain/
awq341.

153. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In
vivo analysis of autophagy in response to nutrient starvation using
transgenic mice expressing a fluorescent autophagosome marker.
Mol Biol Cell 2004; 15:1101-11; http://dx.doi.org/10.1091/mbc.E03-
09-0704.

154. Padman BS, Bach M, Lucarelli G, Prescott M, Ramm G. The proto-
nophore CCCP interferes with lysosomal degradation of autophagic
cargo in yeast and mammalian cells. Autophagy 2013; 9:1862-75;
http://dx.doi.org/10.4161/auto.26557.

155. Jahreiss L, Menzies FM, Rubinsztein DC. The itinerary of autopha-
gosomes: from peripheral formation to kiss-and-run fusion with
lysosomes. Traffic 2008; 9:574-87; http://dx.doi.org/10.1111/j.1600-
0854.2008.00701.x.

156. Klionsky DJ, Elazar Z, Seglen PO, Rubinsztein DC. Does bafilomy-
cin A1 block the fusion of autophagosomes with lysosomes? Auto-
phagy 2008; 4:849-950; http://dx.doi.org/10.4161/auto.6845.

157. Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R,
Tashiro Y. Bafilomycin A1 prevents maturation of autophagic
vacuoles by inhibiting fusion between autophagosomes and lyso-
somes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct
1998; 23:33-42; http://dx.doi.org/10.1247/csf.23.33.

158. Ahlberg J, Berkenstam A, Henell F, Glaumann H. Degradation of
short and long lived proteins in isolated rat liver lysosomes. Effects

of pH, temperature, and proteolytic inhibitors. J Biol Chem 1985;
260:5847-54.

159. Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of
lysosomal dilatation, arrested autophagy, and cell death by chloro-
quine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci 2010;
51:6030-7; http://dx.doi.org/10.1167/iovs.10-5278.

160. Thomas G, Hall MN. TOR signalling and control of cell growth.
Curr Opin Cell Biol 1997; 9:782-7; http://dx.doi.org/10.1016/S0955-
0674(97)80078-6.

161. Juhasz G. Interpretation of bafilomycin, pH neutralizing or protease
inhibitor treatments in autophagic flux experiments: novel consid-
erations. Autophagy 2012; 8:1875-6; http://dx.doi.org/10.4161/
auto.21544.

162. Li M, Khambu B, Zhang H, Kang JH, Chen X, Chen D, Vollmer L,
Liu PQ, Vogt A, Yin XM. Suppression of lysosome function induces
autophagy via a feedback down-regulation of MTOR complex 1
(MTORC1) activity. J Biol Chem 2013; 288:35769-80; http://dx.doi.
org/10.1074/jbc.M113.511212.

163. Seglen PO, Grinde B, Solheim AE. Inhibition of the lysosomal path-
way of protein degradation in isolated rat hepatocytes by ammonia,
methylamine, chloroquine and leupeptin. Eur J Biochem 1979;
95:215-25; http://dx.doi.org/10.1111/j.1432-1033.1979.tb12956.x.

164. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafi-
lomycin A1, a specific inhibitor of vacuolar-type H(C)-ATPase,
inhibits acidification and protein degradation in lysosomes of cul-
tured cells. J Biol Chem 1991; 266:17707-12.

165. McLeland CB, Rodriguez J, Stern ST. Autophagy monitoring assay:
qualitative analysis of MAP LC3-I to II conversion by immunoblot.
Methods Mol Biol 2011; 697:199-206; http://dx.doi.org/10.1007/
978-1-60327-198-1.

166. Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-
Mourroux R, Despouy G, Perez V, Jouvenot M, Boyer-Guittaut M.
GABARAPL1 (GEC1) associates with autophagic vesicles. Auto-
phagy 2010; 6:495-505; http://dx.doi.org/10.4161/auto.6.4.11819.

167. Maynard S, Ghosh R, Wu Y, Yan S, Miyake T, Gagliardi M,
Rethoret K, Bedard PA. GABARAP is a determinant of apoptosis in
growth-arrested chicken embryo fibroblasts. J Cell Physiol 2015;
230:1475-88; http://dx.doi.org/10.1002/jcp.24889.

168. Kim J, Huang W-P, Klionsky DJ. Membrane recruitment of Aut7p
in the autophagy and cytoplasm to vacuole targeting pathways
requires Aut1p, Aut2p, and the autophagy conjugation complex. J
Cell Biol 2001; 152:51-64; http://dx.doi.org/10.1083/jcb.152.1.51.

169. Shu CW, Drag M, Bekes M, Zhai D, Salvesen GS, Reed JC. Synthetic
substrates for measuring activity of autophagy proteases: autopha-
gins (Atg4). Autophagy 2010; 6:936-47; http://dx.doi.org/10.4161/
auto.6.7.13075.

170. Li M, Chen X, Ye Q-Z, Vogt A, Yin X-M. A High-throughput
FRET-based Assay for Determination of Atg4 Activity. Autophagy
2012; 8:401-12.

171. Ketteler R, Seed B. Quantitation of autophagy by luciferase release
assay. Autophagy 2008; 4:801-6; http://dx.doi.org/10.4161/auto.
6401.

172. Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin X-M. Kinetics com-
parisons of mammalian Atg4 homologues indicate selective prefer-
ences toward diverse Atg8 substrates. J Biol Chem 2011; 286:7327-
38; http://dx.doi.org/10.1074/jbc.M110.199059.

173. Klionsky DJ. For the last time, it is GFP-Atg8, not Atg8-GFP (and
the same goes for LC3). Autophagy 2011; 7:1093-4; http://dx.doi.
org/10.4161/auto.7.10.15492.

174. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E. Lysosomal
turnover, but not a cellular level, of endogenous LC3 is a marker for
autophagy. Autophagy 2005; 1:84-91; http://dx.doi.org/10.4161/
auto.1.2.1697.

175. Castino R, Lazzeri G, Lenzi P, Bellio N, Follo C, Ferrucci M, Fornai
F, Isidoro C. Suppression of autophagy precipitates neuronal cell
death following low doses of methamphetamine. J Neurochem
2008; 106:1426-39; http://dx.doi.org/10.1111/j.1471-4159.2008.
05488.x.

176. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine
B, Sadoshima J. Distinct roles of autophagy in the heart during

126 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1016/j.yexcr.<?A3B2 re3j?>2015.02.003
http://dx.doi.org/10.1016/j.yexcr.<?A3B2 re3j?>2015.02.003
http://dx.doi.org/10.1111/j.1356-9597.2004.00750.x
http://dx.doi.org/10.1111/j.1356-9597.2004.00750.x
http://dx.doi.org/10.1038/ncb2837
http://dx.doi.org/10.1002/embr.201338003
http://dx.doi.org/10.1016/j.molcel.2012.08.024
http://dx.doi.org/10.1074/jbc.275.8.5845
http://dx.doi.org/10.1016/j.neuron.2010.09.022
http://dx.doi.org/10.1093/toxsci/kfr179
http://dx.doi.org/10.1038/cdd.2009.200
http://dx.doi.org/10.1093/brain/awq341
http://dx.doi.org/10.1093/brain/awq341
http://dx.doi.org/10.1091/mbc.E03-09-0704
http://dx.doi.org/10.1091/mbc.E03-09-0704
http://dx.doi.org/10.4161/auto.26557
http://dx.doi.org/10.1111/j.1600-0854.2008.00701.x
http://dx.doi.org/10.1111/j.1600-0854.2008.00701.x
http://dx.doi.org/10.4161/auto.6845
http://dx.doi.org/10.1247/csf.23.33
http://dx.doi.org/10.1167/iovs.10-5278
http://dx.doi.org/10.1016/S0955-0674(97)80078-6
http://dx.doi.org/10.1016/S0955-0674(97)80078-6
http://dx.doi.org/10.4161/auto.21544
http://dx.doi.org/10.4161/auto.21544
http://dx.doi.org/10.1074/jbc.M113.511212
http://dx.doi.org/10.1111/j.1432-1033.1979.tb12956.x
http://dx.doi.org/10.1007/978-1-60327-198-1
http://dx.doi.org/10.1007/978-1-60327-198-1
http://dx.doi.org/10.4161/auto.6.4.11819
http://dx.doi.org/10.1002/jcp.24889
http://dx.doi.org/10.1083/jcb.152.1.51
http://dx.doi.org/10.4161/auto.6.7.13075
http://dx.doi.org/10.4161/auto.6.7.13075
http://dx.doi.org/10.4161/auto.<?A3B2 re3j?>6401
http://dx.doi.org/10.4161/auto.<?A3B2 re3j?>6401
http://dx.doi.org/10.1074/jbc.M110.199059
http://dx.doi.org/10.4161/auto.7.10.15492
http://dx.doi.org/10.4161/auto.1.2.1697
http://dx.doi.org/10.4161/auto.1.2.1697
http://dx.doi.org/10.1111/j.1471-4159.2008.<?A3B2 re3j?>05488.x
http://dx.doi.org/10.1111/j.1471-4159.2008.<?A3B2 re3j?>05488.x


ischemia and reperfusion: roles of AMP-activated protein kinase
and Beclin 1 in mediating autophagy. Circ Res 2007; 100:914-22;
http://dx.doi.org/10.1161/01.RES.0000261924.76669.36.

177. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y.
The pre-autophagosomal structure organized by concerted func-
tions of APG genes is essential for autophagosome formation.
EMBO J 2001; 20:5971-81; http://dx.doi.org/10.1093/emboj/
20.21.5971.

178. Hanson HH, Kang S, Fernandez-Monreal M, Oung T, Yildirim M,
Lee R, Suyama K, Hazan RB, Phillips GR. LC3-dependent intracel-
lular membrane tubules induced by gamma-protocadherins A3 and
B2: a role for intraluminal interactions. J Biol Chem 2010;
285:20982-92; http://dx.doi.org/10.1074/jbc.M109.092031.

179. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Auto-
phagy machinery mediates macroendocytic processing and entotic
cell death by targeting single membranes. Nat Cell Biol 2011;
13:1335-43; http://dx.doi.org/10.1038/ncb2363.

180. Martinez J, Almendinger J, Oberst A, Ness R, Dillon CP, Fitz-
gerald P, Hengartner MO, Green DR. Microtubule-associated
protein 1 light chain 3 alpha (LC3)-associated phagocytosis is
required for the efficient clearance of dead cells. Proc Natl
Acad Sci USA 2011; 108:17396-401; http://dx.doi.org/10.1073/
pnas.1113421108.

181. Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita
N, Saitoh T, Akira S, Yoshimori T, et al. The parasitophorous
vacuole membrane of Toxoplasma gondii is targeted for disrup-
tion by ubiquitin-like conjugation systems of autophagy.
Immunity 2014; 40:924-35; http://dx.doi.org/10.1016/j.immuni.
2014.05.006.

182. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S,
Komatsu M, Tanaka K, Cleveland JL, Withoff S, et al. Toll-like
receptor signalling in macrophages links the autophagy pathway to
phagocytosis. Nature 2007; 450:1253-7; http://dx.doi.org/10.1038/
nature06421.

183. Sanjuan MA, Milasta S, Green DR. Toll-like receptor signaling in
the lysosomal pathways. Immunol Rev 2009; 227:203-20; http://dx.
doi.org/10.1111/j.1600-065X.2008.00732.x.

184. Ushio H, Ueno T, Kojima Y, Komatsu M, Tanaka S, Yamamoto A,
Ichimura Y, Ezaki J, Nishida K, Komazawa-Sakon S, et al. Crucial
role for autophagy in degranulation of mast cells. J Allergy Clin
Immunol 2011; 127:1267-76 e6; http://dx.doi.org/10.1016/j.
jaci.2010.12.1078.

185. Ishibashi K, Uemura T, Waguri S, Fukuda M. Atg16L1, an essential
factor for canonical autophagy, participates in hormone secretion
from PC12 cells independently of autophagic activity. Mol Biol Cell
2012; 23:3193-202; http://dx.doi.org/10.1091/mbc.E12-01-0010.

186. DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y,
Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy
proteins regulate the secretory component of osteoclastic bone
resorption. Dev Cell 2011; 21:966-74; http://dx.doi.org/10.1016/j.
devcel.2011.08.016.

187. Patel KK, Miyoshi H, Beatty WL, Head RD, Malvin NP, Cadwell K,
Guan JL, Saitoh T, Akira S, Seglen PO, et al. Autophagy proteins
control goblet cell function by potentiating reactive oxygen species
production. EMBO J 2013; 32:3130-44; http://dx.doi.org/10.1038/
emboj.2013.233.

188. Dupont N, Lacas-Gervais S, Bertout J, Paz I, Freche B, Van Nhieu
GT, van der Goot FG, Sansonetti PJ, Lafont F. Shigella phagocytic
vacuolar membrane remnants participate in the cellular response to
pathogen invasion and are regulated by autophagy. Cell Host
Microbe 2009; 6:137-49; http://dx.doi.org/10.1016/j.chom.2009.
07.005.

189. Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoen-
felder P, Gerner W, Britton P, Ktistakis NT, Wileman T. Coronavi-
rus nsp6 proteins generate autophagosomes from the endoplasmic
reticulum via an omegasome intermediate. Autophagy 2011;
7:1335-47; http://dx.doi.org/10.4161/auto.7.11.16642.

190. Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi
S, Bernasconi R, de Haan CA, Molinari M. Coronaviruses hijack
the LC3-I-positive EDEMosomes, ER-derived vesicles exporting

short-lived ERAD regulators, for replication. Cell Host Microbe
2010; 7:500-8; http://dx.doi.org/10.1016/j.chom.2010.05.013.

191. Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V,
Khasa R, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus
replication is negatively regulated by autophagy and occurs on
LC3-I- and EDEM1-containing membranes. Autophagy 2014;
10:1637-51; http://dx.doi.org/10.4161/auto.29455.

192. English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D,
Alexander D, Leib D, Norbury C, Lippe R, et al. Autophagy enhan-
ces the presentation of endogenous viral antigens on MHC class I
molecules during HSV-1 infection. Nat Immunol 2009; 10:480-7;
http://dx.doi.org/10.1038/ni.1720.

193. Beale R, Wise H, Stuart A, Ravenhill BJ, Digard P, Randow F. A
LC3-interacting motif in the influenza A virus M2 protein is
required to subvert autophagy and maintain virion stability. Cell
Host Microbe 2014; 15:239-47; http://dx.doi.org/10.1016/j.
chom.2014.01.006.

194. Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses
WB, Whitton JL. Coxsackievirus infection induces autophagy-like
vesicles and megaphagosomes in pancreatic acinar cells in vivo. J
Virol 2010; 84:12110-24; http://dx.doi.org/10.1128/JVI.01417-10.

195. Alirezaei M, Flynn CT, Wood MR, Whitton JL. Pancreatic acinar
cell-specific autophagy disruption reduces coxsackievirus replica-
tion and pathogenesis in vivo. Cell Host Microbe 2012; 11:298-305;
http://dx.doi.org/10.1016/j.chom.2012.01.014.

196. Plowey ED, Cherra SJ, 3rd, Liu YJ, Chu CT. Role of autophagy in
G2019S-LRRK2-associated neurite shortening in differentiated SH-
SY5Y cells. J Neurochem 2008; 105:1048-56; http://dx.doi.org/
10.1111/j.1471-4159.2008.05217.x.

197. Nicotra G, Mercalli F, Peracchio C, Castino R, Follo C, Valente G,
Isidoro C. Autophagy-active beclin-1 correlates with favourable
clinical outcome in non-Hodgkin lymphomas. Modern pathology:
Pathol 2010; 23:937-50; http://dx.doi.org/10.1038/modpathol.2010.80.

198. Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol
Biol 2008; 445:77-88; http://dx.doi.org/10.1007/978-1-59745-157-4.

199. Gros F, Arnold J, Page N, Decossas M, Korganow AS, Martin T,
Muller S. Macroautophagy is deregulated in murine and human
lupus T lymphocytes. Autophagy 2012; 8:1113-23; http://dx.doi.
org/10.4161/auto.20275.

200. Welinder C, Ekblad L. Coomassie staining as loading control in
Western blot analysis. J Proteome Res 2011; 10:1416-9; http://dx.
doi.org/10.1021/pr1011476.

201. Colella AD, Chegenii N, Tea MN, Gibbins IL, Williams KA, Chat-
away TK. Comparison of Stain-Free gels with traditional immuno-
blot loading control methodology. Anal Biochem 2012; 430:108-10;
http://dx.doi.org/10.1016/j.ab.2012.08.015.

202. Ghosh R, Gilda JE, Gomes AV. The necessity of and strategies for
improving confidence in the accuracy of western blots. Expert Rev
Proteomics 2014; 11:549-60; http://dx.doi.org/10.1586/14789450.
2014.939635.

203. Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH,
Yang G, Matsui Y, Sadoshima J, Vatner SF. Autophagy in chroni-
cally ischemic myocardium. Proc Natl Acad Sci USA 2005;
102:13807-12; http://dx.doi.org/10.1073/pnas.0506843102.

204. Russ DW, Boyd IM, McCoy KM, McCorkle KW. Muscle-specificity
of age-related changes in markers of autophagy and sphingolipid
metabolism. Biogerontology 2015; 16:747-59.

205. Russ DW, Krause J, Wills A, Arreguin R. “SR stress” in mixed hin-
dlimb muscles of aging male rats. Biogerontology 2012; 13:547-55;
http://dx.doi.org/10.1007/s10522-012-9399-y.

206. He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling
W, Wu C, et al. Post-translational modifications of three mem-
bers of the human MAP1LC3 family and detection of a novel
type of modification for MAP1LC3B. J Biol Chem 2003;
278:29278-87; http://dx.doi.org/10.1074/jbc.M303800200.

207. Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an auto-
phagy-related ubiquitin-like protein family. Genome Biol 2011;
12:226; http://dx.doi.org/10.1186/gb-2011-12-7-226.

208. Zois CE, Koukourakis MI. Radiation-induced autophagy in normal
and cancer cells: towards novel cytoprotection and radio-

AUTOPHAGY 127

http://dx.doi.org/10.1161/01.RES.0000261924.76669.36
http://dx.doi.org/10.1093/emboj/20.21.5971
http://dx.doi.org/10.1093/emboj/20.21.5971
http://dx.doi.org/10.1074/jbc.M109.092031
http://dx.doi.org/10.1038/ncb2363
http://dx.doi.org/10.1073/pnas.1113421108
http://dx.doi.org/10.1073/pnas.1113421108
http://dx.doi.org/10.1016/j.immuni.<?A3B2 re3j?>2014.05.006
http://dx.doi.org/10.1016/j.immuni.<?A3B2 re3j?>2014.05.006
http://dx.doi.org/10.1038/nature06421
http://dx.doi.org/10.1038/nature06421
http://dx.doi.org/10.1111/j.1600-065X.2008.00732.x
http://dx.doi.org/10.1016/j.jaci.2010.12.1078
http://dx.doi.org/10.1016/j.jaci.2010.12.1078
http://dx.doi.org/10.1091/mbc.E12-01-0010
http://dx.doi.org/10.1016/j.devcel.2011.08.016
http://dx.doi.org/10.1016/j.devcel.2011.08.016
http://dx.doi.org/10.1038/emboj.2013.233
http://dx.doi.org/10.1038/emboj.2013.233
http://dx.doi.org/10.1016/j.chom.2009.<?A3B2 re3j?>07.005
http://dx.doi.org/10.1016/j.chom.2009.<?A3B2 re3j?>07.005
http://dx.doi.org/10.4161/auto.7.11.16642
http://dx.doi.org/10.1016/j.chom.2010.05.013
http://dx.doi.org/10.4161/auto.29455
http://dx.doi.org/10.1038/ni.1720
http://dx.doi.org/10.1016/j.chom.2014.01.006
http://dx.doi.org/10.1016/j.chom.2014.01.006
http://dx.doi.org/10.1128/JVI.01417-10
http://dx.doi.org/10.1016/j.chom.2012.01.014
http://dx.doi.org/10.1111/j.1471-4159.2008.05217.x
http://dx.doi.org/10.1038/modpathol.2010.80
http://dx.doi.org/10.1007/978-1-59745-157-4
http://dx.doi.org/10.4161/auto.20275
http://dx.doi.org/10.1021/pr1011476
http://dx.doi.org/10.1016/j.ab.2012.08.015
http://dx.doi.org/10.1586/14789450.<?A3B2 re3j?>2014.939635
http://dx.doi.org/10.1586/14789450.<?A3B2 re3j?>2014.939635
http://dx.doi.org/10.1073/pnas.0506843102
http://dx.doi.org/10.1007/s10522-012-9399-y
http://dx.doi.org/10.1074/jbc.M303800200
http://dx.doi.org/10.1186/gb-2011-12-7-226


sensitization policies? Autophagy 2009; 5:442-50; http://dx.doi.org/
10.4161/auto.5.4.7667.

209. Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R,
Zhao S. Cloning, expression patterns, and chromosome localization
of three human and two mouse homologues of GABA(A) receptor-
associated protein. Genomics 2001; 74:408-13; http://dx.doi.org/
10.1006/geno.2001.6555.

210. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A,
Rogov V, Lohr F, Popovic D, Occhipinti A, et al. Nix is a selective
autophagy receptor for mitochondrial clearance. EMBO Rep 2010;
11:45-51; http://dx.doi.org/10.1038/embor.2009.256.

211. Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler
T, Hersch N, Hoffmann B, Merkel R, Willbold D. Nix directly binds
to GABARAP: a possible crosstalk between apoptosis and auto-
phagy. Autophagy 2009; 5:690-8; http://dx.doi.org/10.4161/
auto.5.5.8494.

212. Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying Western
blots: pitfalls of densitometry. Electrophoresis 2009; 30:1845-55;
http://dx.doi.org/10.1002/elps.200800720.

213. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshi-
mori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible
modification regulates the membrane-binding state of Apg8/Aut7
essential for autophagy and the cytoplasm to vacuole targeting
pathway. J Cell Biol 2000; 151:263-76; http://dx.doi.org/10.1083/
jcb.151.2.263.

214. Chung T, Phillips AR, Vierstra RD. ATG8 lipidation and ATG8-
mediated autophagy in Arabidopsis require ATG12 expressed from
the differentially controlled ATG12A AND ATG12B loci. Plant J
2010; 62:483-93; http://dx.doi.org/10.1111/j.1365-313X.2010.04166.x.

215. Chung T, Suttangkakul A, Vierstra RD. The ATG autophagic con-
jugation system in maize: ATG transcripts and abundance of the
ATG8-lipid adduct are regulated by development and nutrient
availability. Plant Physiol 2009; 149:220-34; http://dx.doi.org/
10.1104/pp.108.126714.

216. Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre
F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, et al.
Modulation of intracellular calcium homeostasis blocks autophago-
some formation. Autophagy 2013; 9:1475-90; http://dx.doi.org/
10.4161/auto.25900.

217. Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L,
Shai I, Golan R, Harman-Boehm I, Schon MR, et al. Altered auto-
phagy in human adipose tissues in obesity. J Clin Endocrinol Metab
2011; 96:E268-77; http://dx.doi.org/10.1210/jc.2010-1681.

218. Gao Z, Gammoh N, Wong PM, Erdjument-Bromage H, Tempst P,
Jiang X. Processing of autophagic protein LC3 by the 20S proteasome.
Autophagy 2010; 6:126-37; http://dx.doi.org/10.4161/auto.6.1.10928.

219. King JS, Veltman DM, Insall RH. The induction of autophagy by
mechanical stress. Autophagy 2011; 7:1490-9; http://dx.doi.org/
10.4161/auto.7.12.17924.

220. Roberts R, Al-Jamal WT, Whelband M, Thomas P, Jefferson M, van
den Bossche J, Powell PP, Kostarelos K, Wileman T. Autophagy and
formation of tubulovesicular autophagosomes provide a barrier
against nonviral gene delivery. Autophagy 2013; 9:667-82; http://
dx.doi.org/10.4161/auto.23877.

221. Schmidt RS, Butikofer P. Autophagy in Trypanosoma brucei: amino
acid requirement and regulation during different growth phases.
PloS One 2014; 9:e93875; http://dx.doi.org/10.1371/journal.
pone.0093875.

222. Bernard M, Dieude M, Yang B, Hamelin K, Underwood K, Hebert
MJ. Autophagy fosters myofibroblast differentiation through
MTORC2 activation and downstream upregulation of CTGF. Auto-
phagy 2014; 10:2193-207.

223. Saetre F, Hagen LK, Engedal N, Seglen PO. Novel steps in the auto-
phagic-lysosomal pathway. FEBS J 2015; 282:2202-14; http://dx.doi.
org/10.1111/febs.13268.

224. Ju JS, Varadhachary AS, Miller SE, Weihl CC. Quantitation of
“autophagic flux” in mature skeletal muscle. Autophagy 2010;
6:929-35; http://dx.doi.org/10.4161/auto.6.7.12785.

225. Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, Tien JY, Prior
WW, van Dijk S, Wu H, Gray DC, et al. Akt inhibition promotes

autophagy and sensitizes PTEN-null tumors to lysosomotropic
agents. J Cell Biol 2008; 183:101-16; http://dx.doi.org/10.1083/
jcb.200801099.

226. Mauvezin C, Nagy P, Juhasz G, Neufeld TP. Autophagosome-
lysosome fusion is independent of V-ATPase-mediated acidifica-
tion. Nat Commun 2015; 6:7007; http://dx.doi.org/10.1038/
ncomms8007.

227. Xie R, Nguyen S, McKeehan WL, Liu L. Acetylated microtubules
are required for fusion of autophagosomes with lysosomes. BMC
Cell Biol 2010; 11:89; http://dx.doi.org/10.1186/1471-2121-11-89.

228. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Sou-
quere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. The apopto-
sis/autophagy paradox: autophagic vacuolization before apoptotic
death. J Cell Sci 2005; 118:3091-102; http://dx.doi.org/10.1242/
jcs.02447.

229. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D.
Impaired degradation of mutant {alpha}-synuclein by chaperone-
mediated autophagy. Science 2004; 305:1292-5; http://dx.doi.org/
10.1126/science.1101738.

230. Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isi-
doro C. Resveratrol-induced apoptosis depends on the lipid
kinase activity of Vps34 and on the formation of autophagoly-
sosomes. Carcinogenesis 2008; 29:381-9; http://dx.doi.org/
10.1093/carcin/bgm271.

231. Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk V,
Kaushik S, Klionsky DJ. In search of an “autophagomometer”.
Autophagy 2009; 5:585-9; http://dx.doi.org/10.4161/auto.5.5.8823.

232. Sarkar S, Ravikumar B, Rubinsztein DC. Autophagic clearance of
aggregate-prone proteins associated with neurodegeneration. Meth-
ods Enzymol 2009; 453:83-110; http://dx.doi.org/10.1016/S0076-
6879(08)04005-6.

233. Sarkar S, Korolchuk V, Renna M, Winslow A, Rubinsztein DC.
Methodological considerations for assessing autophagy modulators:
a study with calcium phosphate precipitates. Autophagy 2009;
5:307-13; http://dx.doi.org/10.4161/auto.5.3.7664.

234. Martins WK, Severino D, Souza C, Stolf BS, Baptista MS. Rapid
screening of potential autophagic inductor agents using mammalian
cell lines. Biotechnol J 2013; 8:730-7; http://dx.doi.org/10.1002/
biot.201200306.

235. Martins WK, Costa ET, Cruz MC, Stolf BS, Miotto R, Cordeiro RM,
Baptista MS. Parallel damage in mitochondrial and lysosomal com-
partments promotes efficient cell death with autophagy: The case of
the pentacyclic triterpenoids. Sci Rep 2015; 5:12425; http://dx.doi.
org/10.1038/srep12425.

236. Shintani T, Klionsky DJ. Cargo proteins facilitate the formation of
transport vesicles in the cytoplasm to vacuole targeting pathway. J
Biol Chem 2004; 279:29889-94; http://dx.doi.org/10.1074/jbc.
M404399200.

237. Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kado-
waki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy
in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007;
3:553-60; http://dx.doi.org/10.4161/auto.4615.

238. Kim CH, Kim KH, Yoo YM. Melatonin protects against apoptotic
and autophagic cell death in C2C12 murine myoblast cells. J Pineal
Res 2011; 50:241-9; http://dx.doi.org/10.1111/j.1600-079X.2010.
00833.x.

239. Karim MR, Kanazawa T, Daigaku Y, Fujimura S, Miotto G, Kado-
waki M. Cytosolic LC3 ratio as a sensitive index of macroautophagy
in isolated rat hepatocytes and H4-II-E cells. Autophagy 2007;
3:553-60.

240. Tsvetkov AS, Arrasate M, Barmada S, Ando DM, Sharma P, Shaby
BA, Finkbeiner S. Proteostasis of polyglutamine varies among neu-
rons and predicts neurodegeneration. Nat Chem Biol 2013; 9:586-
92; http://dx.doi.org/10.1038/nchembio.1308.

241. Loos B, du Toit A, Hofmeyr JH. Defining and measuring autopha-
gosome flux-concept and reality. Autophagy 2014:0.

242. Farkas T, Hoyer-Hansen M, Jaattela M. Identification of novel auto-
phagy regulators by a luciferase-based assay for the kinetics of auto-
phagic flux. Autophagy 2009; 5:1018-25; http://dx.doi.org/10.4161/
auto.5.7.9443.

128 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.5.4.7667
http://dx.doi.org/10.1006/geno.2001.6555
http://dx.doi.org/10.1038/embor.2009.256
http://dx.doi.org/10.4161/auto.5.5.8494
http://dx.doi.org/10.4161/auto.5.5.8494
http://dx.doi.org/10.1002/elps.200800720
http://dx.doi.org/10.1083/jcb.151.2.263
http://dx.doi.org/10.1083/jcb.151.2.263
http://dx.doi.org/10.1111/j.1365-313X.2010.04166.x
http://dx.doi.org/10.1104/pp.108.126714
http://dx.doi.org/10.4161/auto.25900
http://dx.doi.org/10.1210/jc.2010-1681
http://dx.doi.org/10.4161/auto.6.1.10928
http://dx.doi.org/10.4161/auto.7.12.17924
http://dx.doi.org/10.4161/auto.23877
http://dx.doi.org/10.1371/journal.pone.0093875
http://dx.doi.org/10.1371/journal.pone.0093875
http://dx.doi.org/10.1111/febs.13268
http://dx.doi.org/10.4161/auto.6.7.12785
http://dx.doi.org/10.1083/jcb.200801099
http://dx.doi.org/10.1083/jcb.200801099
http://dx.doi.org/10.1038/ncomms8007
http://dx.doi.org/10.1038/ncomms8007
http://dx.doi.org/10.1186/1471-2121-11-89
http://dx.doi.org/10.1242/jcs.02447
http://dx.doi.org/10.1242/jcs.02447
http://dx.doi.org/10.1126/science.1101738
http://dx.doi.org/10.1093/carcin/bgm271
http://dx.doi.org/10.4161/auto.5.5.8823
http://dx.doi.org/10.1016/S0076-6879(08)04005-6
http://dx.doi.org/10.1016/S0076-6879(08)04005-6
http://dx.doi.org/10.4161/auto.5.3.7664
http://dx.doi.org/10.1002/biot.201200306
http://dx.doi.org/10.1002/biot.201200306
http://dx.doi.org/10.1038/srep12425
http://dx.doi.org/10.1074/jbc.M404399200
http://dx.doi.org/10.1074/jbc.M404399200
http://dx.doi.org/10.4161/auto.4615
http://dx.doi.org/10.1111/j.1600-079X.2010.<?A3B2 re3j?>00833.x
http://dx.doi.org/10.1111/j.1600-079X.2010.<?A3B2 re3j?>00833.x
http://dx.doi.org/10.1038/nchembio.1308
http://dx.doi.org/10.4161/auto.5.7.9443
http://dx.doi.org/10.4161/auto.5.7.9443


243. Frankel LB, Wen J, Lees M, H(o)yer-Hansen M, Farkas T, Krogh A,
Jaattela M, Lund AH. microRNA-101 is a potent inhibitor of auto-
phagy. EMBO J 2011:4628-41; http://dx.doi.org/10.1038/emboj.
2011.331.

244. Farkas T, Daugaard M, Jaattela M. Identification of small molecule
inhibitors of phosphatidylinositol 3-kinase and autophagy. J Biol
Chem 2011; 286:38904-12; http://dx.doi.org/10.1074/jbc.M111.
269134.

245. Szyniarowski P, Corcelle-Termeau E, Farkas T, Hoyer-Hansen M,
Nylandsted J, Kallunki T, Jaattela M. A comprehensive siRNA
screen for kinases that suppress macroautophagy in optimal growth
conditions. Autophagy 2011; 7:892-903; http://dx.doi.org/10.4161/
auto.7.8.15770.

246. Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-
Michaud A. Crohn’s disease-associated adherent invasive Escheri-
chia coli modulate levels of microRNAs in intestinal epithelial cells
to reduce autophagy. Gastroenterology 2014; 146:508-19; http://dx.
doi.org/10.1053/j.gastro.2013.10.021.

247. Frankel LB, Di Malta C, Wen J, Eskelinen EL, Ballabio A, Lund AH.
A non-conserved miRNA regulates lysosomal function and impacts
on a human lysosomal storage disorder. Nat Commun 2014;
5:5840; http://dx.doi.org/10.1038/ncomms6840.

248. Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carci-
nogenesis 2012; 33:2018-25; http://dx.doi.org/10.1093/carcin/
bgs266.

249. Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T,
Tanaka K, Kominami E. Excess peroxisomes are degraded by auto-
phagic machinery in mammals. J Biol Chem 2006; 281:4035-41;
http://dx.doi.org/10.1074/jbc.M512283200.

250. Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited
selectively to impaired mitochondria and promotes their autophagy.
J Cell Biol 2008; 183:795-803; http://dx.doi.org/10.1083/
jcb.200809125.

251. Nogalska A, Terracciano C, D’Agostino C, King Engel W, Askanas
V. p62/SQSTM1 is overexpressed and prominently accumulated in
inclusions of sporadic inclusion-body myositis muscle fibers, and
can help differentiating it from polymyositis and dermatomyositis.
Acta Neuropathol 2009; 118:407-13; http://dx.doi.org/10.1007/
s00401-009-0564-6.

252. Chahory S, Keller N, Martin E, Omri B, Crisanti P, Torriglia A.
Light induced retinal degeneration activates a caspase-independent
pathway involving cathepsin D. Neurochem Int 2010; 57:278-87;
http://dx.doi.org/10.1016/j.neuint.2010.06.006.

253. Padron-Barthe L, Courta J, Lepretre C, Nagbou A, Torriglia A. Leu-
kocyte Elastase Inhibitor, the precursor of L-DNase II, inhibits apo-
ptosis by interfering with caspase-8 activation. Biochim Biophys
Acta 2008; 1783:1755-66; http://dx.doi.org/10.1016/j.
bbamcr.2008.06.018.

254. Gutierrez MG, Saka HA, Chinen I, Zoppino FC, Yoshimori T,
Bocco JL, Colombo MI. Protective role of autophagy against Vibrio
cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl
Acad Sci USA 2007; 104:1829-34; http://dx.doi.org/10.1073/
pnas.0601437104.

255. Hosokawa N, Hara Y, Mizushima N. Generation of cell lines with
tetracycline-regulated autophagy and a role for autophagy in con-
trolling cell size. FEBS Lett 2006; 580:2623-9; http://dx.doi.org/
10.1016/j.febslet.2006.04.008.

256. Suttangkakul A, Li F, Chung T, Vierstra RD. The ATG1/13 protein
kinase complex is both a regulator and a substrate of autophagic
recycling in Arabidopsis. Plant Cell 2011; 23:3761-79; http://dx.doi.
org/10.1105/tpc.111.090993.

257. Ni HM, Bockus A, Wozniak AL, Jones K, Weinman S, Yin XM,
Ding WX. Dissecting the dynamic turnover of GFP-LC3 in the
autolysosome. Autophagy 2011; 7:188-204; http://dx.doi.org/
10.4161/auto.7.2.14181.

258. Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG,
Nabi IR, Roberge M. Screen for chemical modulators of autophagy
reveals novel therapeutic inhibitors of mTORC1 signaling. PloS
One 2009; 4:e7124; http://dx.doi.org/10.1371/journal.pone.0007124.

259. Patterson GH, Lippincott-Schwartz J. Selective photolabeling of
proteins using photoactivatable GFP. Methods 2004; 32:445-50;
http://dx.doi.org/10.1016/j.ymeth.2003.10.006.

260. Hamacher-Brady A, Brady NR, Gottlieb RA. Enhancing
macroautophagy protects against ischemia/reperfusion injury in
cardiac myocytes. J Biol Chem 2006; 281:29776-87; http://dx.doi.
org/10.1074/jbc.M603783200.

261. Noda T, Klionsky DJ. The quantitative Pho8Delta60 assay of non-
specific autophagy. Methods Enzymol 2008; 451:33-42; http://dx.
doi.org/10.1016/S0076-6879(08)03203-5.

262. Klionsky DJ. Monitoring autophagy in yeast: the Pho8Delta60
assay. Methods Mol Biol 2007; 390:363-71; http://dx.doi.org/
10.1007/978-1-59745-466-7.

263. Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW. Use of
the green fluorescent protein and its mutants in quantitative fluo-
rescence microscopy. Biophys J 1997; 73:2782-90; http://dx.doi.org/
10.1016/S0006-3495(97)78307-3.

264. Kimura S, Noda T, Yoshimori T. Dissection of the autophagosome
maturation process by a novel reporter protein, tandem fluores-
cent-tagged LC3. Autophagy 2007; 3:452-60; http://dx.doi.org/
10.4161/auto.4451.

265. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE,
Tsien RY. Improved monomeric red, orange and yellow fluorescent
proteins derived from Discosoma sp. red fluorescent protein. Nat
Biotechnol 2004; 22:1567-72; http://dx.doi.org/10.1038/nbt1037.

266. Strack RL, Keenan RJ, Glick BS. Noncytotoxic DsRed derivatives for
whole-cell labeling. Methods Mol Biol 2011; 699:355-70; http://dx.
doi.org/10.1007/978-1-61737-950-5.

267. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Che-
purnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA. Engineering
of a monomeric green-to-red photoactivatable fluorescent protein
induced by blue light. Nat Biotechnol 2006; 24:461-5; http://dx.doi.
org/10.1038/nbt1191.

268. Rekas A, Alattia JR, Nagai T, Miyawaki A, Ikura M. Crystal struc-
ture of venus, a yellow fluorescent protein with improved matura-
tion and reduced environmental sensitivity. J Biol Chem 2002;
277:50573-8; http://dx.doi.org/10.1074/jbc.M209524200.

269. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda
T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian
homologue of yeast Apg8p, is localized in autophagosome mem-
branes after processing. EMBO J 2000; 19:5720-8; http://dx.doi.org/
10.1093/emboj/19.21.5720.

270. Badr CE, Wurdinger T, Nilsson J, Niers JM, Whalen M, Degterev A,
Tannous BA. Lanatoside C sensitizes glioblastoma cells to tumor
necrosis factor-related apoptosis-inducing ligand and induces an
alternative cell death pathway. Neuro-oncology 2011; 13:1213-24;
http://dx.doi.org/10.1093/neuonc/nor067.

271. Mel�endez A, Tall�oczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine
B. Autophagy genes are essential for dauer development and life-
span extension in C. elegans. Science 2003; 301:1387-91; http://dx.
doi.org/10.1126/science.1087782.

272. Otto GP, Wu MY, Kazgan N, Anderson OR, Kessin RH.
Macroautophagy is required for multicellular development of the
social amoeba Dictyostelium discoideum. J Biol Chem 2003;
278:17636-45; http://dx.doi.org/10.1074/jbc.M212467200.

273. Liu XH, Liu TB, Lin FC. Monitoring autophagy in Magnaporthe
oryzae. Methods Enzymol 2008; 451:271-94; http://dx.doi.org/
10.1016/S0076-6879(08)03219-9.

274. Pinan-Lucarre B, Paoletti M, Dementhon K, Coulary-Salin B, Clave
C. Autophagy is induced during cell death by incompatibility and is
essential for differentiation in the filamentous fungus Podospora
anserina. Mol Microbiol 2003; 47:321-33; http://dx.doi.org/10.1046/
j.1365-2958.2003.03208.x.

275. Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ.
Autophagic fungal cell death is necessary for infection by the rice
blast fungus. Science 2006; 312:580-3; http://dx.doi.org/10.1126/
science.1124550.

276. Kikuma T, Ohneda M, Arioka M, Kitamoto K. Functional analysis
of the ATG8 homologue Aoatg8 and role of autophagy in

AUTOPHAGY 129

http://dx.doi.org/10.1038/emboj.<?A3B2 re3j?>2011.331
http://dx.doi.org/10.1038/emboj.<?A3B2 re3j?>2011.331
http://dx.doi.org/10.1074/jbc.M111.<?A3B2 re3j?>269134
http://dx.doi.org/10.1074/jbc.M111.<?A3B2 re3j?>269134
http://dx.doi.org/10.4161/auto.7.8.15770
http://dx.doi.org/10.4161/auto.7.8.15770
http://dx.doi.org/10.1053/j.gastro.2013.10.021
http://dx.doi.org/10.1038/ncomms6840
http://dx.doi.org/10.1093/carcin/bgs266
http://dx.doi.org/10.1093/carcin/bgs266
http://dx.doi.org/10.1074/jbc.M512283200
http://dx.doi.org/10.1083/jcb.200809125
http://dx.doi.org/10.1083/jcb.200809125
http://dx.doi.org/10.1007/s00401-009-0564-6
http://dx.doi.org/10.1007/s00401-009-0564-6
http://dx.doi.org/10.1016/j.neuint.2010.06.006
http://dx.doi.org/10.1016/j.bbamcr.2008.06.018
http://dx.doi.org/10.1016/j.bbamcr.2008.06.018
http://dx.doi.org/10.1073/pnas.0601437104
http://dx.doi.org/10.1073/pnas.0601437104
http://dx.doi.org/10.1016/j.febslet.2006.04.008
http://dx.doi.org/10.1105/tpc.111.090993
http://dx.doi.org/10.4161/auto.7.2.14181
http://dx.doi.org/10.1371/journal.pone.0007124
http://dx.doi.org/10.1016/j.ymeth.2003.10.006
http://dx.doi.org/10.1074/jbc.M603783200
http://dx.doi.org/10.1016/S0076-6879(08)03203-5
http://dx.doi.org/10.1007/978-1-59745-466-7
http://dx.doi.org/10.1016/S0006-3495(97)78307-3
http://dx.doi.org/10.4161/auto.4451
http://dx.doi.org/10.1038/nbt1037
http://dx.doi.org/10.1007/978-1-61737-950-5
http://dx.doi.org/10.1038/nbt1191
http://dx.doi.org/10.1074/jbc.M209524200
http://dx.doi.org/10.1093/emboj/19.21.5720
http://dx.doi.org/10.1093/neuonc/nor067
http://dx.doi.org/10.1126/science.1087782
http://dx.doi.org/10.1074/jbc.M212467200
http://dx.doi.org/10.1016/S0076-6879(08)03219-9
http://dx.doi.org/10.1046/j.1365-2958.2003.03208.x
http://dx.doi.org/10.1046/j.1365-2958.2003.03208.x
http://dx.doi.org/10.1126/science.1124550
http://dx.doi.org/10.1126/science.1124550


differentiation and germination in Aspergillus oryzae. Eukaryot Cell
2006; 5:1328-36; http://dx.doi.org/10.1128/EC.00024-06.

277. Nolting N, Bernhards Y, Poggeler S. SmATG7 is required for viabil-
ity in the homothallic ascomycete Sordaria macrospora. Fungal
Genet Biol 2009; 46:531-42; http://dx.doi.org/10.1016/j.fgb.2009.
03.008.

278. Baghdiguian S, Martinand-Mari C, Mangeat P. Using Ciona to
study developmental programmed cell death. Semin Cancer Biol
2007; 17:147-53; http://dx.doi.org/10.1016/j.semcancer.2006.11.005.

279. Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Sten-
mark H. Programmed autophagy in the Drosophila fat body is
induced by ecdysone through regulation of the PI3K pathway. Dev
Cell 2004; 7:179-92; http://dx.doi.org/10.1016/j.devcel.2004.07.005.

280. Scott RC, Schuldiner O, Neufeld TP. Role and regulation of
starvation-induced autophagy in the Drosophila fat body. Dev
Cell 2004; 7:167-78; http://dx.doi.org/10.1016/j.devcel.2004.07.
009.

281. Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH,
Kumar S. Autophagy, not apoptosis, is essential for midgut cell
death in Drosophila. Curr Biol 2009; 19:1741-6; http://dx.doi.org/
10.1016/j.cub.2009.08.042.

282. Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T,
Ohsumi Y. Processing of ATG8s, ubiquitin-like proteins, and their
deconjugation by ATG4s are essential for plant autophagy. Plant
Cell 2004; 16:2967-83; http://dx.doi.org/10.1105/tpc.104.025395.

283. Li F, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaep-
pler SM, Otegui MS, Vierstra RD. Autophagic recycling plays a cen-
tral role in maize nitrogen remobilization. Plant Cell 2015; 27:1389-
408; http://dx.doi.org/10.1105/tpc.15.00158.

284. Brennand A, Rico E, Rigden DJ, Van Der Smissen P, Courtoy PJ,
Michels PA. ATG24 Represses Autophagy and Differentiation and
Is Essential for Homeostasy of the Flagellar Pocket in Trypanosoma
brucei. PloS One 2015; 10:e0130365.

285. Li FJ, Shen Q, Wang C, Sun Y, Yuan AY, He CY. A role of auto-
phagy in Trypanosoma brucei cell death. Cell Microbiol 2012;
14:1242-56; http://dx.doi.org/10.1111/j.1462-5822.2012.01795.x.

286. Besteiro S, Williams RA, Morrison LS, Coombs GH, Mottram JC.
Endosome sorting and autophagy are essential for differentiation
and virulence of Leishmania major. J Biol Chem 2006; 281:11384-
96; http://dx.doi.org/10.1074/jbc.M512307200.

287. Williams RA, Tetley L, Mottram JC, Coombs GH. Cysteine pepti-
dases CPA and CPB are vital for autophagy and differentiation in
Leishmania mexicana. Mol Microbiol 2006; 61:655-74; http://dx.
doi.org/10.1111/j.1365-2958.2006.05274.x.

288. Williams RA, Woods KL, Juliano L, Mottram JC, Coombs GH.
Characterization of unusual families of ATG8-like proteins and
ATG12 in the protozoan parasite Leishmania major. Autophagy
2009; 5:159-72.

289. Elsasser A, Vogt AM, Nef H, Kostin S, Mollmann H, Skwara W,
Bode C, Hamm C, Schaper J. Human hibernating myocardium is
jeopardized by apoptotic and autophagic cell death. J Am Coll Car-
diol 2004; 43:2191-9; http://dx.doi.org/10.1016/j.jacc.2004.02.053.

290. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx
MM. Apoptotic versus autophagic cell death in heart failure. Cardi-
ovasc Res 2001; 51:304-12; http://dx.doi.org/10.1016/S0008-6363
(01)00290-5.

291. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Haya-
kawa Y, Zimmermann R, Bauer E, Klovekorn WP, et al. Myocytes
die by multiple mechanisms in failing human hearts. Circ Res 2003;
92:715-24; http://dx.doi.org/10.1161/01.RES.0000067471.95890.5C.

292. Perez-Perez ME, Florencio FJ, Crespo JL. Inhibition of target of
rapamycin signaling and stress activate autophagy in Chlamydomo-
nas reinhardtii. Plant Physiol 2010; 152:1874-88; http://dx.doi.org/
10.1104/pp.109.152520.

293. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami
E, Gotow T, Peters C, von Figura K, Mizushima N, et al. Participa-
tion of autophagy in storage of lysosomes in neurons from mouse
models of neuronal ceroid-lipofuscinoses (Batten disease). Amer J
Pathol 2005; 167:1713-28; http://dx.doi.org/10.1016/S0002-9440
(10)61253-9.

294. O]st A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook
H, Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signal-
ing and enhanced autophagy in adipocytes from obese patients
with type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/
10.1007/s00894-009-0539-5.

295. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P,
Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ, 3rd, et al. Endogenous
HMGB1 regulates autophagy. J Cell Biol 2010; 190:881-92; http://
dx.doi.org/10.1083/jcb.200911078.

296. Gniadek TJ, Warren G. WatershedCounting3D: a new method for
segmenting and counting punctate structures from confocal image
data. Traffic 2007; 8:339-46; http://dx.doi.org/10.1111/j.1600-
0854.2007.00538.x.

297. Decuypere J-P, Welkenhuyzen K, Luyten Y, Ponsaerts R, Dewaele
M, Molg�o J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al.
IP3 receptor-mediated Ca2C signaling and autophagy induction
are interrelated. Autophagy 2011; 7:1472-89; http://dx.doi.org/
10.4161/auto.7.12.17909.

298. Xu Y, Yuan J, Lipinski MM. Live imaging and single-cell analysis
reveal differential dynamics of autophagy and apoptosis. Autophagy
2013; 9:1418-30; http://dx.doi.org/10.4161/auto.25080.

299. Amer AO, Swanson MS. Autophagy is an immediate macrophage
response to Legionella pneumophila. Cell Microbiol 2005; 7:765-78;
http://dx.doi.org/10.1111/j.1462-5822.2005.00509.x.

300. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI,
Deretic V. Autophagy is a defense mechanism inhibiting BCG and
Mycobacterium tuberculosis survival in infected macrophages. Cell
2004; 119:753-66; http://dx.doi.org/10.1016/j.cell.2004.11.038.

301. Ogawa M, Sasakawa C. Intracellular survival of Shigella. Cell Micro-
biol 2006; 8:177-84; http://dx.doi.org/10.1111/j.1462-5822.2005.
00652.x.

302. Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM,
Belanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Jr., et al.
Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83
reduces gingipain activity and alters trafficking in and response by
host cells. PloS One 2013; 8:e74230; http://dx.doi.org/10.1371/
journal.pone.0074230.

303. Kamentsky L, Jones TR, Fraser A, Bray MA, Logan DJ, Madden KL,
Ljosa V, Rueden C, Eliceiri KW, Carpenter AE. Improved structure,
function and compatibility for CellProfiler: modular high-through-
put image analysis software. Bioinformatics 2011; 27:1179-80;
http://dx.doi.org/10.1093/bioinformatics/btr095.

304. Wu JQ, Pollard TD. Counting cytokinesis proteins globally and
locally in fission yeast. Science 2005; 310:310-4; http://dx.doi.org/
10.1126/science.1113230.

305. Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of
autophagy-related protein stoichiometry by fluorescence micros-
copy. J Cell Biol 2008; 182:129-40; http://dx.doi.org/10.1083/
jcb.200711112.

306. Lipinski MM, Hoffman G, Ng A, Zhou W, Py BF, Hsu E, Liu X,
Eisenberg J, Liu J, Blenis J, et al. A genome-wide siRNA screen
reveals multiple mTORC1 independent signaling pathways regulat-
ing autophagy under normal nutritional conditions. Dev Cell 2010;
18:1041-52; http://dx.doi.org/10.1016/j.devcel.2010.05.005.

307. Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA. The auto-
phagic response to nutrient deprivation in the HL-1 cardiac myo-
cyte is modulated by Bcl-2 and sarco/endoplasmic reticulum
calcium stores. FEBS J 2007; 274:3184-97; http://dx.doi.org/
10.1111/j.1742-4658.2007.05849.x.

308. Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gor-
ski SM. Macroautophagy inhibition sensitizes tamoxifen-resistant
breast cancer cells and enhances mitochondrial depolarization.
Breast Cancer Res Tr 2008; 112:389-403; http://dx.doi.org/10.1007/
s10549-007-9873-4.

309. Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, Shen Y, Rameh L,
Yankner B, Tsai LH, et al. Negative regulation of Vps34 by Cdk
mediated phosphorylation. Mol Cell 2010; 38:500-11; http://dx.doi.
org/10.1016/j.molcel.2010.05.009.

310. Dolloff NG, Ma X, Dicker DT, Humphreys RC, Li LZ, El-Deiry WS.
Spectral imaging-based methods for quantifying autophagy and

130 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1128/EC.00024-06
http://dx.doi.org/10.1016/j.fgb.2009.<?A3B2 re3j?>03.008
http://dx.doi.org/10.1016/j.fgb.2009.<?A3B2 re3j?>03.008
http://dx.doi.org/10.1016/j.semcancer.2006.11.005
http://dx.doi.org/10.1016/j.devcel.2004.07.005
http://dx.doi.org/10.1016/j.devcel.2004.07.<?A3B2 re3j?>009
http://dx.doi.org/10.1016/j.devcel.2004.07.<?A3B2 re3j?>009
http://dx.doi.org/10.1016/j.cub.2009.08.042
http://dx.doi.org/10.1105/tpc.104.025395
http://dx.doi.org/10.1105/tpc.15.00158
http://dx.doi.org/10.1111/j.1462-5822.2012.01795.x
http://dx.doi.org/10.1074/jbc.M512307200
http://dx.doi.org/10.1111/j.1365-2958.2006.05274.x
http://dx.doi.org/10.1016/j.jacc.2004.02.053
http://dx.doi.org/10.1016/S0008-6363(01)00290-5
http://dx.doi.org/10.1016/S0008-6363(01)00290-5
http://dx.doi.org/10.1161/01.RES.0000067471.95890.5C
http://dx.doi.org/10.1104/pp.109.152520
http://dx.doi.org/10.1016/S0002-9440(10)61253-9
http://dx.doi.org/10.1016/S0002-9440(10)61253-9
http://dx.doi.org/10.1007/s00894-009-0539-5
http://dx.doi.org/10.1083/jcb.200911078
http://dx.doi.org/10.1111/j.1600-0854.2007.00538.x
http://dx.doi.org/10.1111/j.1600-0854.2007.00538.x
http://dx.doi.org/10.4161/auto.7.12.17909
http://dx.doi.org/10.4161/auto.25080
http://dx.doi.org/10.1111/j.1462-5822.2005.00509.x
http://dx.doi.org/10.1016/j.cell.2004.11.038
http://dx.doi.org/10.1111/j.1462-5822.2005.<?A3B2 re3j?>00652.x
http://dx.doi.org/10.1111/j.1462-5822.2005.<?A3B2 re3j?>00652.x
http://dx.doi.org/10.1371/journal.pone.0074230
http://dx.doi.org/10.1371/journal.pone.0074230
http://dx.doi.org/10.1093/bioinformatics/btr095
http://dx.doi.org/10.1126/science.1113230
http://dx.doi.org/10.1083/jcb.200711112
http://dx.doi.org/10.1083/jcb.200711112
http://dx.doi.org/10.1016/j.devcel.2010.05.005
http://dx.doi.org/10.1111/j.1742-4658.2007.05849.x
http://dx.doi.org/10.1007/s10549-007-9873-4
http://dx.doi.org/10.1007/s10549-007-9873-4
http://dx.doi.org/10.1016/j.molcel.2010.05.009


apoptosis. Cancer Biol Ther 2011; 12:349-56; http://dx.doi.org/
10.4161/cbt.12.4.17175.

311. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Auto-
phagy-dependent viral recognition by plasmacytoid dendritic cells.
Science 2007; 315:1398-401; http://dx.doi.org/10.1126/science.
1136880.

312. Phadwal K, Alegre-Abarrategui J, Watson AS, Pike L, Anbalagan S,
Hammond EM, Wade-Martins R, McMichael A, Klenerman P,
Simon AK. A novel method for autophagy detection in primary
cells: Impaired levels of macroautophagy in immunosenescent T
cells. Autophagy 2012; 8:677-89; http://dx.doi.org/10.4161/
auto.18935.

313. Davey HM, Hexley P. Red but not dead? Membranes of stressed
Saccharomyces cerevisiae are permeable to propidium iodide. Envi-
ron Microbiol 2011; 13:163-71; http://dx.doi.org/10.1111/j.1462-
2920.2010.02317.x.

314. Kuma A, Matsui M, Mizushima N. LC3, an autophagosome marker,
can be incorporated into protein aggregates independent of auto-
phagy: caution in the interpretation of LC3 localization. Autophagy
2007; 3:323-8; http://dx.doi.org/10.4161/auto.4012.

315. Szeto J, Kaniuk NA, Canadien V, Nisman R, Mizushima N, Yoshi-
mori T, Bazett-Jones DP, Brumell JH. ALIS are stress-induced pro-
tein storage compartments for substrates of the proteasome and
autophagy. Autophagy 2006; 2:189-99; http://dx.doi.org/10.4161/
auto.2731.

316. Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH.
Ubiquitinated-protein aggregates form in pancreatic [beta]-cells
during diabetes-induced oxidative stress and are regulated by auto-
phagy. Diabetes 2007; 56:930-9.

317. Fujita K, Maeda D, Xiao Q, Srinivasula SM. Nrf2-mediated induc-
tion of p62 controls Toll-like receptor-4-driven aggresome-like
induced structure formation and autophagic degradation. Proc Natl
Acad Sci USA 2011; 108:1427-32; http://dx.doi.org/10.1073/pnas.
1014156108.

318. Pierre P. Dendritic cells, DRiPs, and DALIS in the control of anti-
gen processing. Immunol Rev 2005; 207:184-90; http://dx.doi.org/
10.1111/j.0105-2896.2005.00300.x.

319. Pankiv S, Høyvarde Clausen T, Lamark T, Brech A, Bruun JA,
Outzen H, Øvervatn A, Bjørkøy G, Johansen T. p62/SQSTM1
binds directly to Atg8/LC3 to facilitate degradation of ubiquiti-
nated protein aggregates by autophagy. J Biol Chem 2007;
282:24131-45; http://dx.doi.org/10.1074/jbc.M702824200.

320. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y,
Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H,
et al. Suppression of basal autophagy in neural cells causes neurode-
generative disease in mice. Nature 2006; 441:885-9; http://dx.doi.
org/10.1038/nature04724.

321. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno
T, Koike M, Uchiyama Y, Kominami E, et al. Loss of autophagy in
the central nervous system causes neurodegeneration in mice.
Nature 2006; 441:880-4; http://dx.doi.org/10.1038/nature04723.

322. Calvo-Garrido J, Escalante R. Autophagy dysfunction and ubiqui-
tin-positive protein aggregates in Dictyostelium cells lacking Vmp1.
Autophagy 2010; 6:100-9; http://dx.doi.org/10.4161/auto.6.1.10697.

323. Bjorkoy G, Lamark T, Johansen T. p62/SQSTM1: a missing link
between protein aggregates and the autophagy machinery. Auto-
phagy 2006; 2:138-9; http://dx.doi.org/10.4161/auto.2.2.2405.

324. Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine
403 Phosphorylation of p62/SQSTM1 Regulates Selective Autopha-
gic Clearance of Ubiquitinated Proteins. Mol Cell 2011; 44:279-89;
http://dx.doi.org/10.1016/j.molcel.2011.07.039.

325. Lerner C, Bitto A, Pulliam D, Nacarelli T, Konigsberg M, Van Rem-
men H, Torres C, Sell C. Reduced mammalian target of rapamycin
activity facilitates mitochondrial retrograde signaling and increases
life span in normal human fibroblasts. Aging Cell 2013; 12:966-77;
http://dx.doi.org/10.1111/acel.12122.

326. K€ochl R, Hu XW, Chan EYW, Tooze SA. Microtubules facilitate
autophagosome formation and fusion of autophagosomes with
endosomes. Traffic 2006; 7:129-45; http://dx.doi.org/10.1111/
j.1600-0854.2005.00368.x.

327. Eng KE, Panas MD, Karlsson Hedestam GB, McInerney GM. A novel
quantitative flow cytometry-based assay for autophagy. Autophagy
2010; 6:634-41; http://dx.doi.org/10.4161/auto.6.5.12112.

328. Ciechomska IA, Tolkovsky AM. Non-autophagic GFP-LC3 puncta
induced by saponin and other detergents. Autophagy 2007; 3:586-
90; http://dx.doi.org/10.4161/auto.4843.

329. Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of auto-
phagic/lysosomal protein degradation in isolated rat hepatocytes.
Proc Natl Acad Sci USA 1982; 79:1889-92; http://dx.doi.org/
10.1073/pnas.79.6.1889.

330. Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN,
Codogno P, Shen H-M. Dual role of 3-methyladenine in modula-
tion of autophagy via different temporal patterns of inhibition on
class I and III phosphoinositide 3-kinase. J Biol Chem 2010;
285:10850-61; http://dx.doi.org/10.1074/jbc.M109.080796.

331. Bampton ET, Goemans CG, Niranjan D, Mizushima N, Tolkovsky
AM. The dynamics of autophagy visualized in live cells: from auto-
phagosome formation to fusion with endo/lysosomes. Autophagy
2005; 1:23-36; http://dx.doi.org/10.4161/auto.1.1.1495.

332. Tormo D, Checinska A, Alonso-Curbelo D, Perez-Guijarro E,
Canon E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megias D,
Mulero F, et al. Targeted activation of innate immunity for thera-
peutic induction of autophagy and apoptosis in melanoma cells.
Cancer Cell 2009; 16:103-14; http://dx.doi.org/10.1016/j.
ccr.2009.07.004.

333. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervon-
sky A, Mizushima N, Grinstein S, Iwasaki A. In vivo require-
ment for Atg5 in antigen presentation by dendritic cells.
Immunity 2010; 32:227-39; http://dx.doi.org/10.1016/j.immuni.
2009.12.006.

334. Tamura N, Oku M, Sakai Y. Atg8 regulates vacuolar membrane
dynamics in a lipidation-independent manner in Pichia pastoris. J
Cell Sci 2010; 123:4107-16; http://dx.doi.org/10.1242/jcs.070045.

335. Stromhaug PE, Reggiori F, Guan J, Wang C-W, Klionsky DJ. Atg21
is a phosphoinositide binding protein required for efficient lipida-
tion and localization of Atg8 during uptake of aminopeptidase I by
selective autophagy. Mol Biol Cell 2004; 15:3553-66; http://dx.doi.
org/10.1091/mbc.E04-02-0147.

336. Baens M, Noels H, Broeckx V, Hagens S, Fevery S, Billiau AD, Van-
kelecom H, Marynen P. The dark side of EGFP: defective polyubi-
quitination. PloS One 2006; 1:e54; http://dx.doi.org/10.1371/
journal.pone.0000054.

337. Cali T, Galli C, Olivari S, Molinari M. Segregation and rapid
turnover of EDEM1 by an autophagy-like mechanism
modulates standard ERAD and folding activities. Biochem Biophys
Res Commun 2008; 371:405-10; http://dx.doi.org/10.1016/j.bbrc.
2008.04.098.

338. Al-Younes HM, Al-Zeer MA, Khalil H, Gussmann J, Karlas A,
Machuy N, Brinkmann V, Braun PR, Meyer TF. Autophagy-inde-
pendent function of MAP-LC3 during intracellular propagation of
Chlamydia trachomatis. Autophagy 2011; 7:814-28; http://dx.doi.
org/10.4161/auto.7.8.15597.

339. Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych
S, Davidson MW, Betzig E. Dual-color superresolution imaging of
genetically expressed probes within individual adhesion complexes.
Proc Natl Acad Sci USA 2007; 104:20308-13; http://dx.doi.org/
10.1073/pnas.0710517105.

340. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler
B, Yang H, Hild M, Kung C, Wilson C, et al. Bidirectional transport
of amino acids regulates mTOR and autophagy. Cell 2009; 136:521-
34; http://dx.doi.org/10.1016/j.cell.2008.11.044.

341. Nyfeler B, Bergman P, Triantafellow E, Wilson CJ, Zhu Y, Radetich
B, Finan PM, Klionsky DJ, Murphy LO. Relieving autophagy and
4EBP1 from rapamycin resistance. Mol Cell Biol 2011; 31:2867-76;
http://dx.doi.org/10.1128/MCB.05430-11.

342. Singh K, Sharma A, Mir MC, Drazba JA, Heston WD, Magi-Gal-
luzzi C, Hansel D, Rubin BP, Klein EA, Almasan A. Autophagic
flux determines cell death and survival in response to Apo2L/
TRAIL (dulanermin). Mol Cancer 2014; 13:70; http://dx.doi.org/
10.1186/1476-4598-13-70.

AUTOPHAGY 131

http://dx.doi.org/10.4161/cbt.12.4.17175
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>1136880
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>1136880
http://dx.doi.org/10.4161/auto.18935
http://dx.doi.org/10.4161/auto.18935
http://dx.doi.org/10.1111/j.1462-2920.2010.02317.x
http://dx.doi.org/10.1111/j.1462-2920.2010.02317.x
http://dx.doi.org/10.4161/auto.4012
http://dx.doi.org/10.4161/auto.2731
http://dx.doi.org/10.4161/auto.2731
http://dx.doi.org/10.1073/pnas.<?A3B2 re3j?>1014156108
http://dx.doi.org/10.1073/pnas.<?A3B2 re3j?>1014156108
http://dx.doi.org/10.1111/j.0105-2896.2005.00300.x
http://dx.doi.org/10.1074/jbc.M702824200
http://dx.doi.org/10.1038/nature04724
http://dx.doi.org/10.1038/nature04723
http://dx.doi.org/10.4161/auto.6.1.10697
http://dx.doi.org/10.4161/auto.2.2.2405
http://dx.doi.org/10.1016/j.molcel.2011.07.039
http://dx.doi.org/10.1111/acel.12122
http://dx.doi.org/10.1111/j.1600-0854.2005.00368.x
http://dx.doi.org/10.1111/j.1600-0854.2005.00368.x
http://dx.doi.org/10.4161/auto.6.5.12112
http://dx.doi.org/10.4161/auto.4843
http://dx.doi.org/10.1073/pnas.79.6.1889
http://dx.doi.org/10.1074/jbc.M109.080796
http://dx.doi.org/10.4161/auto.1.1.1495
http://dx.doi.org/10.1016/j.ccr.2009.07.004
http://dx.doi.org/10.1016/j.ccr.2009.07.004
http://dx.doi.org/10.1016/j.immuni.<?A3B2 re3j?>2009.12.006
http://dx.doi.org/10.1016/j.immuni.<?A3B2 re3j?>2009.12.006
http://dx.doi.org/10.1242/jcs.070045
http://dx.doi.org/10.1091/mbc.E04-02-0147
http://dx.doi.org/10.1371/journal.pone.0000054
http://dx.doi.org/10.1371/journal.pone.0000054
http://dx.doi.org/10.1016/j.bbrc.<?A3B2 re3j?>2008.04.098
http://dx.doi.org/10.1016/j.bbrc.<?A3B2 re3j?>2008.04.098
http://dx.doi.org/10.4161/auto.7.8.15597
http://dx.doi.org/10.1073/pnas.0710517105
http://dx.doi.org/10.1016/j.cell.2008.11.044
http://dx.doi.org/10.1128/MCB.05430-11
http://dx.doi.org/10.1186/1476-4598-13-70


343. Cherra SJ, III, Kulich SM, Uechi G, Balasubramani M, Mountzouris
J, Day BW, Chu CT. Regulation of the autophagy protein LC3 by
phosphorylation. J Cell Biol 2010; 190:533-9; http://dx.doi.org/
10.1083/jcb.201002108.

344. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Wil-
liams A, Garcia-Arencibia M, Rose C, Luo S, Underwood BR,
et al. Complex inhibitory effects of nitric oxide on autophagy.
Mol Cell 2011; 43:19-32; http://dx.doi.org/10.1016/j.molcel.2011.
04.029.

345. Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M,
Subramani S. Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to
regulate phagophore formation during pexophagy. J Cell Biol 2014;
204:541-57; http://dx.doi.org/10.1083/jcb.201307050.

346. Kim SJ, Syed GH, Khan M, Chiu WW, Sohail MA, Gish RG, Siddi-
qui A. Hepatitis C virus triggers mitochondrial fission and attenu-
ates apoptosis to promote viral persistence. Proc Natl Acad Sci USA
2014; 111:6413-8; http://dx.doi.org/10.1073/pnas.1321114111.

347. Allen GF, Toth R, James J, Ganley IG. Loss of iron triggers PINK1/
Parkin-independent mitophagy. EMBO Rep 2013; 14:1127-35;
http://dx.doi.org/10.1038/embor.2013.168.

348. Rosado CJ, Mijaljica D, Hatzinisiriou I, Prescott M, Devenish RJ.
Rosella: a fluorescent pH-biosensor for reporting vacuolar turnover
of cytosol and organelles in yeast. Autophagy 2008; 4:205-13;
http://dx.doi.org/10.4161/auto.5331.

349. Mijaljica D, Rosado CJ, Devenish RJ, Prescott M. Biosensors for
monitoring autophagy In: Serra PA, ed. Biosensors-Emerging Mate-
rials and Applications Croatia: InTech, 2011:383-400.

350. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. Mdm38 pro-
tein depletion causes loss of mitochondrial KC/HC exchange activ-
ity, osmotic swelling and mitophagy. Cell Death Differ 2007;
14:1647-56; http://dx.doi.org/10.1038/sj.cdd.4402167.

351. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent
proteins and their applications in imaging living cells and tissues.
Physiol Rev 2010; 90:1103-63; http://dx.doi.org/10.1152/
physrev.00038.2009.

352. Zhou C, Zhong W, Zhou J, Sheng F, Fang Z, Wei Y, Chen Y, Deng
X, Xia B, Lin J. Monitoring autophagic flux by an improved tandem
fluorescent-tagged LC3 (mTagRFP-mWasabi-LC3) reveals that
high-dose rapamycin impairs autophagic flux in cancer cells. Auto-
phagy 2012; 8:1215-26; http://dx.doi.org/10.4161/auto.20284.

353. Zhou J, Lin J, Zhou C, Deng X, Xia B. Cytotoxicity of red fluores-
cent protein DsRed is associated with the suppression of Bcl-xL
translation. FEBS Lett 2011; 585:821-7; http://dx.doi.org/10.1016/j.
febslet.2011.02.013.

354. Wen Y, Zand B, Ozpolat B, Szczepanski MJ, Lu C, Yuca E, Carroll
AR, Alpay N, Bartholomeusz C, Tekedereli I, et al. Antagonism of
tumoral prolactin receptor promotes autophagy-related cell death.
Cell Rep 2014; 7:488-500; http://dx.doi.org/10.1016/j.celrep.2014.
03.009.

355. Loos B, Genade S, Ellis B, Lochner A, Engelbrecht AM. At the core
of survival: autophagy delays the onset of both apoptotic and
necrotic cell death in a model of ischemic cell injury. Exp Cell Res
2011; 317:1437-53; http://dx.doi.org/10.1016/j.yexcr.2011.03.011.

356. Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic Control of
Autophagy. Cell 2014; 159:1263-76; http://dx.doi.org/10.1016/j.
cell.2014.11.006.

357. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The
variability of autophagy and cell death susceptibility: Unanswered
questions. Autophagy 2013; 9:1270-85; http://dx.doi.org/10.4161/
auto.25560.

358. Shvets E, Fass E, Elazar Z. Utilizing flow cytometry to monitor auto-
phagy in living mammalian cells. Autophagy 2008; 4:621-8; http://
dx.doi.org/10.4161/auto.5939.

359. Hundeshagen P, Hamacher-Brady A, Eils R, Brady NR. Concurrent
detection of autolysosome formation and lysosomal degradation by
flow cytometry in a high-content screen for inducers of autophagy.
BMC Biol 2011; 9:38; http://dx.doi.org/10.1186/1741-7007-9-38.

360. de la Calle C, Joubert PE, Law HK, Hasan M, Albert ML. Simulta-
neous assessment of autophagy and apoptosis using multispectral

imaging cytometry. Autophagy 2011; 7:1045-51; http://dx.doi.org/
10.4161/auto.7.9.16252.

361. Degtyarev M, Reichelt M, Lin K. Novel quantitative autophagy
analysis by organelle flow cytometry after cell sonication. PloS One
2014; 9:e87707; http://dx.doi.org/10.1371/journal.pone.0087707.

362. Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer
PC, Lee M, Strowig T, Arrey F, Conenello G, et al. Matrix protein 2
of influenza A virus blocks autophagosome fusion with lysosomes.
Cell Host Microbe 2009; 6:367-80; http://dx.doi.org/10.1016/j.
chom.2009.09.005.

363. Kaminskyy V, Abdi A, Zhivotovsky B. A quantitative assay for the
monitoring of autophagosome accumulation in different phases of
the cell cycle. Autophagy 2011; 7:83-90; http://dx.doi.org/10.4161/
auto.7.1.13893.

364. Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets
E, McEwan DG, Clausen TH, Wild P, et al. A role for NBR1 in
autophagosomal degradation of ubiquitinated substrates. Mol Cell
2009; 33:505-16; http://dx.doi.org/10.1016/j.molcel.2009.01.020.

365. Larsen KB, Lamark T, Overvatn A, Harneshaug I, Johansen T, Bjor-
koy G. A reporter cell system to monitor autophagy based on p62/
SQSTM1. Autophagy 2010; 6:784-93; http://dx.doi.org/10.4161/
auto.6.6.12510.

366. Huang JJ, Li HR, Huang Y, Jiang WQ, Xu RH, Huang HQ, Lv Y,
Xia ZJ, Zhu XF, Lin TY, et al. Beclin 1 expression: a predictor of
prognosis in patients with extranodal natural killer T-cell lym-
phoma, nasal type. Autophagy 2010; 6:777-83; http://dx.doi.org/
10.4161/auto.6.6.12784.

367. Sivridis E, Koukourakis MI, Zois CE, Ledaki I, Ferguson DJ, Harris
AL, Gatter KC, Giatromanolaki A. LC3A-positive light microscopy
detected patterns of autophagy and prognosis in operable breast
carcinomas. Amer J Pathol 2010; 176:2477-89; http://dx.doi.org/
10.2353/ajpath.2010.090049.

368. Sivridis E, Giatromanolaki A, Liberis V, Koukourakis MI. Auto-
phagy in endometrial carcinomas and prognostic relevance of
‘stone-like’ structures (SLS): what is destined for the atypical endo-
metrial hyperplasia? Autophagy 2011; 7:74-82; http://dx.doi.org/
10.4161/auto.7.1.13947.

369. Giatromanolaki A, Koukourakis MI, Koutsopoulos A, Chloropou-
lou P, Liberis V, Sivridis E. High Beclin 1 expression defines a poor
prognosis in endometrial adenocarcinomas. Gynecol Oncol 2011;
123:147-51; http://dx.doi.org/10.1016/j.ygyno.2011.06.023.

370. Chen Y, Lu Y, Lu C, Zhang L. Beclin-1 expression is a predictor of
clinical outcome in patients with esophageal squamous cell carci-
noma and correlated to hypoxia-inducible factor (HIF)-1alpha
expression. Pathol Oncol Res 2009; 15:487-93; http://dx.doi.org/
10.1007/s12253-008-9143-8.

371. Wan XB, Fan XJ, Chen MY, Xiang J, Huang PY, Guo L, Wu XY, Xu J,
Long ZJ, Zhao Y, et al. Elevated Beclin 1 expression is correlated with
HIF-1[a] in predicting poor prognosis of nasopharyngeal carcinoma.
Autophagy 2010; 6:395-404; http://dx.doi.org/10.4161/auto.6.3.11303.

372. Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chika-
matsu K. Immunological significance of the accumulation of auto-
phagy components in oral squamous cell carcinoma. Cancer Sci
2015; 106:1-8; http://dx.doi.org/10.1111/cas.12559.

373. Shi YH, Ding ZB, Zhou J, Qiu SJ, Fan J. Prognostic significance of
Beclin 1-dependent apoptotic activity in hepatocellular carcinoma.
Autophagy 2009; 5:380-2; http://dx.doi.org/10.4161/auto.5.3.7658.

374. Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, Shi GM, Wang XY,
Ke AW, Wu B, et al. Association of autophagy defect with a malig-
nant phenotype and poor prognosis of hepatocellular carcinoma.
Cancer Res 2008; 68:9167-75; http://dx.doi.org/10.1158/0008-5472.
CAN-08-1573.

375. Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S,
Mourmouras V, Rubino G, Miracco C. The prognostic role of
Beclin 1 protein expression in high-grade gliomas. Autophagy
2009; 5:930-6; http://dx.doi.org/10.4161/auto.5.7.9227.

376. Karpathiou G, Sivridis E, Koukourakis MI, Mikroulis D, Bouros D,
Froudarakis ME, Giatromanolaki A. Light-chain 3A autophagic
activity and prognostic significance in non-small cell lung

132 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1083/jcb.201002108
http://dx.doi.org/10.1016/j.molcel.2011.<?A3B2 re3j?>04.029
http://dx.doi.org/10.1016/j.molcel.2011.<?A3B2 re3j?>04.029
http://dx.doi.org/10.1083/jcb.201307050
http://dx.doi.org/10.1073/pnas.1321114111
http://dx.doi.org/10.1038/embor.2013.168
http://dx.doi.org/10.4161/auto.5331
http://dx.doi.org/10.1038/sj.cdd.4402167
http://dx.doi.org/10.1152/physrev.00038.2009
http://dx.doi.org/10.1152/physrev.00038.2009
http://dx.doi.org/10.4161/auto.20284
http://dx.doi.org/10.1016/j.febslet.2011.02.013
http://dx.doi.org/10.1016/j.febslet.2011.02.013
http://dx.doi.org/10.1016/j.celrep.2014.<?A3B2 re3j?>03.009
http://dx.doi.org/10.1016/j.celrep.2014.<?A3B2 re3j?>03.009
http://dx.doi.org/10.1016/j.yexcr.2011.03.011
http://dx.doi.org/10.1016/j.cell.2014.11.006
http://dx.doi.org/10.1016/j.cell.2014.11.006
http://dx.doi.org/10.4161/auto.25560
http://dx.doi.org/10.4161/auto.25560
http://dx.doi.org/10.4161/auto.5939
http://dx.doi.org/10.1186/1741-7007-9-38
http://dx.doi.org/10.4161/auto.7.9.16252
http://dx.doi.org/10.1371/journal.pone.0087707
http://dx.doi.org/10.1016/j.chom.2009.09.005
http://dx.doi.org/10.1016/j.chom.2009.09.005
http://dx.doi.org/10.4161/auto.7.1.13893
http://dx.doi.org/10.4161/auto.7.1.13893
http://dx.doi.org/10.1016/j.molcel.2009.01.020
http://dx.doi.org/10.4161/auto.6.6.12510
http://dx.doi.org/10.4161/auto.6.6.12510
http://dx.doi.org/10.4161/auto.6.6.12784
http://dx.doi.org/10.2353/ajpath.2010.090049
http://dx.doi.org/10.4161/auto.7.1.13947
http://dx.doi.org/10.1016/j.ygyno.2011.06.023
http://dx.doi.org/10.1007/s12253-008-9143-8
http://dx.doi.org/10.4161/auto.6.3.11303
http://dx.doi.org/10.1111/cas.12559
http://dx.doi.org/10.4161/auto.5.3.7658
http://dx.doi.org/10.1158/0008-5472.CAN-08-1573
http://dx.doi.org/10.1158/0008-5472.CAN-08-1573
http://dx.doi.org/10.4161/auto.5.7.9227


carcinomas. Chest 2011; 140:127-34; http://dx.doi.org/10.1378/
chest.10-1831.

377. Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M,
Kinoshita T, Ueno T, Esumi H, Ochiai A. Autophagy is activated in
pancreatic cancer cells and correlates with poor patient outcome.
Cancer Sci 2008; 99:1813-9; http://dx.doi.org/10.1111/j.1349-
7006.2008.00743.x.

378. Li BX, Li CY, Peng RQ, Wu XJ, Wang HY, Wan DS, Zhu XF, Zhang
XS. The expression of beclin 1 is associated with favorable prognosis
in stage IIIB colon cancers. Autophagy 2009; 5:303-6; http://dx.doi.
org/10.4161/auto.5.3.7491.

379. Koukourakis MI, Giatromanolaki A, Sivridis E, Pitiakoudis M, Gat-
ter KC, Harris AL. Beclin 1 over- and underexpression in colorectal
cancer: distinct patterns relate to prognosis and tumour hypoxia.
Brit J Cancer 2010; 103:1209-14; http://dx.doi.org/10.1038/sj.
bjc.6605904.

380. Giatromanolaki A, Koukourakis MI, Harris AL, Polychronidis A,
Gatter KC, Sivridis E. Prognostic relevance of light chain 3 (LC3A)
autophagy patterns in colorectal adenocarcinomas. J Clin Pathol
2010; 63:867-72; http://dx.doi.org/10.1136/jcp.2010.079525.

381. Sivridis E, Koukourakis MI, Mendrinos SE, Karpouzis A, Fiska A,
Kouskoukis C, Giatromanolaki A. Beclin-1 and LC3A expression in
cutaneous malignant melanomas: a biphasic survival pattern for
beclin-1. Melanoma Res 2011; 21:188-95; http://dx.doi.org/10.1097/
CMR.0b013e328346612c.

382. Giatromanolaki AN, St Charitoudis G, Bechrakis NE, Kozobolis
VP, Koukourakis MI, Foerster MH, Sivridis EL. Autophagy patterns
and prognosis in uveal melanomas. Modern Pathol 2011; 24:1036-
45; http://dx.doi.org/10.1038/modpathol.2011.63.

383. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark
GM. Reporting recommendations for tumor marker prognostic
studies (REMARK). J Natl Cancer Inst 2005; 97:1180-4; http://dx.
doi.org/10.1093/jnci/dji237.

384. Kuwahara Y, Oikawa T, Ochiai Y, Roudkenar MH, Fukumoto M,
Shimura T, Ohtake Y, Ohkubo Y, Mori S, Uchiyama Y. Enhance-
ment of autophagy is a potential modality for tumors refractory to
radiotherapy. Cell Death Dis 2011; 2:e177.

385. Hou YJ, Dong LW, Tan YX, Yang GZ, Pan YF, Li Z, Tang L,
Wang M, Wang Q, Wang HY. Inhibition of active autophagy
induces apoptosis and increases chemosensitivity in cholangio-
carcinoma. Lab Invest 2011; 91:1146-57; http://dx.doi.org/
10.1038/labinvest.2011.97.

386. O’Donovan TR, O’Sullivan GC, McKenna SL. Induction of auto-
phagy by drug-resistant esophageal cancer cells promotes their sur-
vival and recovery following treatment with chemotherapeutics.
Autophagy 2011; 7:509-24; http://dx.doi.org/10.4161/auto.7.5.
15066.

387. Yoshimura K, Shibata M, Koike M, Gotoh K, Fukaya M, Watanabe
M, Uchiyama Y. Effects of RNA interference of Atg4B on the lim-
ited proteolysis of LC3 in PC12 cells and expression of Atg4B in
various rat tissues. Autophagy 2006; 2:200-8; http://dx.doi.org/
10.4161/auto.2744.

388. Tamura H, Shibata M, Koike M, Sasaki M, Uchiyama Y. Atg9A pro-
tein, an autophagy-related membrane protein, is localized in the
neurons of mouse brains. J Histochem Cytochem 2010; 58:443-53;
http://dx.doi.org/10.1369/jhc.2010.955690.

389. Cui J, Bai XY, Shi S, Cui S, Hong Q, Cai G, Chen X. Age-related
changes in the function of autophagy in rat kidneys. Age 2011;
10.1007/s11357-011-9237-1.

390. Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L,
Vacca V, Urbani A, Cecconi F, Malorni W, et al. Schwann cell auto-
phagy counteracts the onset and chronification of neuropathic pain.
Pain 2014; 155:93-107; http://dx.doi.org/10.1016/j.pain.2013.09.013.

391. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-
Naves E, Glickman JN, Tschurtschenthaler M, Hartwig J, Hosomi
S, et al. Paneth cells as a site of origin for intestinal inflammation.
Nature 2013; 503:272-6.

392. Thachil E, Hugot JP, Arbeille B, Paris R, Grodet A, Peuchmaur M,
Codogno P, Barreau F, Ogier-Denis E, Berrebi D, et al. Abnormal
activation of autophagy-induced crinophagy in Paneth cells from

patients with Crohn’s disease. Gastroenterology 2012; 142:1097-9
e4; http://dx.doi.org/10.1053/j.gastro.2012.01.031.

393. Mell�en MA, de la Rosa EJ, Boya P. The autophagic machinery is
necessary for removal of cell corpses from the developing retinal
neuroepithelium. Cell Death Differ 2008; 15:1279-90; http://dx.doi.
org/10.1038/cdd.2008.40.

394. Mell�en MA, de la Rosa EJ, Boya P. Autophagy is not universally
required for phosphatidyl-serine exposure and apoptotic cell
engulfment during neural development. Autophagy 2009; 5:964-72;
http://dx.doi.org/10.4161/auto.5.7.9292.

395. Aburto MR, Sanchez-Calderon H, Hurle JM, Varela-Nieto I, Mag-
arinos M. Early otic development depends on autophagy for apo-
ptotic cell clearance and neural differentiation. Cell Death Dis 2012;
3:e394; http://dx.doi.org/10.1038/cddis.2012.132.

396. Morais RD, Thome RG, Lemos FS, Bazzoli N, Rizzo E. Autophagy
and apoptosis interplay during follicular atresia in fish
ovary: a morphological and immunocytochemical study. Cell Tissue
Res 2012; 347:467-78; http://dx.doi.org/10.1007/s00441-012-
1327-6.

397. Shibata M, Yoshimura K, Furuya N, Koike M, Ueno T, Komatsu M,
Arai H, Tanaka K, Kominami E, Uchiyama Y. The MAP1-LC3 con-
jugation system is involved in lipid droplet formation. Biochem
Biophys Res Commun 2009; 382:419-23; http://dx.doi.org/10.1016/
j.bbrc.2009.03.039.

398. Komatsu M, Waguri S, Koike M, Sou Y-S, Ueno T, Hara T, Mizush-
ima N, Iwata J-I, Ezaki J, Murata S, et al. Homeostatic levels of p62
control cytoplasmic inclusion body formation in autophagy-defi-
cient mice. Cell 2007; 131:1149-63; http://dx.doi.org/10.1016/j.
cell.2007.10.035.

399. Germain M, Nguyen AP, Le Grand JN, Arbour N, Vanderluit JL,
Park DS, Opferman JT, Slack RS. MCL-1 is a stress sensor that reg-
ulates autophagy in a developmentally regulated manner. EMBO J
2011; 30:395-407; http://dx.doi.org/10.1038/emboj.2010.327.

400. Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Jr., Iwata J,
Kominami E, Chait BT, Tanaka K, Yue Z. Essential role for
autophagy protein Atg7 in the maintenance of axonal homeo-
stasis and the prevention of axonal degeneration. Proc Natl
Acad Sci USA 2007; 104:14489-94; http://dx.doi.org/10.1073/
pnas.0701311104.

401. Wang QJ, Ding Y, Kohtz DS, Mizushima N, Cristea IM, Rout MP,
Chait BT, Zhong Y, Heintz N, Yue Z. Induction of autophagy in
axonal dystrophy and degeneration. J Neurosci 2006; 26:8057-68;
http://dx.doi.org/10.1523/JNEUROSCI.2261-06.2006.

402. Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine
D, Rusten TE, Stenmark H, Brech A. Ref(2)P, the Drosophila mela-
nogaster homologue of mammalian p62, is required for the forma-
tion of protein aggregates in adult brain. J Cell Biol 2008; 180:1065-
71; http://dx.doi.org/10.1083/jcb.200711108.

403. Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cum-
ming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, et al.
p62, Ref(2)P and ubiquitinated proteins are conserved markers of
neuronal aging, aggregate formation and progressive autophagic
defects. Autophagy 2011; 7:572-83; http://dx.doi.org/10.4161/
auto.7.6.14943.

404. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M,
Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is
required to maintain muscle mass. Cell Metab 2009; 10:507-15;
http://dx.doi.org/10.1016/j.cmet.2009.10.008.

405. El-Khoury V, Pierson S, Szwarcbart E, Brons NH, Roland O,
Cherrier-De Wilde S, Plawny L, Van Dyck E, Berchem G. Dis-
ruption of autophagy by the histone deacetylase inhibitor
MGCD0103 and its therapeutic implication in B-cell chronic
lymphocytic leukemia. Leukemia 2014; 28:1636-46; http://dx.
doi.org/10.1038/leu.2014.19.

406. Nakaso K, Yoshimoto Y, Nakano T, Takeshima T, Fukuhara Y,
Yasui K, Araga S, Yanagawa T, Ishii T, Nakashima K. Transcrip-
tional activation of p62/A170/ZIP during the formation of the
aggregates: possible mechanisms and the role in Lewy body forma-
tion in Parkinson’s disease. Brain Res 2004; 1012:42-51; http://dx.
doi.org/10.1016/j.brainres.2004.03.029.

AUTOPHAGY 133

http://dx.doi.org/10.1378/chest.10-1831
http://dx.doi.org/10.1378/chest.10-1831
http://dx.doi.org/10.1111/j.1349-7006.2008.00743.x
http://dx.doi.org/10.1111/j.1349-7006.2008.00743.x
http://dx.doi.org/10.4161/auto.5.3.7491
http://dx.doi.org/10.1038/sj.bjc.6605904
http://dx.doi.org/10.1038/sj.bjc.6605904
http://dx.doi.org/10.1136/jcp.2010.079525
http://dx.doi.org/10.1097/CMR.0b013e328346612c
http://dx.doi.org/10.1097/CMR.0b013e328346612c
http://dx.doi.org/10.1038/modpathol.2011.63
http://dx.doi.org/10.1093/jnci/dji237
http://dx.doi.org/10.1038/labinvest.2011.97
http://dx.doi.org/10.4161/auto.7.5.<?A3B2 re3j?>15066
http://dx.doi.org/10.4161/auto.7.5.<?A3B2 re3j?>15066
http://dx.doi.org/10.4161/auto.2744
http://dx.doi.org/10.1369/jhc.2010.955690
http://dx.doi.org/10.1007/s11357-011-9237-1
http://dx.doi.org/10.1016/j.pain.2013.09.013
http://dx.doi.org/10.1053/j.gastro.2012.01.031
http://dx.doi.org/10.1038/cdd.2008.40
http://dx.doi.org/10.4161/auto.5.7.9292
http://dx.doi.org/10.1038/cddis.2012.132
http://dx.doi.org/10.1007/s00441-012-<?A3B2 re3j?>1327-6
http://dx.doi.org/10.1007/s00441-012-<?A3B2 re3j?>1327-6
http://dx.doi.org/10.1016/j.bbrc.2009.03.039
http://dx.doi.org/10.1016/j.bbrc.2009.03.039
http://dx.doi.org/10.1016/j.cell.2007.10.035
http://dx.doi.org/10.1016/j.cell.2007.10.035
http://dx.doi.org/10.1038/emboj.2010.327
http://dx.doi.org/10.1073/pnas.0701311104
http://dx.doi.org/10.1073/pnas.0701311104
http://dx.doi.org/10.1523/JNEUROSCI.2261-06.2006
http://dx.doi.org/10.1083/jcb.200711108
http://dx.doi.org/10.4161/auto.7.6.14943
http://dx.doi.org/10.4161/auto.7.6.14943
http://dx.doi.org/10.1016/j.cmet.2009.10.008
http://dx.doi.org/10.1038/leu.2014.19
http://dx.doi.org/10.1016/j.brainres.2004.03.029


407. Trocoli A, Bensadoun P, Richard E, Labrunie G, Merhi F, Schlafli
AM, Brigger D, Souquere S, Pierron G, Pasquet JM, et al. p62/
SQSTM1 upregulation constitutes a survival mechanism that occurs
during granulocytic differentiation of acute myeloid leukemia cells.
Cell Death Differ 2014; 21:1852-61.

408. B’Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi
Y, Parry L, Stepien G, Fafournoux P, Bruhat A. The eIF2alpha/
ATF4 pathway is essential for stress-induced autophagy gene
expression. Nucleic Acids Res 2013; 41:7683-99; http://dx.doi.org/
10.1093/nar/gkt563.

409. Cnop M, Abdulkarim B, Bottu G, Cunha DA, Igoillo-Esteve M,
Masini M, Turatsinze JV, Griebel T, Villate O, Santin I, et al. RNA
sequencing identifies dysregulation of the human pancreatic islet
transcriptome by the saturated fatty acid palmitate. Diabetes 2014;
63:1978-93; http://dx.doi.org/10.2337/db13-1383.

410. Colosetti P, Puissant A, Robert G, Luciano F, Jacquel A, Gounon P,
Cassuto JP, Auberger P. Autophagy is an important event for mega-
karyocytic differentiation of the chronic myelogenous leukemia
K562 cell line. Autophagy 2009; 5:1092-8; http://dx.doi.org/
10.4161/auto.5.8.9889.

411. Toepfer N, Childress C, Parikh A, Rukstalis D, Yang W. Atorvasta-
tin induces autophagy in prostate cancer PC3 cells through activa-
tion of LC3 transcription. Cancer Biol Ther 2011; 12:691-9; http://
dx.doi.org/10.4161/cbt.12.8.15978.

412. Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac
proteinopathy. Circ Res 2011; 109:296-308; http://dx.doi.org/
10.1161/CIRCRESAHA.111.244707.

413. Trocoli A, Mathieu J, Priault M, Reiffers J, Souquere S, Pierron G,
Besancon F, Djavaheri-Mergny M. ATRA-induced upregulation of
Beclin 1 prolongs the life span of differentiated acute promyelocytic
leukemia cells. Autophagy 2011; 7:1108-14; http://dx.doi.org/
10.4161/auto.7.10.16623.

414. Kim JH, Hong SK, Wu PK, Richards AL, Jackson WT, Park JI. Raf/
MEK/ERK can regulate cellular levels of LC3B and SQSTM1/p62 at
expression levels. Exp Cell Res 2014; 327:340-52; http://dx.doi.org/
10.1016/j.yexcr.2014.08.001.

415. Sahani MH, Itakura E, Mizushima N. Expression of the autophagy
substrate SQSTM1/p62 is restored during prolonged starvation
depending on transcriptional upregulation and autophagy-derived
amino acids. Autophagy 2014; 10:431-41; http://dx.doi.org/10.4161/
auto.27344.

416. B’Chir W, Chaveroux C, Carraro V, Averous J, Maurin AC, Jousse
C, Muranishi Y, Parry L, Fafournoux P, Bruhat A. Dual role for
CHOP in the crosstalk between autophagy and apoptosis to deter-
mine cell fate in response to amino acid deprivation. Cell Signal
2014; 26:1385-91; http://dx.doi.org/10.1016/j.cellsig.2014.03.009.

417. Jamart C, Naslain D, Gilson H, Francaux M. Higher activation of
autophagy in skeletal muscle of mice during endurance exercise in
the fasted state. Am J Physiol Endocrinol Metab 2013; 305:E964-74;
http://dx.doi.org/10.1152/ajpendo.00270.2013.

418. Sanchez AM, Bernardi H, Py G, Candau RB. Autophagy is essential
to support skeletal muscle plasticity in response to endurance exer-
cise. Am J Physiol Regul Integr Comp Physiol 2014; 307:R956-69;
http://dx.doi.org/10.1152/ajpregu.00187.2014.

419. Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z.
Global analysis of genome, transcriptome and proteome reveals the
response to aneuploidy in human cells. Mol Syst Biol 2012; 8:608;
http://dx.doi.org/10.1038/msb.2012.40.

420. Tang YC, Williams BR, Siegel JJ, Amon A. Identification of aneu-
ploidy-selective antiproliferation compounds. Cell 2011; 144:499-
512; http://dx.doi.org/10.1016/j.cell.2011.01.017.

421. Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto
EM, Cavallini G, Bonelli G, Baccino FM, Costelli P. Autophagic
degradation contributes to muscle wasting in cancer cachexia.
Amer J Pathol 2013; 182:1367-78; http://dx.doi.org/10.1016/j.
ajpath.2012.12.023.

422. BenYounes A, Tajeddine N, Tailler M, Malik SA, Shen S, Metivier
D, Kepp O, Vitale I, Maiuri MC, Kroemer G. A fluorescence-micro-
scopic and cytofluorometric system for monitoring the turnover of

the autophagic substrate p62/SQSTM1. Autophagy 2011; 7:883-91;
http://dx.doi.org/10.4161/auto.7.8.15538.

423. Chang Y-Y, Neufeld TP. An Atg1/Atg13 complex with multiple
roles in TOR-mediated autophagy regulation. Mol Biol Cell 2009;
20:2004-14; http://dx.doi.org/10.1091/mbc.E08-12-1250.

424. Jiang Y, Zhu J, Wu L, Xu G, Dai J, Liu X. Tetracycline inhibits local
inflammation induced by cerebral ischemia via modulating auto-
phagy. PloS One 2012; 7:e48672; http://dx.doi.org/10.1371/journal.
pone.0048672.

425. Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T.
Monitoring autophagic degradation of p62/SQSTM1. Methods
Enzymol 2009; 452:181-97; http://dx.doi.org/10.1016/S0076-6879
(08)03612-4.

426. Moscat J, Diaz-Meco MT. p62 at the crossroads of autophagy, apo-
ptosis, and cancer. Cell 2009; 137:1001-4; http://dx.doi.org/10.1016/
j.cell.2009.05.023.

427. Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A,
Hansen M, Moscat J, Diaz-Meco MT. p62 is a key regulator of
nutrient sensing in the mTORC1 pathway. Mol Cell 2011; 44:134-
46; http://dx.doi.org/10.1016/j.molcel.2011.06.038.

428. Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichi-
mura Y, Sou YS, Ueno I, Sakamoto A, Tong KI, et al. The selective
autophagy substrate p62 activates the stress responsive transcrip-
tion factor Nrf2 through inactivation of Keap1. Nat Cell Biol 2010;
12:213-23.

429. Gonzalez Y, Aryal B, Chehab L, Rao VA. Atg7- and Keap1-depen-
dent autophagy protects breast cancer cell lines against mitoqui-
none-induced oxidative stress. Oncotarget 2014; 5:1526-37; http://
dx.doi.org/10.18632/oncotarget.1715.

430. Jain A, Lamark T, Sjottem E, Larsen KB, Awuh JA, Overvatn A,
McMahon M, Hayes JD, Johansen T. p62/SQSTM1 is a target gene
for transcription factor NRF2 and creates a positive feedback loop
by inducing antioxidant response element-driven gene transcrip-
tion. J Biol Chem 2010; 285:22576-91; http://dx.doi.org/10.1074/
jbc.M110.118976.

431. Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-
talk between the ubiquitin-proteasome and autophagy-lysosome
systems. FEBS Lett 2010; 584:1393-8; http://dx.doi.org/10.1016/j.
febslet.2009.12.047.

432. Bardag-Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA,
French SW. Modifications in p62 occur due to proteasome inhibi-
tion in alcoholic liver disease. Life Sci 2005; 77:2594-602; http://dx.
doi.org/10.1016/j.lfs.2005.04.020.

433. Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of
ubiquitinated proteins by proteasomes and autophagy: association
with sequestosome 1/p62. J Biol Chem 2011; 286:22426-40; http://
dx.doi.org/10.1074/jbc.M110.149252.

434. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Auto-
phagy inhibition compromises degradation of ubiquitin-protea-
some pathway substrates. Mol Cell 2009; 33:517-27; http://dx.doi.
org/10.1016/j.molcel.2009.01.021.

435. Monick MM, Powers LS, Walters K, Lovan N, Zhang M, Gerke
A, Hansdottir S, Hunninghake GW. Identification of an
autophagy defect in smokers’ alveolar macrophages.
J Immunol 2010; 185:5425-35; http://dx.doi.org/10.4049/
jimmunol.1001603.

436. Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lonn M,
Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, et al. Pro-
teasome inhibition and oxidative reactions disrupt cellular homeo-
stasis during heme stress. Cell Death Differ 2015; 22:597-611;
http://dx.doi.org/10.1038/cdd.2014.154.

437. Long J, Garner TP, Pandya MJ, Craven CJ, Chen P, Shaw B, Wil-
liamson MP, Layfield R, Searle MS. Dimerisation of the UBA
domain of p62 inhibits ubiquitin binding and regulates NF-kappaB
signalling. J Mol Biol 2010; 396:178-94; http://dx.doi.org/10.1016/j.
jmb.2009.11.032.

438. Norman JM, Cohen GM, Bampton ET. The in vitro cleavage of the
hAtg proteins by cell death proteases. Autophagy 2010; 6:1042-56;
http://dx.doi.org/10.4161/auto.6.8.13337.

134 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1093/nar/gkt563
http://dx.doi.org/10.2337/db13-1383
http://dx.doi.org/10.4161/auto.5.8.9889
http://dx.doi.org/10.4161/cbt.12.8.15978
http://dx.doi.org/10.1161/CIRCRESAHA.111.244707
http://dx.doi.org/10.4161/auto.7.10.16623
http://dx.doi.org/10.1016/j.yexcr.2014.08.001
http://dx.doi.org/10.4161/auto.27344
http://dx.doi.org/10.4161/auto.27344
http://dx.doi.org/10.1016/j.cellsig.2014.03.009
http://dx.doi.org/10.1152/ajpendo.00270.2013
http://dx.doi.org/10.1152/ajpregu.00187.2014
http://dx.doi.org/10.1038/msb.2012.40
http://dx.doi.org/10.1016/j.cell.2011.01.017
http://dx.doi.org/10.1016/j.ajpath.2012.12.023
http://dx.doi.org/10.1016/j.ajpath.2012.12.023
http://dx.doi.org/10.4161/auto.7.8.15538
http://dx.doi.org/10.1091/mbc.E08-12-1250
http://dx.doi.org/10.1371/journal.pone.0048672
http://dx.doi.org/10.1371/journal.pone.0048672
http://dx.doi.org/10.1016/S0076-6879(08)03612-4
http://dx.doi.org/10.1016/S0076-6879(08)03612-4
http://dx.doi.org/10.1016/j.cell.2009.05.023
http://dx.doi.org/10.1016/j.cell.2009.05.023
http://dx.doi.org/10.1016/j.molcel.2011.06.038
http://dx.doi.org/10.18632/oncotarget.1715
http://dx.doi.org/10.1074/jbc.M110.118976
http://dx.doi.org/10.1074/jbc.M110.118976
http://dx.doi.org/10.1016/j.febslet.2009.12.047
http://dx.doi.org/10.1016/j.febslet.2009.12.047
http://dx.doi.org/10.1016/j.lfs.2005.04.020
http://dx.doi.org/10.1074/jbc.M110.149252
http://dx.doi.org/10.1016/j.molcel.2009.01.021
http://dx.doi.org/10.4049/jimmunol.1001603
http://dx.doi.org/10.4049/jimmunol.1001603
http://dx.doi.org/10.1038/cdd.2014.154
http://dx.doi.org/10.1016/j.jmb.2009.11.032
http://dx.doi.org/10.1016/j.jmb.2009.11.032
http://dx.doi.org/10.4161/auto.6.8.13337


439. Lelouard H, Schmidt EK, Camosseto V, Clavarino G, Ceppi M, Hsu
HT, Pierre P. Regulation of translation is required for dendritic cell
function and survival during activation. J Cell Biol 2007; 179:1427-
39; http://dx.doi.org/10.1083/jcb.200707166.

440. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradio-
active method to monitor protein synthesis. Nat Methods 2009;
6:275-7; http://dx.doi.org/10.1038/nmeth.1314.

441. Lim J, Kim HW, Youdim MB, Rhyu IJ, Choe KM, Oh YJ. Binding
preference of p62 towards LC3-ll during dopaminergic neurotoxin-
induced impairment of autophagic flux. Autophagy 2011; 7:51-60;
http://dx.doi.org/10.4161/auto.7.1.13909.

442. Fouillet A, Levet C, Virgone A, Robin M, Dourlen P, Rieusset J,
Belaidi E, Ovize M, Touret M, Nataf S, et al. ER stress inhibits neu-
ronal death by promoting autophagy. Autophagy 2012; 8:915-26;
http://dx.doi.org/10.4161/auto.19716.

443. Waguri S, Komatsu M. Biochemical and morphological detection of
inclusion bodies in autophagy-deficient mice. Methods Enzymol
2009; 453:181-96; http://dx.doi.org/10.1016/S0076-6879(08)04009-3.

444. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M,
Cundy T, Nicholson GC, Ward L, Bennett ST, Wuyts W, et al.
Domain-specific mutations in sequestosome 1 (SQSTM1) cause
familial and sporadic Paget’s disease. Hum Mol Genet 2002;
11:2735-9; http://dx.doi.org/10.1093/hmg/11.22.2735.

445. Kara NZ, Toker L, Agam G, Anderson GW, Belmaker RH, Einat H.
Trehalose induced antidepressant-like effects and autophagy
enhancement in mice. Psychopharmacology 2013; 229:367-75;
http://dx.doi.org/10.1007/s00213-013-3119-4.

446. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter
D. Proteomic analysis of the anterior cingulate cortex in the
major psychiatric disorders: Evidence for disease-associated
changes. Proteomics 2006; 6:3414-25; http://dx.doi.org/10.1002/
pmic.200500069.

447. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR. Proteomic
analysis of membrane microdomain-associated proteins in the dor-
solateral prefrontal cortex in schizophrenia and bipolar disorder
reveals alterations in LAMP, STXBP1 and BASP1 protein expres-
sion. Mol Psychiatr 2009; 14:601-13; http://dx.doi.org/10.1038/
mp.2008.7.

448. Chetcuti A, Adams LJ, Mitchell PB, Schofield PR. Microarray gene
expression profiling of mouse brain mRNA in a model of lithium
treatment. Psychiat Genet 2008; 18:64-72; http://dx.doi.org/
10.1097/YPG.0b013e3282fb0051.

449. Focking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter
DR. Common proteomic changes in the hippocampus in schizo-
phrenia and bipolar disorder and particular evidence for involve-
ment of cornu ammonis regions 2 and 3. Arch Gen Psychiat 2011;
68:477-88; http://dx.doi.org/10.1001/archgenpsychiatry.2011.43.

450. Nielsen J, Hoffert JD, Knepper MA, Agre P, Nielsen S, Fenton RA.
Proteomic analysis of lithium-induced nephrogenic diabetes insipi-
dus: mechanisms for aquaporin 2 down-regulation and cellular pro-
liferation. Proc Natl Acad Sci USA 2008; 105:3634-9; http://dx.doi.
org/10.1073/pnas.0800001105.

451. Lu K, Psakhye I, Jentsch S. Autophagic Clearance of PolyQ Proteins
Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET
Protein Family. Cell 2014; 158:549-63; http://dx.doi.org/10.1016/j.
cell.2014.05.048.

452. Mizushima N, Levine B. Autophagy in mammalian development
and differentiation. Nat Cell Biol 2010; 12:823-30; http://dx.doi.org/
10.1038/ncb0910-823.

453. Maloverjan A, Piirsoo M, Michelson P, Kogerman P, Osterlund T.
Identification of a novel serine/threonine kinase ULK3 as a positive
regulator of Hedgehog pathway. Exp Cell Res 2010; 316:627-37;
http://dx.doi.org/10.1016/j.yexcr.2009.10.018.

454. Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JF,
Tavar�e S, Arakawa S, Shimizu S, Watt FM. Autophagy mediates the
mitotic senescence transition. Genes Dev 2009; 23:798-803; http://
dx.doi.org/10.1101/gad.519709.

455. Chan EY, Tooze SA. Evolution of Atg1 function and regulation.
Autophagy 2009; 5:758-65; http://dx.doi.org/10.4161/auto.8709.

456. Chan EY, Kir S, Tooze SA. siRNA screening of the kinome identi-
fies ULK1 as a multidomain modulator of autophagy. J Biol Chem
2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200.

457. Petherick KJ, Conway OJ, Mpamhanga C, Osborne SA, Kamal A,
Saxty B, Ganley IG. Pharmacological inhibition of ULK1 kinase
blocks mammalian target of rapamycin (mTOR)-dependent auto-
phagy. J Biol Chem 2015; 290:11376-83; http://dx.doi.org/10.1074/
jbc.C114.627778.

458. Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL,
McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF, et al. Hsp90-
Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated
mitophagy. Mol Cell 2011; 43:572-85; http://dx.doi.org/10.1016/j.
molcel.2011.06.018.

459. Hardie DG. AMP-activated protein kinase: an energy sensor that
regulates all aspects of cell function. Genes Dev 2011; 25:1895-908;
http://dx.doi.org/10.1101/gad.17420111.

460. Carling D, Mayer FV, Sanders MJ, Gamblin SJ. AMP-activated pro-
tein kinase: nature’s energy sensor. Nat Chem Biol 2011; 7:512-8;
http://dx.doi.org/10.1038/nchembio.610.

461. Samari HR, Moller MT, Holden L, Asmyhr T, Seglen PO. Stimula-
tion of hepatocytic AMP-activated protein kinase by okadaic acid
and other autophagy-suppressive toxins. Biochem J 2005; 386:237-
44; http://dx.doi.org/10.1042/BJ20040609.

462. Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D’Alessandro A,
Zolla L, Palmieri M. Cannabinoids inhibit energetic metabolism
and induce AMPK-dependent autophagy in pancreatic cancer cells.
Cell Death Dis 2013; 4:e664.

463. Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S,
Towler MC, Brown LJ, Ogunbayo OA, Evans AM, et al. Use of cells
expressing gamma subunit variants to identify diverse mechanisms
of AMPK activation. Cell Metab 2010; 11:554-65; http://dx.doi.org/
10.1016/j.cmet.2010.04.001.

464. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization
of the human autophagy system. Nature 2010; 466:68-76; http://dx.
doi.org/10.1038/nature09204.

465. Chiacchiera F, Matrone A, Ferrari E, Ingravallo G, Lo Sasso G,
Murzilli S, Petruzzelli M, Salvatore L, Moschetta A, Simone C.
p38alpha blockade inhibits colorectal cancer growth in vivo by
inducing a switch from HIF1alpha- to FoxO-dependent transcrip-
tion. Cell Death Differ 2009; 16:1203-14; http://dx.doi.org/10.1038/
cdd.2009.36.

466. Kov�acs AL, Seglen PO. Inhibition of hepatocytic protein degrada-
tion by methylaminopurines and inhibitors of protein synthesis.
Biochim Biophys Acta 1981; 676:213-20; http://dx.doi.org/10.1016/
0304-4165(81)90189-6.

467. Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, Liu Z, Cao W.
Hepatic autophagy is suppressed in the presence of insulin resis-
tance and hyperinsulinemia: inhibition of FoxO1-dependent
expression of key autophagy genes by insulin. J Biol Chem 2009;
284:31484-92; http://dx.doi.org/10.1074/jbc.M109.033936.

468. Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del
Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, et al. FoxO3 con-
trols autophagy in skeletal muscle in vivo. Cell Metab 2007; 6:458-
71; http://dx.doi.org/10.1016/j.cmet.2007.11.001.

469. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT,
Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ. Class
IIa histone deacetylases are hormone-activated regulators of FOXO
and mammalian glucose homeostasis. Cell 2011; 145:607-21; http://
dx.doi.org/10.1016/j.cell.2011.03.043.

470. Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca2C/cal-
modulin-dependent kinase (CaMK) signaling via CaMKI and
AMP-activated protein kinase contributes to the regulation of
WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80:1066-
75; http://dx.doi.org/10.1124/mol.111.071761.

471. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adap-
tations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett
2008; 582:46-53; http://dx.doi.org/10.1016/j.febslet.2007.11.034.

472. Samari HR, Seglen PO. Inhibition of hepatocytic autophagy
by adenosine, aminoimidazole-4-carboxamide riboside, and

AUTOPHAGY 135

http://dx.doi.org/10.1083/jcb.200707166
http://dx.doi.org/10.1038/nmeth.1314
http://dx.doi.org/10.4161/auto.7.1.13909
http://dx.doi.org/10.4161/auto.19716
http://dx.doi.org/10.1016/S0076-6879(08)04009-3
http://dx.doi.org/10.1093/hmg/11.22.2735
http://dx.doi.org/10.1007/s00213-013-3119-4
http://dx.doi.org/10.1002/pmic.200500069
http://dx.doi.org/10.1002/pmic.200500069
http://dx.doi.org/10.1038/mp.2008.7
http://dx.doi.org/10.1038/mp.2008.7
http://dx.doi.org/10.1097/YPG.0b013e3282fb0051
http://dx.doi.org/10.1001/archgenpsychiatry.2011.43
http://dx.doi.org/10.1073/pnas.0800001105
http://dx.doi.org/10.1016/j.cell.2014.05.048
http://dx.doi.org/10.1016/j.cell.2014.05.048
http://dx.doi.org/10.1038/ncb0910-823
http://dx.doi.org/10.1016/j.yexcr.2009.10.018
http://dx.doi.org/10.1101/gad.519709
http://dx.doi.org/10.4161/auto.8709
http://dx.doi.org/10.1074/jbc.M703663200
http://dx.doi.org/10.1074/jbc.C114.627778
http://dx.doi.org/10.1074/jbc.C114.627778
http://dx.doi.org/10.1016/j.molcel.2011.06.018
http://dx.doi.org/10.1016/j.molcel.2011.06.018
http://dx.doi.org/10.1101/gad.17420111
http://dx.doi.org/10.1038/nchembio.610
http://dx.doi.org/10.1042/BJ20040609
http://dx.doi.org/10.1016/j.cmet.2010.04.001
http://dx.doi.org/10.1038/nature09204
http://dx.doi.org/10.1038/cdd.2009.36
http://dx.doi.org/10.1038/cdd.2009.36
http://dx.doi.org/10.1016/0304-4165(81)90189-6
http://dx.doi.org/10.1016/0304-4165(81)90189-6
http://dx.doi.org/10.1074/jbc.M109.033936
http://dx.doi.org/10.1016/j.cmet.2007.11.001
http://dx.doi.org/10.1016/j.cell.2011.03.043
http://dx.doi.org/10.1124/mol.111.071761
http://dx.doi.org/10.1016/j.febslet.2007.11.034


N6-mercaptopurine riboside. Evidence for involvement of amp-
activated protein kinase. J Biol Chem 1998; 273:23758-63; http://dx.
doi.org/10.1074/jbc.273.37.23758.

473. Sanchez AM, Csibi A, Raibon A, Cornille K, Gay S, Bernardi H,
Candau R. AMPK promotes skeletal muscle autophagy through
activation of Forkhead FoxO3a and interaction with Ulk1. J Cell
Biochem 2011.

474. Inoki K, Zhu T, Guan K-L. TSC2 mediates cellular energy response
to control cell growth and survival. Cell 2003; 115:577-90; http://dx.
doi.org/10.1016/S0092-8674(03)00929-2.

475. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A,
Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor
mediates a metabolic checkpoint. Mol Cell 2008; 30:214-26; http://
dx.doi.org/10.1016/j.molcel.2008.03.003.

476. Egan D, Kim J, Shaw RJ, Guan K-L. The autophagy initiating kinase
ULK1 is regulated via opposing phosphorylation by AMPK and
mTOR. Autophagy 2011; 7:643-4; http://dx.doi.org/10.4161/
auto.7.6.15123.

477. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA,
Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, et al. Phos-
phorylation of ULK1 (hATG1) by AMP-activated protein kinase
connects energy sensing to mitophagy. Science 2011; 331:456-61;
http://dx.doi.org/10.1126/science.1196371.

478. Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate
autophagy through direct phosphorylation of Ulk1. Nat Cell Biol
2011; 13:132-41; http://dx.doi.org/10.1038/ncb2152.

479. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M,
Ventre J, Doebber T, Fujii N, et al. Role of AMP-activated protein
kinase in mechanism of metformin action. J Clin Invest 2001;
108:1167-74; http://dx.doi.org/10.1172/JCI13505.

480. Sharma A, Singh K, Mazumder S, Hill BT, Kalaycio M, Almasan A.
BECN1 and BIM interactions with MCL-1 determine fludarabine
resistance in leukemic B cells. Cell Death Dis 2013; 4:e628; http://
dx.doi.org/10.1038/cddis.2013.155.

481. Emerling BM, Viollet B, Tormos KV, Chandel NS. Compound C
inhibits hypoxic activation of HIF-1 independent of AMPK. FEBS
Lett 2007; 581:5727-31; http://dx.doi.org/10.1016/j.febslet.2007.
11.038.

482. Vucicevic L, Misirkic M, Janjetovic K, Vilimanovich U, Sudar E,
Isenovic E, Prica M, Harhaji-Trajkovic L, Kravic-Stevovic T, Bum-
basirevic V, et al. Compound C induces protective autophagy in
cancer cells through AMPK inhibition-independent blockade of
Akt/mTOR pathway. Autophagy 2011; 7:40-50; http://dx.doi.org/
10.4161/auto.7.1.13883.

483. Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond
MT, Codogno P, Meijer AJ. AMP-activated protein kinase and the
regulation of autophagic proteolysis. J Biol Chem 2006; 281:34870-
9; http://dx.doi.org/10.1074/jbc.M605488200.

484. Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Diet-
erle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B.
AMPK-independent induction of autophagy by cytosolic Ca2C
increase. Cell Signal 2010; 22:914-25; http://dx.doi.org/10.1016/j.
cellsig.2010.01.015.

485. Williams T, Forsberg LJ, Viollet B, Brenman JE. Basal autophagy
induction without AMP-activated protein kinase under low glucose
conditions. Autophagy 2009; 5:1155-65; http://dx.doi.org/10.4161/
auto.5.8.10090.

486. Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation
elicits an acute autophagic response mediated by Ulk1 dephosphor-
ylation and its subsequent dissociation from AMPK. Proc Natl
Acad Sci USA 2011; 108:4788-93; http://dx.doi.org/10.1073/
pnas.1100844108.

487. Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM.
mTORC1 senses lysosomal amino acids through an inside-out
mechanism that requires the vacuolar H-ATPase. Science 2011;
334:678-83; http://dx.doi.org/10.1126/science.1207056.

488. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Anto-
nioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, et al. The
dynamic interaction of AMBRA1 with the dynein motor complex

regulates mammalian autophagy. J Cell Biol 2010; 191:155-68;
http://dx.doi.org/10.1083/jcb.201002100.

489. Tang HW, Wang YB, Wang SL, Wu MH, Lin SY, Chen GC. Atg1-
mediated myosin II activation regulates autophagosome formation
during starvation-induced autophagy. EMBO J 2011; 30:636-51;
http://dx.doi.org/10.1038/emboj.2010.338.

490. Jung CH, Jun CB, Ro S-H, Kim Y-M, Otto NM, Cao J, Kundu M,
Kim D-H. ULK-Atg13-FIP200 complexes mediate mTOR signaling
to the autophagy machinery. Mol Biol Cell 2009; 20:1992-2003;
http://dx.doi.org/10.1091/mbc.E08-12-1249.

491. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y,
Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-
dependent mTORC1 association with the ULK1-Atg13-FIP200
complex required for autophagy. Mol Biol Cell 2009; 20:1981-91;
http://dx.doi.org/10.1091/mbc.E08-12-1248.

492. Chan EYW, Longatti A, McKnight NC, Tooze SA. Kinase-inacti-
vated ULK proteins inhibit autophagy via their conserved C-termi-
nal domains using an Atg13-independent mechanism. Mol Cell
Biol 2009; 29:157-71; http://dx.doi.org/10.1128/MCB.01082-08.

493. Papinski D, Schuschnig M, Reiter W, Wilhelm L, Barnes CA,
Maiolica A, Hansmann I, Pfaffenwimmer T, Kijanska M, Stoffel I,
et al. Early steps in autophagy depend on direct phosphorylation of
Atg9 by the Atg1 kinase. Mol Cell 2014; 53:471-83; http://dx.doi.
org/10.1016/j.molcel.2013.12.011.

494. Russell RC, Tian Y, Yuan H, Park HW, Chang YY, Kim J, Kim H,
Neufeld TP, Dillin A, Guan KL. ULK1 induces autophagy by phos-
phorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell
Biol 2013; 15:741-50; http://dx.doi.org/10.1038/ncb2757.

495. Jung CH, Seo M, Otto NM, Kim DH. ULK1 inhibits the kinase
activity of mTORC1 and cell proliferation. Autophagy 2011;
7:1212-21; http://dx.doi.org/10.4161/auto.7.10.16660.

496. Loffler AS, Alers S, Dieterle AM, Keppeler H, Franz-Wachtel M,
Kundu M, Campbell DG, Wesselborg S, Alessi DR, Stork B. Ulk1-
mediated phosphorylation of AMPK constitutes a negative regula-
tory feedback loop. Autophagy 2011; 7:696-706; http://dx.doi.org/
10.4161/auto.7.7.15451.

497. Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapa-
mycin is a neuroprotective treatment for traumatic brain injury.
Neuobiol Dis 2007; 26:86-93; http://dx.doi.org/10.1016/j.
nbd.2006.12.003.

498. Lavieu G, Scarlatti F, Sala G, Carpentier S, Levade T, Ghidoni R,
Botti J, Codogno P. Regulation of autophagy by sphingosine kinase 1
and its role in cell survival during nutrient starvation. J Biol Chem
2006; 281:8518-27; http://dx.doi.org/10.1074/jbc.M506182200.

499. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H,
Houghton PJ, Lawrence JC, Jr., Abraham RT. Phosphorylation of
the translational repressor PHAS-I by the mammalian target of
rapamycin. Science 1997; 277:99-101; http://dx.doi.org/10.1126/
science.277.5322.99.

500. Yip CK, Murata K, Walz T, Sabatini DM, Kang SA. Structure of the
human mTOR complex I and its implications for rapamycin inhibi-
tion. Mol Cell 2010; 38:768-74; http://dx.doi.org/10.1016/j.
molcel.2010.05.017.

501. Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi
M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM, et al. mTOR
inhibits autophagy by controlling ULK1 ubiquitylation, self-associa-
tion and function through AMBRA1 and TRAF6. Nat Cell Biol
2013; 15:406-16; http://dx.doi.org/10.1038/ncb2708.

502. Cheong H, Nair U, Geng J, Klionsky DJ. The Atg1 kinase complex
is involved in the regulation of protein recruitment to initiate
sequestering vesicle formation for nonspecific autophagy in Saccha-
romyces cerevisiae. Mol Biol Cell 2008; 19:668-81; http://dx.doi.org/
10.1091/mbc.E07-08-0826.

503. Kabeya Y, Kamada Y, Baba M, Takikawa H, Sasaki M, Ohsumi Y.
Atg17 functions in cooperation with Atg1 and Atg13 in yeast auto-
phagy. Mol Biol Cell 2005; 16:2544-53; http://dx.doi.org/10.1091/
mbc.E04-08-0669.

504. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M,
Ohsumi Y. Tor-mediated induction of autophagy via an Apg1

136 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1074/jbc.273.37.23758
http://dx.doi.org/10.1016/S0092-8674(03)00929-2
http://dx.doi.org/10.1016/j.molcel.2008.03.003
http://dx.doi.org/10.4161/auto.7.6.15123
http://dx.doi.org/10.4161/auto.7.6.15123
http://dx.doi.org/10.1126/science.1196371
http://dx.doi.org/10.1038/ncb2152
http://dx.doi.org/10.1172/JCI13505
http://dx.doi.org/10.1038/cddis.2013.155
http://dx.doi.org/10.1016/j.febslet.2007.<?A3B2 re3j?>11.038
http://dx.doi.org/10.1016/j.febslet.2007.<?A3B2 re3j?>11.038
http://dx.doi.org/10.4161/auto.7.1.13883
http://dx.doi.org/10.1074/jbc.M605488200
http://dx.doi.org/10.1016/j.cellsig.2010.01.015
http://dx.doi.org/10.1016/j.cellsig.2010.01.015
http://dx.doi.org/10.4161/auto.5.8.10090
http://dx.doi.org/10.4161/auto.5.8.10090
http://dx.doi.org/10.1073/pnas.1100844108
http://dx.doi.org/10.1073/pnas.1100844108
http://dx.doi.org/10.1126/science.1207056
http://dx.doi.org/10.1083/jcb.201002100
http://dx.doi.org/10.1038/emboj.2010.338
http://dx.doi.org/10.1091/mbc.E08-12-1249
http://dx.doi.org/10.1091/mbc.E08-12-1248
http://dx.doi.org/10.1128/MCB.01082-08
http://dx.doi.org/10.1016/j.molcel.2013.12.011
http://dx.doi.org/10.1038/ncb2757
http://dx.doi.org/10.4161/auto.7.10.16660
http://dx.doi.org/10.4161/auto.7.7.15451
http://dx.doi.org/10.1016/j.nbd.2006.12.003
http://dx.doi.org/10.1016/j.nbd.2006.12.003
http://dx.doi.org/10.1074/jbc.M506182200
http://dx.doi.org/10.1126/science.277.5322.99
http://dx.doi.org/10.1126/science.277.5322.99
http://dx.doi.org/10.1016/j.molcel.2010.05.017
http://dx.doi.org/10.1016/j.molcel.2010.05.017
http://dx.doi.org/10.1038/ncb2708
http://dx.doi.org/10.1091/mbc.E07-08-0826
http://dx.doi.org/10.1091/mbc.E04-08-0669
http://dx.doi.org/10.1091/mbc.E04-08-0669


protein kinase complex. J Cell Biol 2000; 150:1507-13; http://dx.doi.
org/10.1083/jcb.150.6.1507.

505. Scott SV, Nice DC, III, Nau JJ, Weisman LS, Kamada Y, Keizer-
Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ.
Apg13p and Vac8p are part of a complex of phosphoproteins that
are required for cytoplasm to vacuole targeting. J Biol Chem 2000;
275:25840-9; http://dx.doi.org/10.1074/jbc.M002813200.

506. Miller-Fleming L, Cheong H, Antas P, Klionsky DJ. Detection of
Saccharomyces cerevisiae Atg13 by western blot. Autophagy 2014;
10:514-7; http://dx.doi.org/10.4161/auto.27707.

507. Yeh YY, Wrasman K, Herman PK. Autophosphorylation within
the Atg1 activation loop is required for both kinase activity and
the induction of autophagy in Saccharomyces cerevisiae.
Genetics 2010; 185:871-82; http://dx.doi.org/10.1534/genetics.
110.116566.

508. Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling
pathways are required for mitophagy in Saccharomyces cerevisiae. J
Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/jcb.
201102092.

509. Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL,
Lee JH. Drosophila Fip200 is an essential regulator of autophagy
that attenuates both growth and aging. Autophagy 2013; 9:1201-13;
http://dx.doi.org/10.4161/auto.24811.

510. Nagy P, Karpati M, Varga A, Pircs K, Venkei Z, Takats S, Varga K,
Erdi B, Hegedus K, Juhasz G. Atg17/FIP200 localizes to perilysoso-
mal Ref(2)P aggregates and promotes autophagy by activation of
Atg1 in Drosophila. Autophagy 2014; 10:453-67; http://dx.doi.org/
10.4161/auto.27442.

511. Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-depen-
dent senescence in response to DNA damage and chronic apoptotic
stress. Autophagy 2012; 8:236-51.

512. Shang L, Wang X. AMPK and mTOR coordinate the regulation of
Ulk1 and mammalian autophagy initiation. Autophagy 2011;
7:924-6; http://dx.doi.org/10.4161/auto.7.8.15860.

513. Ruck A, Attonito J, Garces KT, Nunez L, Palmisano NJ, Rubel Z,
Bai Z, Nguyen KC, Sun L, Grant BD, et al. The Atg6/Vps30/Beclin
1 ortholog BEC-1 mediates endocytic retrograde transport in addi-
tion to autophagy in C. elegans. Autophagy 2011; 7:386-400; http://
dx.doi.org/10.4161/auto.7.4.14391.

514. Li W, Zou W, Yang Y, Chai Y, Chen B, Cheng S, Tian D, Wang X,
Vale RD, Ou G. Autophagy genes function sequentially to promote
apoptotic cell corpse degradation in the engulfing cell. J Cell Biol
2012; 197:27-35; http://dx.doi.org/10.1083/jcb.201111053.

515. Abnave P, Mottola G, Gimenez G, Boucherit N, Trouplin V, Torre
C, Conti F, Ben Amara A, Lepolard C, Djian B, et al. Screening in
planarians identifies MORN2 as a key component in LC3-associ-
ated phagocytosis and resistance to bacterial infection. Cell Host
Microbe 2014; 16:338-50; http://dx.doi.org/10.1016/j.chom.2014.
08.002.

516. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C,
Souquere S, Pierron G, Codogno P. NF-[kappa]B activation
represses tumor necrosis factor-alpha-induced autophagy. J Biol
Chem 2006; 281:30373-82.

517. Liu Z, Lenardo MJ. Reactive oxygen species regulate autophagy
through redox-sensitive proteases. Dev Cell 2007; 12:484-5; http://
dx.doi.org/10.1016/j.devcel.2007.03.016.

518. Scarlatti F, Bauvy C, Ventruti A, Sala G, Cluzeaud F, Vandewalle A,
Ghidoni R, Codogno P. Ceramide-mediated macroautophagy
involves inhibition of protein kinase B and up-regulation of beclin
1. J Biol Chem 2004; 279:18384-91; http://dx.doi.org/10.1074/jbc.
M313561200.

519. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reac-
tive oxygen species are essential for autophagy and specifically regu-
late the activity of Atg4. EMBO J 2007; 26:1749-60; http://dx.doi.
org/10.1038/sj.emboj.7601623.

520. Cap M, Stepanek L, Harant K, Vachova L, Palkova Z. Cell differen-
tiation within a yeast colony: metabolic and regulatory parallels
with a tumor-affected organism. Mol Cell 2012; 46:436-48; http://
dx.doi.org/10.1016/j.molcel.2012.04.001.

521. Zeng X, Kinsella TJ. Mammalian target of rapamycin and S6 kinase
1 positively regulate 6-thioguanine-induced autophagy. Cancer Res
2008; 68:2384-90; http://dx.doi.org/10.1158/0008-5472.CAN-07-
6163.

522. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reich-
elt J, Levine B. Akt-mediated regulation of autophagy and tumori-
genesis through Beclin 1 phosphorylation. Science 2012; 338:956-9;
http://dx.doi.org/10.1126/science.1225967.

523. Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L,
Koduru P, Christudass CS, Veltri RW, et al. EGFR-mediated Beclin
1 phosphorylation in autophagy suppression, tumor progression,
and tumor chemoresistance. Cell 2013; 154:1269-84; http://dx.doi.
org/10.1016/j.cell.2013.08.015.

524. Yasugi M, Takigawa N, Ochi N, Ohashi K, Harada D, Ninomiya T,
Murakami T, Honda Y, Ichihara E, Tanimoto M, et al. Everolimus
prolonged survival in transgenic mice with EGFR-driven lung
tumors. Exp Cell Res 2014; 326:201-9; http://dx.doi.org/10.1016/j.
yexcr.2014.04.012.

525. Castets P, Lin S, Rion N, Di Fulvio S, Romanino K, Guridi M, Frank
S, Tintignac LA, Sinnreich M, Ruegg MA. Sustained activation of
mTORC1 in skeletal muscle inhibits constitutive and starvation-
induced autophagy and causes a severe, late-onset myopathy. Cell
Metab 2013; 17:731-44; http://dx.doi.org/10.1016/j.cmet.2013.
03.015.

526. Castets P, Ruegg MA. MTORC1 determines autophagy through
ULK1 regulation in skeletal muscle. Autophagy 2013; 9:1435-7;
http://dx.doi.org/10.4161/auto.25722.

527. Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N,
Zhao Y, Liu Z, Wan F, et al. Termination of autophagy and refor-
mation of lysosomes regulated by mTOR. Nature 2010; 465:942-6;
http://dx.doi.org/10.1038/nature09076.

528. Holla S, Kurowska-Stolarska M, Bayry J, Balaji KN. Selective inhibi-
tion of IFNG-induced autophagy by Mir155- and Mir31-responsive
WNT5A and SHH signaling. Autophagy 2014; 10:311-30; http://dx.
doi.org/10.4161/auto.27225.

529. Mochizuki H, Toda H, Ando M, Kurusu M, Tomoda T, Furukubo-
Tokunaga K. Unc-51/ATG1 controls axonal and dendritic develop-
ment via kinesin-mediated vesicle transport in the Drosophila
brain. PloS One 2011; 6:e19632; http://dx.doi.org/10.1371/journal.
pone.0019632.

530. Wairkar YP, Toda H, Mochizuki H, Furukubo-Tokunaga K,
Tomoda T, Diantonio A. Unc-51 controls active zone density and
protein composition by downregulating ERK signaling. J Neurosci
2009; 29:517-28; http://dx.doi.org/10.1523/JNEUROSCI.3848-08.2009.

531. Loh SH, Francescut L, Lingor P, Bahr M, Nicotera P. Identification
of new kinase clusters required for neurite outgrowth and retraction
by a loss-of-function RNA interference screen. Cell Death Differ
2008; 15:283-98; http://dx.doi.org/10.1038/sj.cdd.4402258.

532. Zhou X, Babu JR, da Silva S, Shu Q, Graef IA, Oliver T, Tomoda T,
Tani T, Wooten MW, Wang F. Unc-51-like kinase 1/2-mediated
endocytic processes regulate filopodia extension and branching of
sensory axons. Proc Natl Acad Sci USA 2007; 104:5842-7; http://dx.
doi.org/10.1073/pnas.0701402104.

533. Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its
binding partners in CNS axon outgrowth. Genes Dev 2004; 18:541-
58; http://dx.doi.org/10.1101/gad.1151204.

534. Okazaki N, Yan J, Yuasa S, Ueno T, Kominami E, Masuho Y, Koga
H, Muramatsu M. Interaction of the Unc-51-like kinase and micro-
tubule-associated protein light chain 3 related proteins in the brain:
possible role of vesicular transport in axonal elongation. Mol Brain
Res 2000; 85:1-12; http://dx.doi.org/10.1016/S0169-328X(00)00218-7.

535. Young ARJ, Chan EYW, Hu XW, K€ochl R, Crawshaw SG, High S,
Hailey DW, Lippincott-Schwartz J, Tooze SA. Starvation and
ULK1-dependent cycling of mammalian Atg9 between the TGN
and endosomes. J Cell Sci 2006; 119:3888-900; http://dx.doi.org/
10.1242/jcs.03172.

536. Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between
mitochondria and the pre-autophagosomal structure in yeasts.
Autophagy 2005; 1:101-9; http://dx.doi.org/10.4161/auto.1.2.1840.

AUTOPHAGY 137

http://dx.doi.org/10.1083/jcb.150.6.1507
http://dx.doi.org/10.1074/jbc.M002813200
http://dx.doi.org/10.4161/auto.27707
http://dx.doi.org/10.1534/genetics.<?A3B2 re3j?>110.116566
http://dx.doi.org/10.1534/genetics.<?A3B2 re3j?>110.116566
http://dx.doi.org/10.1083/jcb.<?A3B2 re3j?>201102092
http://dx.doi.org/10.1083/jcb.<?A3B2 re3j?>201102092
http://dx.doi.org/10.4161/auto.24811
http://dx.doi.org/10.4161/auto.27442
http://dx.doi.org/10.4161/auto.7.8.15860
http://dx.doi.org/10.4161/auto.7.4.14391
http://dx.doi.org/10.1083/jcb.201111053
http://dx.doi.org/10.1016/j.chom.2014.<?A3B2 re3j?>08.002
http://dx.doi.org/10.1016/j.chom.2014.<?A3B2 re3j?>08.002
http://dx.doi.org/10.1016/j.devcel.2007.03.016
http://dx.doi.org/10.1074/jbc.M313561200
http://dx.doi.org/10.1074/jbc.M313561200
http://dx.doi.org/10.1038/sj.emboj.7601623
http://dx.doi.org/10.1016/j.molcel.2012.04.001
http://dx.doi.org/10.1158/0008-5472.CAN-07-6163
http://dx.doi.org/10.1158/0008-5472.CAN-07-6163
http://dx.doi.org/10.1126/science.1225967
http://dx.doi.org/10.1016/j.cell.2013.08.015
http://dx.doi.org/10.1016/j.yexcr.2014.04.012
http://dx.doi.org/10.1016/j.yexcr.2014.04.012
http://dx.doi.org/10.1016/j.cmet.2013.<?A3B2 re3j?>03.015
http://dx.doi.org/10.1016/j.cmet.2013.<?A3B2 re3j?>03.015
http://dx.doi.org/10.4161/auto.25722
http://dx.doi.org/10.1038/nature09076
http://dx.doi.org/10.4161/auto.27225
http://dx.doi.org/10.1371/journal.pone.0019632
http://dx.doi.org/10.1371/journal.pone.0019632
http://dx.doi.org/10.1523/JNEUROSCI.3848-08.2009
http://dx.doi.org/10.1038/sj.cdd.4402258
http://dx.doi.org/10.1073/pnas.0701402104
http://dx.doi.org/10.1101/gad.1151204
http://dx.doi.org/10.1016/S0169-328X(00)00218-7
http://dx.doi.org/10.1242/jcs.03172
http://dx.doi.org/10.4161/auto.1.2.1840


537. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F.
An Atg9-containing compartment that functions in the early steps
of autophagosome biogenesis. J Cell Biol 2010; 190:1005-22; http://
dx.doi.org/10.1083/jcb.200912089.

538. Reggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1-
Atg13 complex regulates Atg9 and Atg23 retrieval transport from
the pre-autophagosomal structure. Dev Cell 2004; 6:79-90; http://
dx.doi.org/10.1016/S1534-5807(03)00402-7.

539. Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M,
Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a
novel WD-repeat protein, targets to the autophagic isolation mem-
brane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116:1679-88;
http://dx.doi.org/10.1242/jcs.00381.

540. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y,
Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of auto-
phagosome formation using Apg5-deficient mouse embryonic stem
cells. J Cell Biol 2001; 152:657-68; http://dx.doi.org/10.1083/
jcb.152.4.657.

541. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF,
Gallo CA, Plas DR, Biesiada J, Meller J, et al. VHL-regulated MiR-
204 suppresses tumor growth through inhibition of LC3B-mediated
autophagy in renal clear cell carcinoma. Cancer Cell 2012; 21:532-
46; http://dx.doi.org/10.1016/j.ccr.2012.02.019.

542. Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD. Auto-
phagic nutrient recycling in Arabidopsis directed by the ATG8 and
ATG12 conjugation pathways. Plant Phys 2005; 138:2097-110;
http://dx.doi.org/10.1104/pp.105.060673.

543. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza
L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5
switches autophagy to apoptosis. Nat Cell Biol 2006; 8:1124-32;
http://dx.doi.org/10.1038/ncb1482.

544. Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon
HU. ATG5 is induced by DNA-damaging agents and promotes
mitotic catastrophe independent of autophagy. Nat Commun 2013;
4:2130; http://dx.doi.org/10.1038/ncomms3130.

545. Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34
phosphatidylinositol 3-kinase complexes function in autophagy and
carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol
2001; 152:519-30; http://dx.doi.org/10.1083/jcb.152.3.519.

546. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N,
Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, et al. Two
Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regu-
late autophagy at different stages. Nat Cell Biol 2009; 11:385-96;
http://dx.doi.org/10.1038/ncb1846.

547. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N,
Yue Z. Distinct regulation of autophagic activity by Atg14L and
Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase
complex. Nat Cell Biol 2009; 11:468-76; http://dx.doi.org/10.1038/
ncb1854.

548. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q. Identification of
Barkor as a mammalian autophagy-specific factor for Beclin 1 and
class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA
2008; 105:19211-6; http://dx.doi.org/10.1073/pnas.0810452105.

549. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two dis-
tinct phosphatidylinositol 3-kinase complexes with mammalian
Atg14 and UVRAG. Mol Biol Cell 2008; 19:5360-72; http://dx.doi.
org/10.1091/mbc.E08-01-0080.

550. Fan W, Nassiri A, Zhong Q. Autophagosome targeting and mem-
brane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci
USA 2011; 108:7769-74; http://dx.doi.org/10.1073/pnas.
1016472108.

551. Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi
T, Noda T, Yoshimori T. Autophagy requires endoplasmic
reticulum targeting of the PI3-kinase complex via Atg14L. J
Cell Biol 2010; 190:511-21; http://dx.doi.org/10.1083/
jcb.200911141.

552. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC.
Plasma membrane contributes to the formation of pre-autophago-
somal structures. Nat Cell Biol 2010; 12:747-57; http://dx.doi.org/
10.1038/ncb2078.

553. Guan J, Stromhaug PE, George MD, Habibzadegah-Tari P, Bevan
A, Dunn WA, Jr., Klionsky DJ. Cvt18/Gsa12 is required for cyto-
plasm-to-vacuole transport, pexophagy, and autophagy in Saccha-
romyces cerevisiae and Pichia pastoris. Mol Biol Cell 2001; 12:3821-
38; http://dx.doi.org/10.1091/mbc.12.12.3821.

554. Barth H, Meiling-Wesse K, Epple UD, Thumm M. Autophagy and
the cytoplasm to vacuole targeting pathway both require Aut10p.
FEBS Lett 2001; 508:23-8; http://dx.doi.org/10.1016/S0014-5793
(01)03016-2.

555. Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A,
Nordheim A. WIPI-1alpha (WIPI49), a member of the novel 7-
bladed WIPI protein family, is aberrantly expressed in human can-
cer and is linked to starvation-induced autophagy. Oncogene 2004;
23:9314-25; http://dx.doi.org/10.1038/sj.onc.1208331.

556. Monastyrska I, Klionsky DJ. Autophagy in organelle homeostasis:
peroxisome turnover. Mol Aspects Med 2006; 27:483-94; http://dx.
doi.org/10.1016/j.mam.2006.08.004.

557. Nair U, Klionsky DJ. Molecular mechanisms and regulation of spe-
cific and nonspecific autophagy pathways in yeast. J Biol Chem
2005; 280:41785-8; http://dx.doi.org/10.1074/jbc.R500016200.

558. Tall�oczy Z, Virgin HW, IV, Levine B. PKR-dependent autophagic
degradation of herpes simplex virus type 1. Autophagy 2006; 2:24-
9; http://dx.doi.org/10.4161/auto.2176.

559. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S,
Clague MJ, Tooze SA. Mammalian Atg18 (WIPI2) localizes to ome-
gasome-anchored phagophores and positively regulates LC3
lipidation. Autophagy 2010; 6:506-22; http://dx.doi.org/10.4161/
auto.6.4.11863.

560. Proikas-Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, Nordheim
A. Human WIPI-1 puncta-formation: A novel assay to assess mam-
malian autophagy. FEBS Lett 2007; 581:3396-404; http://dx.doi.org/
10.1016/j.febslet.2007.06.040.

561. Itakura E, Mizushima N. Characterization of autophagosome for-
mation site by a hierarchical analysis of mammalian Atg proteins.
Autophagy 2010; 6:764-76; http://dx.doi.org/10.4161/auto.6.6.
12709.

562. Mauthe M, Jacob A, Freiberger S, Hentschel K, Stierhof YD,
Codogno P, Proikas-Cezanne T. Resveratrol-mediated autophagy
requires WIPI-1 regulated LC3 lipidation in the absence of induced
phagophore formation. Autophagy 2011; 7:1448-61; http://dx.doi.
org/10.4161/auto.7.12.17802.

563. Lu Q, Yang P, Huang X, Hu W, Guo B, Wu F, Lin L, Kovacs AL, Yu
L, Zhang H. The WD40 repeat PtdIns(3)P-binding protein EPG-6
regulates progression of omegasomes to autophagosomes. Dev Cell
2011; 21:343-57; http://dx.doi.org/10.1016/j.devcel.2011.06.024.

564. Yang Z, Klionsky DJ. Mammalian autophagy: core molecular
machinery and signaling regulation. Curr Opin Cell Biol 2010;
22:124-31; http://dx.doi.org/10.1016/j.ceb.2009.11.014.

565. Cao Y, Klionsky DJ. Physiological functions of Atg6/Beclin 1: a
unique autophagy-related protein. Cell Res 2007; 17:839-49; http://
dx.doi.org/10.1038/cr.2007.78.

566. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N,
Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins
inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-39;
http://dx.doi.org/10.1016/j.cell.2005.07.002.

567. Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein
M, Sabanay H, Pinkas-Kramarski R, Kimchi A. DAP-kinase-medi-
ated phosphorylation on the BH3 domain of beclin 1 promotes dis-
sociation of beclin 1 from Bcl-XL and induction of autophagy.
EMBO Rep 2009; 10:285-92; http://dx.doi.org/10.1038/embor.
2008.246.

568. Wei Y, Sinha S, Levine B. Dual role of JNK1-mediated phosphoryla-
tion of Bcl-2 in autophagy and apoptosis regulation. Autophagy
2008; 4:949-51; http://dx.doi.org/10.4161/auto.6788.

569. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated
phosphorylation of Bcl-2 regulates starvation-induced autophagy.
Mol Cell 2008; 30:678-88; http://dx.doi.org/10.1016/j.molcel.
2008.06.001.

570. Lossi L, Gambino G, Ferrini F, Alasia S, Merighi A. Posttransla-
tional regulation of BCL2 levels in cerebellar granule cells: A

138 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1083/jcb.200912089
http://dx.doi.org/10.1016/S1534-5807(03)00402-7
http://dx.doi.org/10.1242/jcs.00381
http://dx.doi.org/10.1083/jcb.152.4.657
http://dx.doi.org/10.1083/jcb.152.4.657
http://dx.doi.org/10.1016/j.ccr.2012.02.019
http://dx.doi.org/10.1104/pp.105.060673
http://dx.doi.org/10.1038/ncb1482
http://dx.doi.org/10.1038/ncomms3130
http://dx.doi.org/10.1083/jcb.152.3.519
http://dx.doi.org/10.1038/ncb1846
http://dx.doi.org/10.1038/ncb1854
http://dx.doi.org/10.1038/ncb1854
http://dx.doi.org/10.1073/pnas.0810452105
http://dx.doi.org/10.1091/mbc.E08-01-0080
http://dx.doi.org/10.1073/pnas.<?A3B2 RE3J?>1016472108
http://dx.doi.org/10.1073/pnas.<?A3B2 RE3J?>1016472108
http://dx.doi.org/10.1083/jcb.200911141
http://dx.doi.org/10.1083/jcb.200911141
http://dx.doi.org/10.1038/ncb2078
http://dx.doi.org/10.1091/mbc.12.12.3821
http://dx.doi.org/10.1016/S0014-5793(01)03016-2
http://dx.doi.org/10.1016/S0014-5793(01)03016-2
http://dx.doi.org/10.1038/sj.onc.1208331
http://dx.doi.org/10.1016/j.mam.2006.08.004
http://dx.doi.org/10.1074/jbc.R500016200
http://dx.doi.org/10.4161/auto.2176
http://dx.doi.org/10.4161/auto.6.4.11863
http://dx.doi.org/10.4161/auto.6.4.11863
http://dx.doi.org/10.1016/j.febslet.2007.06.040
http://dx.doi.org/10.4161/auto.6.6.<?A3B2 RE3J?>12709
http://dx.doi.org/10.4161/auto.6.6.<?A3B2 RE3J?>12709
http://dx.doi.org/10.4161/auto.7.12.17802
http://dx.doi.org/10.1016/j.devcel.2011.06.024
http://dx.doi.org/10.1016/j.ceb.2009.11.014
http://dx.doi.org/10.1038/cr.2007.78
http://dx.doi.org/10.1016/j.cell.2005.07.002
http://dx.doi.org/10.1038/embor.<?A3B2 RE3J?>2008.246
http://dx.doi.org/10.1038/embor.<?A3B2 RE3J?>2008.246
http://dx.doi.org/10.4161/auto.6788
http://dx.doi.org/10.1016/j.molcel.<?A3B2 RE3J?>2008.06.001
http://dx.doi.org/10.1016/j.molcel.<?A3B2 RE3J?>2008.06.001


mechanism of neuronal survival. Dev Neurobiol 2009; 69:855-70;
http://dx.doi.org/10.1002/dneu.20744.

571. Lossi L, Gambino G, Salio C, Merighi A. Autophagy regulates the
post-translational cleavage of BCL-2 and promotes neuronal sur-
vival. Sci World J 2010; 10:924-9; http://dx.doi.org/10.1100/
tsw.2010.82.

572. Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R. Role of non-
canonical Beclin 1-independent autophagy in cell death induced by
resveratrol in human breast cancer cells. Cell Death Differ 2008;
15:1318-29; http://dx.doi.org/10.1038/cdd.2008.51.

573. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates
autophagy and apoptosis. Cell Death Differ 2011; 18:571-80; http://
dx.doi.org/10.1038/cdd.2010.191.

574. Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T. Beclin-phosphatidyli-
nositol 3-kinase complex functions at the trans-Golgi network.
EMBO Rep 2001; 2:330-5; http://dx.doi.org/10.1093/embo-reports/
kve061.

575. Amritraj A, Peake K, Kodam A, Salio C, Merighi A, Vance JE,
Kar S. Increased activity and altered subcellular distribution of
lysosomal enzymes determine neuronal vulnerability in Nie-
mann-Pick type C1-deficient mice. Am J Pathol 2009;
175:2540-56; http://dx.doi.org/10.2353/ajpath.2009.081096.

576. Castino R, Bellio N, Follo C, Murphy D, Isidoro C. Inhibition of
PI3k class III-dependent autophagy prevents apoptosis and necrosis
by oxidative stress in dopaminergic neuroblastoma cells. Toxicol Sci
2010; 117:152-62; http://dx.doi.org/10.1093/toxsci/kfq170.

577. Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A
novel protein complex linking the delta 2 glutamate receptor and
autophagy: implications for neurodegeneration in lurcher mice.
Neuron 2002; 35:921-33; http://dx.doi.org/10.1016/S0896-6273(02)
00861-9.

578. Luo S, Rubinsztein DC. Apoptosis blocks Beclin 1-dependent auto-
phagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ
2010; 17:268-77; http://dx.doi.org/10.1038/cdd.2009.121.

579. Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily
conserved domain of Beclin 1 is required for Vps34 binding, auto-
phagy and tumor suppressor function. Autophagy 2005; 1:46-52;
http://dx.doi.org/10.4161/auto.1.1.1542.

580. Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR,
Gasco M, Garrone O, Crook T, Ryan KM. DRAM, a p53-induced
modulator of autophagy, is critical for apoptosis. Cell 2006;
126:121-34; http://dx.doi.org/10.1016/j.cell.2006.05.034.

581. Valbuena A, Castro-Obregon S, Lazo PA. Downregulation of VRK1
by p53 in response to DNA damage is mediated by the autophagic
pathway. PloS One 2011; 6:e17320; http://dx.doi.org/10.1371/
journal.pone.0017320.

582. Lorin S, Pierron G, Ryan KM, Codogno P, Djavaheri-Mergny M.
Evidence for the interplay between JNK and p53-DRAM signalling
pathways in the regulation of autophagy. Autophagy 2010; 6:153-4;
http://dx.doi.org/10.4161/auto.6.1.10537.

583. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Haber-
mann A, Griffiths G, Ktistakis NT. Autophagosome formation
from membrane compartments enriched in phosphatidylinositol 3-
phosphate and dynamically connected to the endoplasmic reticu-
lum. J Cell Biol 2008; 182:685-701; http://dx.doi.org/10.1083/
jcb.200803137.

584. Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-
anchored SNARE syntaxin 17 targets to autophagosomes for fusion
with endosomes/lysosomes. Cell 2012; 151:1256-69; http://dx.doi.
org/10.1016/j.cell.2012.11.001.

585. Takats S, Nagy P, Varga A, Pircs K, Karpati M, Varga K, Kovacs AL,
Hegedus K, Juhasz G. Autophagosomal Syntaxin17-dependent lyso-
somal degradation maintains neuronal function in Drosophila. J
Cell Biol 2013; 201:531-9; http://dx.doi.org/10.1083/jcb.201211160.

586. Chen D, Zhong Q. A tethering coherent protein in autophagosome
maturation. Autophagy 2012; 8:985-6; http://dx.doi.org/10.4161/
auto.20255.

587. Taniguchi M, Kitatani K, Kondo T, Hashimoto-Nishimura M,
Asano S, Hayashi A, Mitsutake S, Igarashi Y, Umehara H, Takeya
H, et al. Regulation of autophagy and its associated cell death by

“sphingolipid rheostat”: reciprocal role of ceramide and sphingosine
1-phosphate in the mammalian target of rapamycin pathway. J Biol
Chem 2012; 287:39898-910; http://dx.doi.org/10.1074/jbc.
M112.416552.

588. Justice MJ, Petrusca DN, Rogozea AL, Williams JA, Schweitzer KS,
Petrache I, Wassall SR, Petrache HI. Effects of lipid interactions on
model vesicle engulfment by alveolar macrophages. Biophys J 2014;
106:598-609; http://dx.doi.org/10.1016/j.bpj.2013.12.036.

589. Guenther GG, Peralta ER, Rosales KR, Wong SY, Siskind LJ,
Edinger AL. Ceramide starves cells to death by downregulating
nutrient transporter proteins. Proc Natl Acad Sci USA 2008;
105:17402-7; http://dx.doi.org/10.1073/pnas.0802781105.

590. Pattingre S, Bauvy C, Levade T, Levine B, Codogno P. Ceramide-
induced autophagy: to junk or to protect cells? Autophagy 2009;
5:558-60; http://dx.doi.org/10.4161/auto.5.4.8390.

591. Sentelle RD, Senkal CE, Jiang W, Ponnusamy S, Gencer S, Selvam
SP, Ramshesh VK, Peterson YK, Lemasters JJ, Szulc ZM, et al. Cer-
amide targets autophagosomes to mitochondria and induces lethal
mitophagy. Nat Chem Biol 2012; 8:831-8; http://dx.doi.org/
10.1038/nchembio.1059.

592. Jiang W, Ogretmen B. Ceramide stress in survival versus lethal
autophagy paradox: ceramide targets autophagosomes to mitochon-
dria and induces lethal mitophagy. Autophagy 2013; 9:258-9; http://
dx.doi.org/10.4161/auto.22739.

593. Jiang W, Ogretmen B. Autophagy paradox and ceramide. Biochim
Biophys Acta 2014; 1841:783-92; http://dx.doi.org/10.1016/j.
bbalip.2013.09.005.

594. Lepine S, Allegood JC, Park M, Dent P, Milstien S, Spiegel S. Sphin-
gosine-1-phosphate phosphohydrolase-1 regulates ER stress-
induced autophagy. Cell Death Differ 2011; 18:350-61; http://dx.
doi.org/10.1038/cdd.2010.104.

595. Matarrese P, Garofalo T, Manganelli V, Gambardella L, Marconi M,
Grasso M, Tinari A, Misasi R, Malorni W, Sorice M. Evidence for
the involvement of GD3 ganglioside in autophagosome formation
and maturation. Autophagy 2014; 10:750-65; http://dx.doi.org/
10.4161/auto.27959.

596. Russ DW, Wills AM, Boyd IM, Krause J. Weakness, SR function
and stress in gastrocnemius muscles of aged male rats. Exp Gastro-
enterol 2014; 50:40-4; http://dx.doi.org/10.1016/j.exger.2013.11.018.

597. Bernard A, Jin M, Gonzalez-Rodriguez P, Fullgrabe J, Delorme-
Axford E, Backues SK, Joseph B, Klionsky DJ. Rph1/KDM4 medi-
ates nutrient-limitation signaling that leads to the transcriptional
induction of autophagy. Curr Biol 2015; 25:546-55; http://dx.doi.
org/10.1016/j.cub.2014.12.049.

598. Bernard A, Klionsky DJ. Rph1 mediates the nutrient-limitation sig-
naling pathway leading to transcriptional activation of autophagy.
Autophagy 2015; 11:718-9; http://dx.doi.org/10.1080/15548627.
2015.1018503.

599. Nara A, Mizushima N, Yamamoto A, Kabeya Y, Ohsumi Y, Yoshi-
mori T. SKD1 AAA ATPase-dependent endosomal transport is
involved in autolysosome formation. Cell Struct Funct 2002; 27:29-
37; http://dx.doi.org/10.1247/csf.27.29.

600. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshi-
mori T, Noda T, Ohsumi Y. Formation process of autophagosome
is traced with Apg8/Aut7p in yeast. J Cell Biol 1999; 147:435-46;
http://dx.doi.org/10.1083/jcb.147.2.435.

601. Jin M, He D, Backues SK, Freeberg MA, Liu X, Kim JK, Klionsky
DJ. Transcriptional regulation by Pho23 modulates the frequency
of autophagosome formation. Curr Biol 2014; 24:1314-22; http://
dx.doi.org/10.1016/j.cub.2014.04.048.

602. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, Ogawa
S, Kaufman RJ, Kominami E, Momoi T. ER stress (PERK/eIF2
[alpha] phosphorylation) mediates the polyglutamine-induced LC3
conversion, an essential step for autophagy formation. Cell Death
Differ 2007; 14:230-9; http://dx.doi.org/10.1038/sj.cdd.4401984.

603. Xiong X, Tao R, DePinho RA, Dong XC. The autophagy-related
gene 14 (Atg14) is regulated by forkhead box O transcription fac-
tors and circadian rhythms and plays a critical role in hepatic auto-
phagy and lipid metabolism. J Biol Chem 2012; 287:39107-14;
http://dx.doi.org/10.1074/jbc.M112.412569.

AUTOPHAGY 139

http://dx.doi.org/10.1002/dneu.20744
http://dx.doi.org/10.1100/tsw.2010.82
http://dx.doi.org/10.1100/tsw.2010.82
http://dx.doi.org/10.1038/cdd.2008.51
http://dx.doi.org/10.1038/cdd.2010.191
http://dx.doi.org/10.1093/embo-reports/kve061
http://dx.doi.org/10.1093/embo-reports/kve061
http://dx.doi.org/10.2353/ajpath.2009.081096
http://dx.doi.org/10.1093/toxsci/kfq170
http://dx.doi.org/10.1016/S0896-6273(02)00861-9
http://dx.doi.org/10.1016/S0896-6273(02)00861-9
http://dx.doi.org/10.1038/cdd.2009.121
http://dx.doi.org/10.4161/auto.1.1.1542
http://dx.doi.org/10.1016/j.cell.2006.05.034
http://dx.doi.org/10.1371/journal.pone.0017320
http://dx.doi.org/10.1371/journal.pone.0017320
http://dx.doi.org/10.4161/auto.6.1.10537
http://dx.doi.org/10.1083/jcb.200803137
http://dx.doi.org/10.1083/jcb.200803137
http://dx.doi.org/10.1016/j.cell.2012.11.001
http://dx.doi.org/10.1083/jcb.201211160
http://dx.doi.org/10.4161/auto.20255
http://dx.doi.org/10.4161/auto.20255
http://dx.doi.org/10.1074/jbc.M112.416552
http://dx.doi.org/10.1074/jbc.M112.416552
http://dx.doi.org/10.1016/j.bpj.2013.12.036
http://dx.doi.org/10.1073/pnas.0802781105
http://dx.doi.org/10.4161/auto.5.4.8390
http://dx.doi.org/10.1038/nchembio.1059
http://dx.doi.org/10.4161/auto.22739
http://dx.doi.org/10.1016/j.bbalip.2013.09.005
http://dx.doi.org/10.1016/j.bbalip.2013.09.005
http://dx.doi.org/10.1038/cdd.2010.104
http://dx.doi.org/10.4161/auto.27959
http://dx.doi.org/10.1016/j.exger.2013.11.018
http://dx.doi.org/10.1016/j.cub.2014.12.049
http://dx.doi.org/10.1080/15548627.<?A3B2 RE3J?>2015.1018503
http://dx.doi.org/10.1080/15548627.<?A3B2 RE3J?>2015.1018503
http://dx.doi.org/10.1247/csf.27.29
http://dx.doi.org/10.1083/jcb.147.2.435
http://dx.doi.org/10.1016/j.cub.2014.04.048
http://dx.doi.org/10.1038/sj.cdd.4401984
http://dx.doi.org/10.1074/jbc.M112.412569


604. Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N,
Nazarov PV, Vallar L, Chouaib S, Berchem G, et al. The acquisition
of resistance to TNFalpha in breast cancer cells is associated with
constitutive activation of autophagy as revealed by a transcriptome
analysis using a custom microarray. Autophagy 2011; 7:760-70;
http://dx.doi.org/10.4161/auto.7.7.15454.

605. Mitroulis I, Kourtzelis I, Kambas K, Rafail S, Chrysanthopoulou A,
Speletas M, Ritis K. Regulation of the autophagic machinery in
human neutrophils. Eur J Immunol 2010; 40:1461-72; http://dx.doi.
org/10.1002/eji.200940025.

606. Rodriguez-Muela N, Germain F, Marino G, Fitze PS, Boya P. Auto-
phagy promotes survival of retinal ganglion cells after optic nerve
axotomy in mice. Cell Death Differ 2012; 19:162-9; http://dx.doi.
org/10.1038/cdd.2011.88.

607. V�azquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, De Pablo F.
Atg5 and Ambra1 differentially modulate neurogenesis in neural
stem cells. Autophagy 2012; 8:187-99.

608. Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J,
Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al.
The unfolded protein response protects human tumor cells during
hypoxia through regulation of the autophagy genes MAP1LC3B
and ATG5. J Clin Invest 2010; 120:127-41; http://dx.doi.org/
10.1172/JCI40027.

609. Haim Y, Bl€uher M, Slutsky N, Goldstein N, Kl€oting N, Harman-
Boehm I, Kirshtein B, Ginsberg D, Gericke M, Jurado EG, et al. Ele-
vated autophagy gene expression in adipose tissue of obese humans:
A potential non-cell-cycle-dependent function of E2F1. Autophagy
2015; 11:2074-88.

610. Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids
suppress autophagic turnover in beta-cells. J Biol Chem 2011;
286:42534-44; http://dx.doi.org/10.1074/jbc.M111.242412.

611. Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesse-
link MK, Paquet C, Delhaye S, Shin Y, et al. Rev-erb-alpha modu-
lates skeletal muscle oxidative capacity by regulating mitochondrial
biogenesis and autophagy. Nat Med 2013; 19:1039-46; http://dx.doi.
org/10.1038/nm.3213.

612. Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore
DD. Nutrient-sensing nuclear receptors coordinate autophagy.
Nature 2014; 516:112-5.

613. Seok S, Fu T, Choi SE, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang
Y, Zhong W, et al. Transcriptional regulation of autophagy by an
FXR-CREB axis. Nature 2014; 516:108-11.

614. Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the
transcription of autophagy genes. Oncogene 2008; 27:4860-4;
http://dx.doi.org/10.1038/onc.2008.117.

615. Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M,
White E, Xu J, McDonnell TJ, Shinojima N, Fueyo J. The RB-E2F1
pathway regulates autophagy. Cancer Res 2010; 70:7882-93; http://
dx.doi.org/10.1158/0008-5472.CAN-10-1604.

616. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson
CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA.
A SAGE approach to discovery of genes involved in autophagic cell
death. Curr Biol 2003; 13:358-63; http://dx.doi.org/10.1016/S0960-
9822(03)00082-4.

617. Lee C-Y, Clough EA, Yellon P, Teslovich TM, Stephan DA, Baeh-
recke EH. Genome-wide analyses of steroid- and radiation-trig-
gered programmed cell death in Drosophila. Curr Biol 2003;
13:350-7; http://dx.doi.org/10.1016/S0960-9822(03)00085-X.

618. Denton D, Shravage B, Simin R, Baehrecke EH, Kumar S. Larval
midgut destruction in Drosophila: not dependent on caspases but
suppressed by the loss of autophagy. Autophagy 2010; 6:163-5;
http://dx.doi.org/10.4161/auto.6.1.10601.

619. Franzetti E, Huang ZJ, Shi YX, Xie K, Deng XJ, Li JP, Li QR, Yang
WY, Zeng WN, Casartelli M, et al. Autophagy precedes apoptosis
during the remodeling of silkworm larval midgut. Apoptosis 2012;
17:305-24; http://dx.doi.org/10.1007/s10495-011-0675-0.

620. Tian L, Ma L, Guo E, Deng X, Ma S, Xia Q, Cao Y, Li S. 20-Hydrox-
yecdysone upregulates Atg genes to induce autophagy in the
Bombyx fat body. Autophagy 2013; 9:1172-87; http://dx.doi.org/
10.4161/auto.24731.

621. Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP,
Sass M. Gene expression profiling identifies FKBP39 as an inhibitor
of autophagy in larval Drosophila fat body. Cell Death Differ 2007;
14:1181-90; http://dx.doi.org/10.1038/sj.cdd.4402123.

622. Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Menesi D, Puskas LG,
Juhasz G. Loss of the starvation-induced gene Rack1 leads to
glycogen deficiency and impaired autophagic responses in Dro-
sophila. Autophagy 2012; 8:1124-35; http://dx.doi.org/10.4161/
auto.20069.

623. Barth JM, Szabad J, Hafen E, Kohler K. Autophagy in Drosophila
ovaries is induced by starvation and is required for oogenesis.
Cell Death Differ 2011; 18:915-24; http://dx.doi.org/10.1038/
cdd.2010.157.

624. O’Rourke EJ, Ruvkun G. MXL-3 and HLH-30 transcriptionally link
lipolysis and autophagy to nutrient availability. Nat Cell Biol 2013;
15:668-76; http://dx.doi.org/10.1038/ncb2741.

625. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F,
Erdin S, Erdin SU, Huynh T, Medina D, Colella P, et al. TFEB links
autophagy to lysosomal biogenesis. Science 2011; 332:1429-33;
http://dx.doi.org/10.1126/science.1204592.

626. Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J, Price
SR, Mitch WE, Goldberg AL. Multiple types of skeletal muscle atro-
phy involve a common program of changes in gene expression. The
FASEB J 2004; 18:39-51; http://dx.doi.org/10.1096/fj.03-0610com.

627. Phillips AR, Suttangkakul A, Vierstra RD. The ATG12-conjugating
enzyme ATG10 Is essential for autophagic vesicle formation in Ara-
bidopsis thaliana. Genetics 2008; 178:1339-53; http://dx.doi.org/
10.1534/genetics.107.086199.

628. Seiliez I, Gutierrez J, Salmeron C, Skiba-Cassy S, Chauvin C, Dias K,
Kaushik S, Tesseraud S, Panserat S. An in vivo and in vitro assess-
ment of autophagy-related gene expression in muscle of rainbow
trout (Oncorhynchus mykiss). Comp Biochem Phys B 2010;
157:258-66; http://dx.doi.org/10.1016/j.cbpb.2010.06.011.

629. Lapierre LR, De Magalhaes Filho CD, McQuary PR, Chu CC, Visvi-
kis O, Chang JT, Gelino S, Ong B, Davis AE, Irazoqui JE, et al. The
TFEB orthologue HLH-30 regulates autophagy and modulates lon-
gevity in Caenorhabditis elegans. Nat Commun 2013; 4:2267.

630. Sandri M. Autophagy in health and disease. 3. Involvement of auto-
phagy in muscle atrophy. Am J Physiol Cell Physiol 2010; 298:
C1291-7; http://dx.doi.org/10.1152/ajpcell.00531.2009.

631. Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Car-
mona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L,
et al. Induction of autophagy by spermidine promotes longevity.
Nat Cell Biol 2009; 11:1305-14; http://dx.doi.org/10.1038/ncb1975.

632. Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A,
Seux M, Nowak J, Gonzalez CD, Iovanna JL, et al. The pancreatitis-
induced vacuole membrane protein 1 triggers autophagy in mam-
malian cells. J Biol Chem 2007; 282:37124-33; http://dx.doi.org/
10.1074/jbc.M706956200.

633. Tian Y, Li Z, Hu W, Ren H, Tian E, Zhao Y, Lu Q, Huang X, Yang
P, Li X, et al. C. elegans screen identifies autophagy genes specific to
multicellular organisms. Cell 2010; 141:1042-55; http://dx.doi.org/
10.1016/j.cell.2010.04.034.

634. Lo Re AE, Fernandez-Barrena MG, Almada LL, Mills LD, Elsawa
SF, Lund G, Ropolo A, Molejon MI, Vaccaro MI, Fernandez-Zapico
ME. Novel AKT1-GLI3-VMP1 pathway mediates KRAS oncogene-
induced autophagy in cancer cells. J Biol Chem 2012; 287:25325-34;
http://dx.doi.org/10.1074/jbc.M112.370809.

635. Sardiello M, Palmieri M, Di Ronza A, Medina DL, Valenza M, Gen-
narino VA, Di Malta C, Donaudy F, Embrione V, Polishchuk RS,
et al. A gene network regulating lysosomal biogenesis and function.
Science 2009; 325:473-7.

636. Palmieri M, Impey S, Kang H, Di Ronza A, Pelz C, Sardiello M,
Ballabio A. Characterization of the CLEAR network reveals an
integrated control of cellular clearance pathways. Hum Mol
Genet 2011; 20:3852-66; http://dx.doi.org/10.1093/hmg/ddr306.

637. Martina JA, Chen Y, Gucek M, Puertollano R. MTORC1 functions
as a transcriptional regulator of autophagy by preventing nuclear
transport of TFEB. Autophagy 2012; 8:903-14; http://dx.doi.org/
10.4161/auto.19653.

140 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.7.7.15454
http://dx.doi.org/10.1002/eji.200940025
http://dx.doi.org/10.1038/cdd.2011.88
http://dx.doi.org/10.1172/JCI40027
http://dx.doi.org/10.1074/jbc.M111.242412
http://dx.doi.org/10.1038/nm.3213
http://dx.doi.org/10.1038/onc.2008.117
http://dx.doi.org/10.1158/0008-5472.CAN-10-1604
http://dx.doi.org/10.1016/S0960-9822(03)00082-4
http://dx.doi.org/10.1016/S0960-9822(03)00082-4
http://dx.doi.org/10.1016/S0960-9822(03)00085-X
http://dx.doi.org/10.4161/auto.6.1.10601
http://dx.doi.org/10.1007/s10495-011-0675-0
http://dx.doi.org/10.4161/auto.24731
http://dx.doi.org/10.1038/sj.cdd.4402123
http://dx.doi.org/10.4161/auto.20069
http://dx.doi.org/10.4161/auto.20069
http://dx.doi.org/10.1038/cdd.2010.157
http://dx.doi.org/10.1038/cdd.2010.157
http://dx.doi.org/10.1038/ncb2741
http://dx.doi.org/10.1126/science.1204592
http://dx.doi.org/10.1096/fj.03-0610com
http://dx.doi.org/10.1534/genetics.107.086199
http://dx.doi.org/10.1016/j.cbpb.2010.06.011
http://dx.doi.org/10.1152/ajpcell.00531.2009
http://dx.doi.org/10.1038/ncb1975
http://dx.doi.org/10.1074/jbc.M706956200
http://dx.doi.org/10.1016/j.cell.2010.04.034
http://dx.doi.org/10.1074/jbc.M112.370809
http://dx.doi.org/10.1093/hmg/ddr306
http://dx.doi.org/10.4161/auto.19653


638. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S,
Huynh T, Ferron M, Karsenty G, Vellard MC, et al. A lysosome-to-
nucleus signalling mechanism senses and regulates the lysosome via
mTOR and TFEB. EMBO J 2012; 31:1095-108; http://dx.doi.org/
10.1038/emboj.2012.32.

639. Nezich CL, Wang C, Fogel AI, Youle RJ. Transcriptional control of
autophagy-lysosome function drives pancreatic cancer metabolism.
J Cell Biol 2015; 210:435-50; http://dx.doi.org/10.1083/
jcb.201501002.

640. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali
M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, et al. Tran-
scriptional control of autophagy-lysosome function drives pancre-
atic cancer metabolism. Nature 2015; 524:361-5; http://dx.doi.org/
10.1038/nature14587.

641. Kang YA, Sanalkumar R, O’Geen H, Linnemann AK, Chang CJ,
Bouhassira EE, Farnham PJ, Keles S, Bresnick EH. Autophagy
driven by a master regulator of hematopoiesis. Mol Cell Biol 2012;
32:226-39; http://dx.doi.org/10.1128/MCB.06166-11.

642. Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker
SH, Goldberg AL. FoxO3 coordinately activates protein degradation
by the autophagic/lysosomal and proteasomal pathways in atrophy-
ing muscle cells. Cell Metab 2007; 6:472-83; http://dx.doi.org/
10.1016/j.cmet.2007.11.004.

643. Chauhan S, Goodwin JG, Chauhan S, Manyam G, Wang J, Kamat
AM, Boyd DD. ZKSCAN3 is a master transcriptional repressor of
autophagy. Mol Cell 2013; 50:16-28; http://dx.doi.org/10.1016/j.
molcel.2013.01.024.

644. Ma D, Panda S, Lin JD. Temporal orchestration of circadian auto-
phagy rhythm by C/EBPb. EMBO J 2011; 30:4642-51.

645. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-
Craviari V, Mari B, Barbry P, Mosnier JF, Hebuterne X, et al. A syn-
onymous variant in IRGM alters a binding site for miR-196 and
causes deregulation of IRGM-dependent xenophagy in Crohn’s dis-
ease. Nat Genet 2011; 43:242-5; http://dx.doi.org/10.1038/ng.762.

646. Meenhuis A, van Veelen PA, de Looper H, van Boxtel N, van den
Berge IJ, Sun SM, Taskesen E, Stern P, de Ru AH, van Adrichem
AJ, et al. MiR-17/20/93/106 promote hematopoietic cell expansion
by targeting sequestosome 1-regulated pathways in mice. Blood
2011; 118:916-25; http://dx.doi.org/10.1182/blood-2011-02-336487.

647. Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, Azab F,
Runnels J, Quang P, Ghobrial IM. microRNA-dependent modula-
tion of histone acetylation in Waldenstrom macroglobulinemia.
Blood 2010; 116:1506-14; http://dx.doi.org/10.1182/blood-2010-01-
265686.

648. Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM. In
situ detection of starvation-induced autophagy. J Histochem Cyto-
chem 2006; 54:85-96; http://dx.doi.org/10.1369/jhc.5A6743.2005.

649. Banreti A, Sass M, Graba Y. The emerging role of acetylation in the
regulation of autophagy. Autophagy 2013; 9:819-29; http://dx.doi.
org/10.4161/auto.23908.

650. Jin M, Klionsky DJ. Regulation of autophagy: Modulation of the
size and number of autophagosomes. FEBS Lett 2014; 588:2457-63;
http://dx.doi.org/10.1016/j.febslet.2014.06.015.

651. Feng Y, Yao Z, Klionsky DJ. How to control self-digestion: tran-
scriptional, post-transcriptional, and post-translational regulation
of autophagy. Trends Cell Biology 2015; 25:354-63; http://dx.doi.
org/10.1016/j.tcb.2015.02.002.

652. Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D.
Posttranslational modification of autophagy-related proteins in
macroautophagy. Autophagy 2015; 11:28-45; http://dx.doi.org/
10.4161/15548627.2014.984267.

653. Pietrocola F, Marino G, Lissa D, Vacchelli E, Malik SA, Niso-
Santano M, Zamzami N, Galluzzi L, Maiuri MC, Kroemer G.
Pro-autophagic polyphenols reduce the acetylation of cyto-
plasmic proteins. Cell Cycle 2012; 11:3851-60; http://dx.doi.org/
10.4161/cc.22027.

654. Mari~no G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction
mimetics: natural/physiological pharmacological autophagy
inducers. Autophagy. 2014;10:1879-82. doi: 10.4161/auto.36413.

655. Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric restriction
mimetics: towards a molecular definition. Nat Rev Drug Discov
2014; 13:727-40; http://dx.doi.org/10.1038/nrd4391.

656. Lee IH, Finkel T. Regulation of autophagy by the p300 acetyltrans-
ferase. J Biol Chem 2009; 284:6322-8; http://dx.doi.org/10.1074/jbc.
M807135200.

657. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C,
Zhou T, Lippincott-Schwartz J, et al. Deacetylation of Nuclear LC3
Drives Autophagy Initiation under Starvation. Mol Cell 2015.

658. Pattingre S, Petiot A, Codogno P. Analyses of G[a]-interacting pro-
tein and activator of G-protein-signaling-3 functions in macroauto-
phagy. Methods Enzymol 2004; 390:17-31; http://dx.doi.org/
10.1016/S0076-6879(04)90002-X.

659. Bauvy C, Meijer AJ, Codogno P. Assaying of autophagic protein
degradation. Methods Enzymol 2009; 452:47-61; http://dx.doi.org/
10.1016/S0076-6879(08)03604-5.

660. Zhang J, Wang J, Ng S, Lin Q, Shen HM. Development of a novel
method for quantification of autophagic protein degradation by
AHA labeling. Autophagy 2014; 10:901-12; http://dx.doi.org/
10.4161/auto.28267.

661. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno
T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis
for sorting mechanism of p62 in selective autophagy. J Biol Chem
2008; 283:22847-57; http://dx.doi.org/10.1074/jbc.M802182200.

662. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. Aberrant
interaction between Parkinson disease-associated mutant UCH-L1
and the lysosomal receptor for chaperone-mediated autophagy.
J Biol Chem 2008; 283:23731-8; http://dx.doi.org/10.1074/jbc.
M801918200.

663. Saitoh Y, Fujikake N, Okamoto Y, Popiel HA, Hatanaka Y, Ueyama
M, Suzuki M, Gaumer S, Murata M, Wada K, et al. p62 plays a pro-
tective role in the autophagic degradation of polyglutamine protein
oligomers in polyglutamine disease model flies. J Biol Chem 2015;
290:1442-53; http://dx.doi.org/10.1074/jbc.M114.590281.

664. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM.
Linking of autophagy to ubiquitin-proteasome system is important
for the regulation of endoplasmic reticulum stress and cell
viability. Am J Pathol 2007; 171:513-24; http://dx.doi.org/10.2353/
ajpath.2007.070188.

665. Iwata A, Riley BE, Johnston JA, Kopito RR. HDAC6 and microtu-
bules are required for autophagic degradation of aggregated hun-
tingtin. J Biol Chem 2005; 280:40282-92; http://dx.doi.org/10.1074/
jbc.M508786200.

666. Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB,
Schwartz SL, DiProspero NA, Knight MA, Schuldiner O, et al.
HDAC6 rescues neurodegeneration and provides an essential link
between autophagy and the UPS. Nature 2007; 447:859-63; http://
dx.doi.org/10.1038/nature05853.

667. Tomek K, Wagner R, Varga F, Singer CF, Karlic H, Grunt TW.
Blockade of fatty acid synthase induces ubiquitination and degrada-
tion of phosphoinositide-3-kinase signaling proteins in ovarian can-
cer. Mol Cancer Res 2011:1767-79; http://dx.doi.org/10.1158/1541-
7786.MCR-10-0467.

668. Zimmermann AC, Zarei M, Eiselein S, Dengjel J. Quantitative pro-
teomics for the analysis of spatio-temporal protein dynamics during
autophagy. Autophagy 2010; 6:1009-16; http://dx.doi.org/10.4161/
auto.6.8.12786.

669. Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaat-
tela M, Dengjel J, Andersen JS. Ordered organelle degradation dur-
ing starvation-induced autophagy. Mol Cell Proteomics: MCP
2008; 7:2419-28; http://dx.doi.org/10.1074/mcp.M800184-MCP200.

670. Furuya N, Kanazawa T, Fujimura S, Ueno T, Kominami E, Kado-
waki M. Leupeptin-induced appearance of partial fragment of beta-
ine homocysteine methyltransferase during autophagic maturation
in rat hepatocytes. J Biochem (Tokyo) 2001; 129:313-20; http://dx.
doi.org/10.1093/oxfordjournals.jbchem.a002859.

671. Ueno T, Ishidoh K, Mineki R, Tanida I, Murayama K, Kadowaki M,
Kominami E. Autolysosomal membrane-associated betaine homo-
cysteine methyltransferase. Limited degradation fragment of a

AUTOPHAGY 141

http://dx.doi.org/10.1038/emboj.2012.32
http://dx.doi.org/10.1083/jcb.201501002
http://dx.doi.org/10.1083/jcb.201501002
http://dx.doi.org/10.1038/nature14587
http://dx.doi.org/10.1128/MCB.06166-11
http://dx.doi.org/10.1016/j.cmet.2007.11.004
http://dx.doi.org/10.1016/j.molcel.2013.01.024
http://dx.doi.org/10.1016/j.molcel.2013.01.024
http://dx.doi.org/10.1038/ng.762
http://dx.doi.org/10.1182/blood-2011-02-336487
http://dx.doi.org/10.1182/blood-2010-01-265686
http://dx.doi.org/10.1182/blood-2010-01-265686
http://dx.doi.org/10.1369/jhc.5A6743.2005
http://dx.doi.org/10.4161/auto.23908
http://dx.doi.org/10.1016/j.febslet.2014.06.015
http://dx.doi.org/10.1016/j.tcb.2015.02.002
http://dx.doi.org/10.4161/15548627.2014.984267
http://dx.doi.org/10.4161/cc.22027
http://dx.doi.org/10.1038/nrd4391
http://dx.doi.org/10.1074/jbc.M807135200
http://dx.doi.org/10.1074/jbc.M807135200
http://dx.doi.org/10.1016/S0076-6879(04)90002-X
http://dx.doi.org/10.1016/S0076-6879(08)03604-5
http://dx.doi.org/10.4161/auto.28267
http://dx.doi.org/10.1074/jbc.M802182200
http://dx.doi.org/10.1074/jbc.M801918200
http://dx.doi.org/10.1074/jbc.M801918200
http://dx.doi.org/10.1074/jbc.M114.590281
http://dx.doi.org/10.2353/ajpath.2007.070188
http://dx.doi.org/10.2353/ajpath.2007.070188
http://dx.doi.org/10.1074/jbc.M508786200
http://dx.doi.org/10.1074/jbc.M508786200
http://dx.doi.org/10.1038/nature05853
http://dx.doi.org/10.1158/1541-7786.MCR-10-0467
http://dx.doi.org/10.1158/1541-7786.MCR-10-0467
http://dx.doi.org/10.4161/auto.6.8.12786
http://dx.doi.org/10.4161/auto.6.8.12786
http://dx.doi.org/10.1074/mcp.M800184-MCP200
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a002859


sequestered cytosolic enzyme monitoring autophagy. J Biol Chem
1999; 274:15222-9; http://dx.doi.org/10.1074/jbc.274.21.15222.

672. Overbye A, Saetre F, Hagen LK, Johansen HT, Seglen PO. Autopha-
gic activity measured in whole rat hepatocytes as the accumulation
of a novel BHMT fragment (p10), generated in amphisomes by the
asparaginyl proteinase, legumain. Autophagy 2011; 7:1011-27;
http://dx.doi.org/10.4161/auto.7.9.16436.

673. Seglen PO, Overbye A, Saetre F. Sequestration assays for mamma-
lian autophagy. Methods Enzymol 2009; 452:63-83; http://dx.doi.
org/10.1016/S0076-6879(08)03605-7.

674. Mercer CA, Kaliappan A, Dennis PB. Macroautophagy-dependent,
intralysosomal cleavage of a betaine homocysteine methyltransfer-
ase fusion protein requires stable multimerization. Autophagy
2008; 4:185-94; http://dx.doi.org/10.4161/auto.5275.

675. Nimmerjahn F, Milosevic S, Behrends U, Jaffee EM, Pardoll
DM, Bornkamm GW, Mautner J. Major histocompatibility
complex class II-restricted presentation of a cytosolic antigen
by autophagy. Eur J Immunol 2003; 33:1250-9; http://dx.doi.
org/10.1002/eji.200323730.

676. Taylor GS, Long HM, Haigh TA, Larsen M, Brooks J, Rickinson AB.
A role for intercellular antigen transfer in the recognition of EBV-
transformed B cell lines by EBV nuclear antigen-specific CD4C T
cells. J Immunol 2006; 177:3746-56; http://dx.doi.org/10.4049/
jimmunol.177.6.3746.

677. Klionsky DJ, Emr SD. Membrane protein sorting: biosynthesis,
transport and processing of yeast vacuolar alkaline phosphatase.
EMBO J 1989; 8:2241-50.

678. Venerando R, Miotto G, Kadowaki M, Siliprandi N, Mortimore GE.
Multiphasic control of proteolysis by leucine and alanine in the iso-
lated rat hepatocyte. Am J Physiol 1994; 266:C455-61.

679. H€aussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok W. Cell
swelling inhibits proteolysis in perfused rat liver. Biochem J 1990;
272:239-42; http://dx.doi.org/10.1042/bj2720239.

680. vom Dahl S, H€aussinger D. Cell hydration and proteolysis control
in liver. Biochem J 1995; 312:988-9; http://dx.doi.org/10.1042/
bj3120988.

681. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, Mac-
Coss MJ, Pallanck LJ. The PINK1-Parkin pathway promotes both
mitophagy and selective respiratory chain turnover in vivo. Proc
Natl Acad Sci USA 2013; 110:6400-5; http://dx.doi.org/10.1073/
pnas.1221132110.

682. Reggiori F, Monastyrska I, Shintani T, Klionsky DJ. The actin cyto-
skeleton is required for selective types of autophagy, but not non-
specific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol
Cell 2005; 16:5843-56; http://dx.doi.org/10.1091/mbc.E05-07-0629.

683. Manjithaya R, Jain S, Farre JC, Subramani S. A yeast MAPK cascade
regulates pexophagy but not other autophagy pathways. J Cell Biol
2010; 189:303-10; http://dx.doi.org/10.1083/jcb.200909154.

684. Journo D, Mor A, Abeliovich H. Aup1-mediated regulation of Rtg3
during mitophagy. J Biol Chem 2009; 284:35885-95; http://dx.doi.
org/10.1074/jbc.M109.048140.

685. Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selective
mechanism. J Biol Chem 2008; 283:32386-93; http://dx.doi.org/
10.1074/jbc.M802403200.

686. Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du
Z, Geng J, Mao K, Yang Z, Yen WL, et al. A genomic screen for
yeast mutants defective in selective mitochondria autophagy. Mol
Biol Cell 2009; 20:4730-8; http://dx.doi.org/10.1091/mbc.E09-03-
0225.

687. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32 is a mito-
chondrial protein that confers selectivity during mitophagy. Dev
Cell 2009; 17:98-109; http://dx.doi.org/10.1016/j.devcel.2009.06.014.

688. Okamoto K, Kondo-Okamoto N, Ohsumi Y. Mitochondria-
anchored receptor Atg32 mediates degradation of mitochondria via
selective autophagy. Dev Cell 2009; 17:87-97; http://dx.doi.org/
10.1016/j.devcel.2009.06.013.

689. Sakai Y, Koller A, Rangell LK, Keller GA, Subramani S. Peroxi-
some degradation by microautophagy in Pichia pastoris: identi-
fication of specific steps and morphological intermediates. J Cell
Biol 1998; 141:625-36; http://dx.doi.org/10.1083/jcb.141.3.625.

690. Nazarko TY, Nicaud JM, Sibirny AA. Observation of the Yarrowia
lipolytica peroxisome-vacuole dynamics by fluorescence microscopy
with a single filter set. Cell Biol Int 2005; 29:65-70; http://dx.doi.org/
10.1016/j.cellbi.2004.11.014.

691. Roetzer A, Gratz N, Kovarik P, Schuller C. Autophagy supports
Candida glabrata survival during phagocytosis. Cell Microbiol
2010; 12:199-216; http://dx.doi.org/10.1111/j.1462-5822.2009.01391.x.

692. Bormann C, Sahm H. Degradation of microbodies in relation to
activities of alcohol oxidase and catalase in Candida boidinii. Arch
Microbiol 1978; 117:67-72; http://dx.doi.org/10.1007/BF00689353.

693. Clare DA, Duong MN, Darr D, Archibald F, Fridovich I. Effects of
molecular oxygen on detection of superoxide radical with nitroblue
tetrazolium and on activity stains for catalase. Anal Biochem 1984;
140:532-7; http://dx.doi.org/10.1016/0003-2697(84)90204-5.

694. Vachova L, Kucerova H, Devaux F, Ulehlova M, Palkova Z. Meta-
bolic diversification of cells during the development of yeast colo-
nies. Environ Microbiol 2009; 11:494-504; http://dx.doi.org/
10.1111/j.1462-2920.2008.01789.x.

695. Stasyk OV, Nazarko TY, Sibirny AA. Methods of plate pexophagy
monitoring and positive selection for ATG gene cloning in yeasts.
Methods Enzymol 2008; 451:229-39; http://dx.doi.org/10.1016/
S0076-6879(08)03216-3.

696. Hutchins MU, Veenhuis M, Klionsky DJ. Peroxisome degradation
in Saccharomyces cerevisiae is dependent on machinery of
macroautophagy and the Cvt pathway. J Cell Sci 1999; 112:4079-87.

697. Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT,
Glick BS, Kato N, Sakai Y. Paz2 and 13 other PAZ gene prod-
ucts regulate vacuolar engulfment of peroxisomes during micro-
pexophagy. Genes Cells 2002; 7:75-90; http://dx.doi.org/10.1046/
j.1356-9597.2001.00499.x.

698. Tuttle DL, Dunn WA, Jr. Divergent modes of autophagy in the
methylotrophic yeast Pichia pastoris. J Cell Sci 1995; 108 (Pt 1):
25-35.

699. Nazarko TY, Huang J, Nicaud JM, Klionsky DJ, Sibirny AA. Trs85
is required for macroautophagy, pexophagy and cytoplasm to vacu-
ole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae.
Autophagy 2005; 1:37-45; http://dx.doi.org/10.4161/auto.1.1.1512.

700. Veenhuis M, Douma A, Harder W, Osumi M. Degradation and
turnover of peroxisomes in the yeast Hansenula polymorpha
induced by selective inactivation of peroxisomal enzymes.
Arch Microbiol 1983; 134:193-203; http://dx.doi.org/10.1007/
BF00407757.

701. Monosov EZ, Wenzel TJ, Luers GH, Heyman JA, Subramani S.
Labeling of peroxisomes with green fluorescent protein in living P.
pastoris cells. J Histochem Cytochem 1996; 44:581-9; http://dx.doi.
org/10.1177/44.6.8666743.

702. Wiemer EA, Wenzel T, Deerinck TJ, Ellisman MH, Subramani S.
Visualization of the peroxisomal compartment in living mamma-
lian cells: dynamic behavior and association with microtubules. J
Cell Biol 1997; 136:71-80; http://dx.doi.org/10.1083/jcb.136.1.71.

703. Monastyrska I, van der Heide M, Krikken AM, Kiel JAKW, van der
Klei IJ, Veenhuis M. Atg8 is essential for macropexophagy in Han-
senula polymorpha. Traffic 2005; 6:66-74; http://dx.doi.org/10.1111/
j.1600-0854.2004.00252.x.

704. Devenish RJ, Prescott M, Turcic K, Mijaljica D. Monitoring organ-
elle turnover in yeast using fluorescent protein tags. Methods Enzy-
mol 2008; 451:109-31; http://dx.doi.org/10.1016/S0076-6879(08)
03209-6.

705. Mao K, Wang K, Liu X, Klionsky DJ. The scaffold protein Atg11
recruits fission machinery to drive selective mitochondria degrada-
tion by autophagy. Dev Cell 2013; 26:9-18; http://dx.doi.org/
10.1016/j.devcel.2013.05.024.

706. Kerppola TK. Design and implementation of bimolecular fluores-
cence complementation (BiFC) assays for the visualization of pro-
tein interactions in living cells. Nature Protocols 2006; 1:1278-86;
http://dx.doi.org/10.1038/nprot.2006.201.

707. Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent
protein fragments for bimolecular fluorescence complementation
analysis under physiological conditions. BioTechniques 2006;
40:61-6; http://dx.doi.org/10.2144/000112036.

142 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1074/jbc.274.21.15222
http://dx.doi.org/10.4161/auto.7.9.16436
http://dx.doi.org/10.1016/S0076-6879(08)03605-7
http://dx.doi.org/10.4161/auto.5275
http://dx.doi.org/10.1002/eji.200323730
http://dx.doi.org/10.4049/jimmunol.177.6.3746
http://dx.doi.org/10.4049/jimmunol.177.6.3746
http://dx.doi.org/10.1042/bj2720239
http://dx.doi.org/10.1042/bj3120988
http://dx.doi.org/10.1042/bj3120988
http://dx.doi.org/10.1073/pnas.1221132110
http://dx.doi.org/10.1073/pnas.1221132110
http://dx.doi.org/10.1091/mbc.E05-07-0629
http://dx.doi.org/10.1083/jcb.200909154
http://dx.doi.org/10.1074/jbc.M109.048140
http://dx.doi.org/10.1074/jbc.M802403200
http://dx.doi.org/10.1091/mbc.E09-03-0225
http://dx.doi.org/10.1091/mbc.E09-03-0225
http://dx.doi.org/10.1016/j.devcel.2009.06.014
http://dx.doi.org/10.1016/j.devcel.2009.06.013
http://dx.doi.org/10.1083/jcb.141.3.625
http://dx.doi.org/10.1016/j.cellbi.2004.11.014
http://dx.doi.org/10.1111/j.1462-5822.2009.01391.x
http://dx.doi.org/10.1007/BF00689353
http://dx.doi.org/10.1016/0003-2697(84)90204-5
http://dx.doi.org/10.1111/j.1462-2920.2008.01789.x
http://dx.doi.org/10.1016/S0076-6879(08)03216-3
http://dx.doi.org/10.1016/S0076-6879(08)03216-3
http://dx.doi.org/10.1046/j.1356-9597.2001.00499.x
http://dx.doi.org/10.1046/j.1356-9597.2001.00499.x
http://dx.doi.org/10.4161/auto.1.1.1512
http://dx.doi.org/10.1007/BF00407757
http://dx.doi.org/10.1007/BF00407757
http://dx.doi.org/10.1177/44.6.8666743
http://dx.doi.org/10.1083/jcb.136.1.71
http://dx.doi.org/10.1111/j.1600-0854.2004.00252.x
http://dx.doi.org/10.1111/j.1600-0854.2004.00252.x
http://dx.doi.org/10.1016/S0076-6879(08)03209-6
http://dx.doi.org/10.1016/S0076-6879(08)03209-6
http://dx.doi.org/10.1016/j.devcel.2013.05.024
http://dx.doi.org/10.1038/nprot.2006.201
http://dx.doi.org/10.2144/000112036


708. Farre JC, Manjithaya R, Mathewson RD, Subramani S. PpAtg30
tags peroxisomes for turnover by selective autophagy. Dev Cell
2008; 14:365-76; http://dx.doi.org/10.1016/j.devcel.2007.12.011.

709. He Y, Deng YZ, Naqvi NI. Atg24-assisted mitophagy in the foot
cells is necessary for proper asexual differentiation in Magnaporthe
oryzae. Autophagy 2013; 9:1818-27; http://dx.doi.org/10.4161/
auto.26057.

710. Kanki T, Klionsky DJ. The molecular mechanism of mitochondria
autophagy in yeast. Mol Microbiol 2010; 75:795-800; http://dx.doi.
org/10.1111/j.1365-2958.2009.07035.x.

711. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. Aup1p, a
yeast mitochondrial protein phosphatase homolog, is required for
efficient stationary phase mitophagy and cell survival. J Biol Chem
2007; 282:5617-24; http://dx.doi.org/10.1074/jbc.M605940200.

712. Abeliovich H. Stationary-phase mitophagy in respiring Saccharo-
myces cerevisiae. Antioxid Redox Sign 2011; 14:2003-11; http://dx.
doi.org/10.1089/ars.2010.3807.

713. East DA, Fagiani F, Crosby J, Georgakopoulos ND, Bertrand H,
Schaap M, Fowkes A, Wells G, Campanella M. PMI: a DeltaPsim
independent pharmacological regulator of mitophagy. Chem Biol
2014; 21:1585-96; http://dx.doi.org/10.1016/j.chembiol.2014.09.019.

714. Aksam EB, Koek A, Kiel JAKW, Jourdan S, Veenhuis M, van der
Klei IJ. A peroxisomal lon protease and peroxisome degradation by
autophagy play key roles in vitality of Hansenula polymorpha cells.
Autophagy 2007; 3:96-105; http://dx.doi.org/10.4161/auto.3534.

715. Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M,
Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomy-
ces cerevisiae. Mol Biol Cell 2003; 14:129-41; http://dx.doi.org/
10.1091/mbc.E02-08-0483.

716. Krick R, Muehe Y, Prick T, Bremer S, Schlotterhose P, Eskelinen
EL, Millen J, Goldfarb DS, Thumm M. Piecemeal microautophagy
of the nucleus requires the core macroautophagy genes. Mol Biol
Cell 2008; 19:4492-505; http://dx.doi.org/10.1091/mbc.E08-04-0363.

717. Farre JC, Krick R, Subramani S, Thumm M. Turnover of organelles
by autophagy in yeast. Curr Opin Cell Biol 2009; 21:522-30; http://
dx.doi.org/10.1016/j.ceb.2009.04.015.

718. Kvam E, Goldfarb DS. Structure and function of nucleus-vacuole
junctions: outer-nuclear-membrane targeting of Nvj1p and a role in
tryptophan uptake. J Cell Sci 2006; 119:3622-33; http://dx.doi.org/
10.1242/jcs.03093.

719. Millen JI, Krick R, Prick T, Thumm M, Goldfarb DS. Measuring
piecemeal microautophagy of the nucleus in Saccharomyces cerevi-
siae. Autophagy 2009; 5:75-81; http://dx.doi.org/10.4161/
auto.5.1.7181.

720. Mijaljica D, Prescott M, Devenish RJ. A late form of nucleophagy in
Saccharomyces cerevisiae. PloS One 2012; 7:e40013.

721. Shoji JY, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-
mediated degradation of whole nuclei in the filamentous fungus
Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/
10.1371/journal.pone.0015650.

722. Shoji J-Y, Kikuma T, Arioka M, Kitamoto K. Macroautophagy-
mediated degradation of whole nuclei in the filamentous fungus
Aspergillus oryzae. PloS One 2010; 5:e15650; http://dx.doi.org/
10.1371/journal.pone.0015650.

723. He M, Kershaw MJ, Soanes DM, Xia Y, Talbot NJ. Infection-associ-
ated nuclear degeneration in the rice blast fungusMagnaporthe ory-
zae requires non-selective macro-autophagy. PloS One 2012; 7:
e33270; http://dx.doi.org/10.1371/journal.pone.0033270.

724. Maheshwari R. Nuclear behavior in fungal hyphae. FEMS Microbiol
Lett 2005; 249:7-14; http://dx.doi.org/10.1016/j.femsle.2005.06.031.

725. Shoji J-Y, Craven KD. Autophagy in basal hyphal compartments: A
green strategy of great recyclers. Fungal Biol Rev 2011; 25:79-83;
http://dx.doi.org/10.1016/j.fbr.2011.04.001.

726. Voigt O, Poggeler S. Autophagy genes Smatg8 and Smatg4 are
required for fruiting-body development, vegetative growth and
ascospore germination in the filamentous ascomycete Sordaria
macrospora. Autophagy 2013; 9:33-49; http://dx.doi.org/10.4161/
auto.22398.

727. Yorimitsu T, Klionsky DJ. Atg11 links cargo to the vesicle-forming
machinery in the cytoplasm to vacuole targeting pathway. Mol Biol

Cell 2005; 16:1593-605; http://dx.doi.org/10.1091/mbc.E04-11-
1035.

728. Shintani T, Huang W-P, Stromhaug PE, Klionsky DJ. Mechanism
of cargo selection in the cytoplasm to vacuole targeting pathway.
Dev Cell 2002; 3:825-37; http://dx.doi.org/10.1016/S1534-5807(02)
00373-8.

729. Abeliovich H, Darsow T, Emr SD. Cytoplasm to vacuole trafficking
of aminopeptidase I requires a t-SNARE-Sec1p complex composed
of Tlg2p and Vps45p. EMBO J 1999; 18:6005-16; http://dx.doi.org/
10.1093/emboj/18.21.6005.

730. Abeliovich H, Zarei M, Rigbolt KT, Youle RJ, Dengjel J. Involve-
ment of mitochondrial dynamics in the segregation of mitochon-
drial matrix proteins during stationary phase mitophagy. Nat
Commun 2013; 4:2789; http://dx.doi.org/10.1038/ncomms3789.

731. Overbye A, Fengsrud M, Seglen PO. Proteomic analysis of
membrane-associated proteins from rat liver autophagosomes.
Autophagy 2007; 3:300-22; http://dx.doi.org/10.4161/auto.3910.

732. Petroi D, Popova B, Taheri-Talesh N, Irniger S, Shahpasandzadeh
H, Zweckstetter M, Outeiro TF, Braus GH. Aggregate clearance of
alpha-synuclein in Saccharomyces cerevisiae depends more on
autophagosome and vacuole function than on the proteasome. J
Biol Chem 2012; 287:27567-79; http://dx.doi.org/10.1074/jbc.
M112.361865.

733. Shahpasandzadeh H, Popova B, Kleinknecht A, Fraser PE, Outeiro
TF, Braus GH. Interplay between sumoylation and phosphorylation
for protection against alpha-synuclein inclusions. J Biol Chem
2014; 289:31224-40; http://dx.doi.org/10.1074/jbc.M114.559237.

734. Wafa K, MacLean J, Zhang F, Pasumarthi KB. Characterization
of growth suppressive functions of a splice variant of cyclin D2.
PloS One 2013; 8:e53503; http://dx.doi.org/10.1371/journal.
pone.0053503.

735. Ju JS, Miller SE, Jackson E, Cadwell K, Piwnica-Worms D, Weihl
CC. Quantitation of selective autophagic protein aggregate degrada-
tion in vitro and in vivo using luciferase reporters. Autophagy 2009;
5:511-9; http://dx.doi.org/10.4161/auto.5.4.7761.

736. Hohn A, Sittig A, Jung T, Grimm S, Grune T. Lipofuscin is formed
independently of macroautophagy and lysosomal activity in stress-
induced prematurely senescent human fibroblasts. Free Radical Bio
Med 2012; 53:1760-9; http://dx.doi.org/10.1016/j.freeradbiomed.
2012.08.591.

737. Jung T, Hohn A, Catalgol B, Grune T. Age-related differences in
oxidative protein-damage in young and senescent fibroblasts. Arch
Biochem Biophys 2009; 483:127-35; http://dx.doi.org/10.1016/j.
abb.2008.12.007.

738. Fuentealba RA, Marasa J, Diamond MI, Piwnica-Worms D, Weihl
CC. An aggregation sensing reporter identifies leflunomide and ter-
iflunomide as polyglutamine aggregate inhibitors. Hum Mol Genet
2012; 21:664-80.

739. Al Rawi S, Louvet-Vall�ee S, Djeddi A, Sachse M, Culetto E,
Hajjar C, Boyd L, Legouis R, Galy V. Allophagy: A macroauto-
phagic process degrading spermatozoid-inherited organelles.
Autophagy 2012; 8:421-3.

740. Sato M, Sato K. Maternal inheritance of mitochondrial DNA: Deg-
radation of paternal mitochondria by allogeneic organelle auto-
phagy, allophagy. Autophagy 2012; 8:424-5.

741. Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar
C, Boyd L, Legouis R, Galy V. Postfertilization autophagy of sperm
organelles prevents paternal mitochondrial DNA transmission. Sci-
ence 2011; 334:1144-7.

742. Sato M, Sato K. Degradation of paternal mitochondria by fertiliza-
tion-triggered autophagy in C. elegans embryos. Science 2011;
334:1141-4; http://dx.doi.org/10.1126/science.1210333.

743. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological
roles, and analysis. Biol Chem 2012; 393:547-64.

744. Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caul-
field TR, Moussaud-Lamodiere EL, Stankowski JN, Bauer PO, Lor-
enzo-Betancor O, et al. (Patho-)physiological relevance of PINK1-
dependent ubiquitin phosphorylation. EMBO Rep 2015.

745. Herhaus L, Dikic I. Expanding the ubiquitin code through post-
translational modification. EMBO Rep 2015.

AUTOPHAGY 143

http://dx.doi.org/10.1016/j.devcel.2007.12.011
http://dx.doi.org/10.4161/auto.26057
http://dx.doi.org/10.4161/auto.26057
http://dx.doi.org/10.1111/j.1365-2958.2009.07035.x
http://dx.doi.org/10.1074/jbc.M605940200
http://dx.doi.org/10.1089/ars.2010.3807
http://dx.doi.org/10.1016/j.chembiol.2014.09.019
http://dx.doi.org/10.4161/auto.3534
http://dx.doi.org/10.1091/mbc.E02-08-0483
http://dx.doi.org/10.1091/mbc.E08-04-0363
http://dx.doi.org/10.1016/j.ceb.2009.04.015
http://dx.doi.org/10.1242/jcs.03093
http://dx.doi.org/10.4161/auto.5.1.7181
http://dx.doi.org/10.4161/auto.5.1.7181
http://dx.doi.org/10.1371/journal.pone.0015650
http://dx.doi.org/10.1371/journal.pone.0015650
http://dx.doi.org/10.1371/journal.pone.0033270
http://dx.doi.org/10.1016/j.femsle.2005.06.031
http://dx.doi.org/10.1016/j.fbr.2011.04.001
http://dx.doi.org/10.4161/auto.22398
http://dx.doi.org/10.4161/auto.22398
http://dx.doi.org/10.1091/mbc.E04-11-1035
http://dx.doi.org/10.1091/mbc.E04-11-1035
http://dx.doi.org/10.1016/S1534-5807(02)00373-8
http://dx.doi.org/10.1016/S1534-5807(02)00373-8
http://dx.doi.org/10.1093/emboj/18.21.6005
http://dx.doi.org/10.1038/ncomms3789
http://dx.doi.org/10.4161/auto.3910
http://dx.doi.org/10.1074/jbc.M112.361865
http://dx.doi.org/10.1074/jbc.M112.361865
http://dx.doi.org/10.1074/jbc.M114.559237
http://dx.doi.org/10.1371/journal.pone.0053503
http://dx.doi.org/10.1371/journal.pone.0053503
http://dx.doi.org/10.4161/auto.5.4.7761
http://dx.doi.org/10.1016/j.freeradbiomed.<?A3B2 RE3J?>2012.08.591
http://dx.doi.org/10.1016/j.freeradbiomed.<?A3B2 RE3J?>2012.08.591
http://dx.doi.org/10.1016/j.abb.2008.12.007
http://dx.doi.org/10.1016/j.abb.2008.12.007
http://dx.doi.org/10.1126/science.1210333


746. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M,
Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, et al. Ubiquitin
is phosphorylated by PINK1 to activate parkin. Nature 2014;
510:162-6.

747. Ding WX, Li M, Chen X, Ni HM, Lin CW, Gao W, Lu B, Stolz DB,
Clemens DL, Yin XM. Autophagy reduces acute ethanol-induced
hepatotoxicity and steatosis in mice. Gastroenterology 2010;
139:1740-52; http://dx.doi.org/10.1053/j.gastro.2010.07.041.

748. Kim I, Rodriguez-Enriquez S, Lemasters JJ. Selective degradation of
mitochondria by mitophagy. Arch Biochem Biophys 2007; 462:245-
53; http://dx.doi.org/10.1016/j.abb.2007.03.034.

749. Dong H, Cheung SH, Liang Y, Wang B, Ramalingam R, Wang P,
Sun H, Cheng SH, Lam YW. “Stainomics”: identification of mito-
tracker labeled proteins in mammalian cells. Electrophoresis 2013;
34:1957-64; http://dx.doi.org/10.1002/elps.201200557.

750. Mauro-Lizcano M, Esteban-Martinez L, Seco E, Serrano-Puebla A,
Garcia-Ledo L, Figueiredo-Pereira C, Vieira HL, Boya P. New
method to assess mitophagy flux by flow cytometry. Autophagy
2015; 11:833-43; http://dx.doi.org/10.1080/15548627.2015.1034403.

751. Presley AD, Fuller KM, Arriaga EA. MitoTracker Green labeling of
mitochondrial proteins and their subsequent analysis by capillary
electrophoresis with laser-induced fluorescence detection. J Chro-
matogr B, Analytical technologies in the biomedical and life scien-
ces 2003; 793:141-50; http://dx.doi.org/10.1016/S1570-0232(03)
00371-4.

752. Keij JF, Bell-Prince C, Steinkamp JA. Staining of mitochondrial
membranes with 10-nonyl acridine orange, MitoFluor Green, and
MitoTracker Green is affected by mitochondrial membrane poten-
tial altering drugs. Cytometry 2000; 39:203-10; http://dx.doi.org/
10.1002/(SICI)1097-0320(20000301)39:3<203::AID-CYTO5>3.0.
CO;2-Z.

753. Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK,
Lugade AG, Singer VL, Haugland RP. Analysis of mitochondrial
morphology and function with novel fixable fluorescent stains. J
Histochem Cytochem 1996; 44:1363-72; http://dx.doi.org/10.1177/
44.12.8985128.

754. Geisler S, Holmstrom KM, Treis A, Skujat D, Weber SS, Fiesel FC,
Kahle PJ, Springer W. PINK1/Parkin-mediated mitophagy is com-
promised by PD-associated mutations. Autophagy 2010; 6:871-8;
http://dx.doi.org/10.4161/auto.6.7.13286.

755. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle
PJ, Springer W. PINK1/Parkin-mediated mitophagy is dependent
on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12:119-31;
http://dx.doi.org/10.1038/ncb2012.

756. Diot A, Hinks-Roberts A, Lodge T, Liao C, Dombi E, Morten K,
Brady S, Fratter C, Carver J, Muir R, et al. A novel quantitative assay
of mitophagy: Combining high content fluorescence microscopy
and mitochondrial DNA load to quantify mitophagy and identify
novel pharmacological tools against pathogenic heteroplasmic
mtDNA. Pharmacol Res 2015; 100:24-35; http://dx.doi.org/10.1016/
j.phrs.2015.07.014.

757. Dagda RK, Cherra SJ, III, Kulich SM, Tandon A, Park D, Chu CT.
Loss of PINK1 function promotes mitophagy through effects on
oxidative stress and mitochondrial fission. J Biol Chem 2009;
284:13843-55; http://dx.doi.org/10.1074/jbc.M808515200.

758. Dagda RK, Zhu J, Kulich SM, Chu CT. Mitochondrially localized
ERK2 regulates mitophagy and autophagic cell stress: implications
for Parkinson’s disease. Autophagy 2008; 4:770-82; http://dx.doi.
org/10.4161/auto.6458.

759. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Lar-
ochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al.
Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol
2005; 25:1025-40; http://dx.doi.org/10.1128/MCB.25.3.1025-
1040.2005.

760. Katayama H, Kogure T, Mizushima N, Yoshimori T, Miyawaki A.
A sensitive and quantitative technique for detecting autophagic
events based on lysosomal delivery. Chem Biol 2011; 18:1042-52;
http://dx.doi.org/10.1016/j.chembiol.2011.05.013.

761. Tanaka A, Cleland MM, Xu S, Narendra DP, Suen DF, Karbowski
M, Youle RJ. Proteasome and p97 mediate mitophagy and

degradation of mitofusins induced by Parkin. J Cell Biol 2010;
191:1367-80; http://dx.doi.org/10.1083/jcb.201007013.

762. Yoshii SR, Kishi C, Ishihara N, Mizushima N. Parkin mediates pro-
teasome-dependent protein degradation and rupture of the outer
mitochondrial membrane. J Biol Chem 2011; 286:19630-40; http://
dx.doi.org/10.1074/jbc.M110.209338.

763. Amadoro G, Corsetti V, Florenzano F, Atlante A, Ciotti MT, Mon-
giardi MP, Bussani R, Nicolin V, Nori SL, Campanella M, et al.
AD-linked, toxic NH2 human tau affects the quality control of
mitochondria in neurons. Neuobiol Dis 2014; 62:489-507; http://dx.
doi.org/10.1016/j.nbd.2013.10.018.

764. Chang TK, Shravage BV, Hayes SD, Powers CM, Simin RT, WaDe
Harper J, Baehrecke EH. Uba1 functions in Atg7- and Atg3-inde-
pendent autophagy. Nat Cell Biol 2013; 15:1067-78; http://dx.doi.
org/10.1038/ncb2804.

765. Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochon-
drial fidelity in Parkinson’s disease. Neuron 2015; 85:257-73; http://
dx.doi.org/10.1016/j.neuron.2014.12.007.

766. Yang JY, Yang WY. Spatiotemporally controlled initiation of Par-
kin-mediated mitophagy within single cells. Autophagy 2011;
7:1230-8; http://dx.doi.org/10.4161/auto.7.10.16626.

767. Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-
induced mitochondrial depolarization initiates PARK2/PARKIN-
dependent mitochondrial degradation by autophagy. Autophagy
2012; 8:1462-76; http://dx.doi.org/10.4161/auto.21211.

768. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A,
Fimia GM, Campello S, Nardacci R, Piacentini M, Campanella M,
et al. AMBRA1 is able to induce mitophagy via LC3 binding,
regardless of PARKIN and p62/SQSTM1. Cell Death Differ 2014.

769. Lemasters JJ. Variants of mitochondrial autophagy: Types 1 and 2
mitophagy and micromitophagy (Type 3). Redox Biol 2014; 2:749-
54; http://dx.doi.org/10.1016/j.redox.2014.06.004.

770. Manjithaya R, Nazarko TY, Farre JC, Subramani S. Molecular
mechanism and physiological role of pexophagy. FEBS Lett 2010;
584:1367-73; http://dx.doi.org/10.1016/j.febslet.2010.01.019.

771. Till A, Lakhani R, Burnett SF, Subramani S. Pexophagy: the selec-
tive degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721;
http://dx.doi.org/10.1155/2012/512721.

772. Michalik L, Auwerx J, Berger JP, Chatterjee VK, Glass CK, Gonzalez
FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, et al. Interna-
tional Union of Pharmacology. LXI. Peroxisome proliferator-acti-
vated receptors. Pharmacol Rev 2006; 58:726-41; http://dx.doi.org/
10.1124/pr.58.4.5.

773. Walter KM, Schonenberger MJ, Trotzmuller M, Horn M, Elsasser
HP, Moser AB, Lucas MS, Schwarz T, Gerber PA, Faust PL, et al.
Hif-2alpha promotes degradation of mammalian peroxisomes by
selective autophagy. Cell Metab 2014; 20:882-97; http://dx.doi.org/
10.1016/j.cmet.2014.09.017.

774. Alexander A, Cai SL, Kim J, Nanez A, Sahin M, Maclean KH, Inoki
K, Guan K-L, Shen J, Person MD, et al. ATM signals to TSC2 in the
cytoplasm to regulate mTORC1 in response to ROS. Proc Natl
Acad Sci USA 2010; 107:4153-8; http://dx.doi.org/10.1073/
pnas.0913860107.

775. Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker
CL, Wogan GN. Reactive nitrogen species regulate autophagy
through ATM-AMPK-TSC2-mediated suppression of mTORC1.
Proc Natl Acad Sci USA 2013; 110:E2950-7; http://dx.doi.org/
10.1073/pnas.1307736110.

776. Zhang J, Kim J, Alexander A, Cai S, Tripathi DN, Dere R, Tee AR,
Tait-Mulder J, Di Nardo A, Han JM, et al. A tuberous sclerosis
complex signalling node at the peroxisome regulates mTORC1 and
autophagy in response to ROS. Nat Cell Biol 2013; 15:1186-96;
http://dx.doi.org/10.1038/ncb2822.

777. Zhang J, Tripathi DN, Jing J, Alexander A, Kim J, Powell RT, Dere
R, Tait-Mulder J, Lee JH, Paull TT, et al. ATM functions at the per-
oxisome to induce pexophagy in response to ROS. Nat Cell Biol
2015.

778. Luiken JJ, van den Berg M, Heikoop JC, Meijer AJ. Autophagic deg-
radation of peroxisomes in isolated rat hepatocytes. FEBS Lett 1992;
304:93-7; http://dx.doi.org/10.1016/0014-5793(92)80596-9.

144 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1053/j.gastro.2010.07.041
http://dx.doi.org/10.1016/j.abb.2007.03.034
http://dx.doi.org/10.1002/elps.201200557
http://dx.doi.org/10.1080/15548627.2015.1034403
http://dx.doi.org/10.1016/S1570-0232(03)00371-4
http://dx.doi.org/10.1016/S1570-0232(03)00371-4
http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3&lt;203::AID-CYTO5&gt;3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3&lt;203::AID-CYTO5&gt;3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3&lt;203::AID-CYTO5&gt;3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-0320(20000301)39:3&lt;203::AID-CYTO5&gt;3.0.CO;2-Z
http://dx.doi.org/10.1177/44.12.8985128
http://dx.doi.org/10.1177/44.12.8985128
http://dx.doi.org/10.4161/auto.6.7.13286
http://dx.doi.org/10.1038/ncb2012
http://dx.doi.org/10.1016/j.phrs.2015.07.014
http://dx.doi.org/10.1016/j.phrs.2015.07.014
http://dx.doi.org/10.1074/jbc.M808515200
http://dx.doi.org/10.4161/auto.6458
http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005
http://dx.doi.org/10.1128/MCB.25.3.1025-1040.2005
http://dx.doi.org/10.1016/j.chembiol.2011.05.013
http://dx.doi.org/10.1083/jcb.201007013
http://dx.doi.org/10.1074/jbc.M110.209338
http://dx.doi.org/10.1016/j.nbd.2013.10.018
http://dx.doi.org/10.1038/ncb2804
http://dx.doi.org/10.1016/j.neuron.2014.12.007
http://dx.doi.org/10.4161/auto.7.10.16626
http://dx.doi.org/10.4161/auto.21211
http://dx.doi.org/10.1016/j.redox.2014.06.004
http://dx.doi.org/10.1016/j.febslet.2010.01.019
http://dx.doi.org/10.1155/2012/512721
http://dx.doi.org/10.1124/pr.58.4.5
http://dx.doi.org/10.1016/j.cmet.2014.09.017
http://dx.doi.org/10.1073/pnas.0913860107
http://dx.doi.org/10.1073/pnas.0913860107
http://dx.doi.org/10.1073/pnas.1307736110
http://dx.doi.org/10.1038/ncb2822
http://dx.doi.org/10.1016/0014-5793(92)80596-9


779. Yokota S. Formation of autophagosomes during degradation of
excess peroxisomes induced by administration of dioctyl phthalate.
Eur J Cell Biol 1993; 61:67-80.

780. D’Eletto M, Farrace MG, Rossin F, Strappazzon F, Giacomo GD,
Cecconi F, Melino G, Sepe S, Moreno S, Fimia GM, et al. Type 2
transglutaminase is involved in the autophagy-dependent clearance
of ubiquitinated proteins. Cell Death Differ 2012; 19:1228-38;
http://dx.doi.org/10.1038/cdd.2012.2.

781. Nardacci R, Sartori C, Stefanini S. Selective autophagy of clofibrate-
induced rat liver peroxisomes. Cytochemistry and immunocyto-
chemistry on tissue specimens and on fractions obtained by Nyco-
denz density gradient centrifugation. Cell Mol Biol 2000; 46:1277-
90.

782. Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los
GV, Fransen M. Peroxisome dynamics in cultured mammalian
cells. Traffic 2009; 10:1722-33; http://dx.doi.org/10.1111/j.1600-
0854.2009.00970.x.

783. Deosaran E, Larsen KB, Hua R, Sargent G, Wang Y, Kim S, Lamark
T, Jauregui M, Law K, Lippincott-Schwartz J, et al. NBR1 acts as an
autophagy receptor for peroxisomes. J Cell Sci 2013; 126:939-52;
http://dx.doi.org/10.1242/jcs.114819.

784. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causing
mutations in parkin impair mitochondrial ubiquitination, aggrega-
tion, and HDAC6-dependent mitophagy. J Cell Biol 2010; 189:671-
9; http://dx.doi.org/10.1083/jcb.201001039.

785. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell
DG, Gourlay R, Burchell L, Walden H, Macartney TJ, Deak M,
et al. PINK1 is activated by mitochondrial membrane potential
depolarization and stimulates Parkin E3 ligase activity by phos-
phorylating Serine 65. Open Biol 2012; 2:120080; http://dx.doi.org/
10.1098/rsob.120080.

786. Yang KC, Ma X, Liu H, Murphy J, Barger PM, Mann DL, Diwan A.
TNF-Receptor Associated Factor-2 Mediates Mitochondrial Auto-
phagy. Circ Heart Fail 2014; 8:175-87.

787. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ, Gra-
ham RL, Hess S, Chan DC. Broad activation of the ubiquitin-pro-
teasome system by Parkin is critical for mitophagy. Hum Mol
Genet 2011; 20:1726-37; http://dx.doi.org/10.1093/hmg/ddr048.

788. Okatsu K, Saisho K, Shimanuki M, Nakada K, Shitara H, Sou YS,
Kimura M, Sato S, Hattori N, Komatsu M, et al. p62/SQSTM1
cooperates with Parkin for perinuclear clustering of depolarized
mitochondria. Genes Cells 2010; 15:887-900.

789. Mauro-Lizcano . New method to assess mitophagy flux by flow
cytometry. Autophagy 2015; 11:in press.

790. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA.
Parkin and PINK1 function in a vesicular trafficking pathway regu-
lating mitochondrial quality control. EMBO J 2014; 33:282-95.

791. Ivatt RM, Sanchez-Martinez A, Godena VK, Brown S, Ziviani E,
Whitworth AJ. Genome-wide RNAi screen identifies the Parkinson
disease GWAS risk locus SREBF1 as a regulator of mitophagy. Proc
Natl Acad Sci USA 2014; 111:8494-9; http://dx.doi.org/10.1073/
pnas.1321207111.

792. Kim KY, Stevens MV, Akter MH, Rusk SE, Huang RJ, Cohen A,
Noguchi A, Springer D, Bocharov AV, Eggerman TL, et al. Parkin
is a lipid-responsive regulator of fat uptake in mice and mutant
human cells. J Clin Invest 2011; 121:3701-12; http://dx.doi.org/
10.1172/JCI44736.

793. Klinkenberg M, Gispert S, Dominguez-Bautista JA, Braun I, Aubur-
ger G, Jendrach M. Restriction of trophic factors and nutrients
induces PARKIN expression. Neurogenetics 2012; 13:9-21; http://
dx.doi.org/10.1007/s10048-011-0303-8.

794. Parganlija D, Klinkenberg M, Dominguez-Bautista J, Hetzel M, Gis-
pert S, Chimi MA, Drose S, Mai S, Brandt U, Auburger G, et al. Loss
of PINK1 Impairs Stress-Induced Autophagy and Cell Survival.
PloS One 2014; 9:e95288; http://dx.doi.org/10.1371/journal.
pone.0095288.

795. Lyamzaev KG, Nepryakhina OK, Saprunova VB, Bakeeva LE, Plet-
jushkina OY, Chernyak BV, Skulachev VP. Novel mechanism of
elimination of malfunctioning mitochondria (mitoptosis): forma-
tion of mitoptotic bodies and extrusion of mitochondrial material

from the cell. Biochim Biophys Acta 2008; 1777:817-25; http://dx.
doi.org/10.1016/j.bbabio.2008.03.027.

796. Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kine-
buchi M, Phan S, Zhou Y, Bihlmeyer NA, et al. Transcellular degra-
dation of axonal mitochondria. Proc Natl Acad Sci USA 2014;
111:9633-8; http://dx.doi.org/10.1073/pnas.1404651111.

797. Hara-Kuge S, Fujiki Y. The peroxin Pex14p is involved in LC3-
dependent degradation of mammalian peroxisomes. Exp Cell Res
2008; 314:3531-41; http://dx.doi.org/10.1016/j.yexcr.2008.09.015.

798. Ezaki J, Kominami E, Ueno T. Peroxisome degradation in mam-
mals. IUBMB Life 2011; 63:1001-8; http://dx.doi.org/10.1002/
iub.537.

799. Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A,
Ohsumi Y, Hanson MR, Mae T. Mobilization of rubisco and
stroma-localized fluorescent proteins of chloroplasts to the vacuole
by an ATG gene-dependent autophagic process. Plant Phys 2008;
148:142-55; http://dx.doi.org/10.1104/pp.108.122770.

800. Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T,
Makino A. Autophagy plays a role in chloroplast degradation
during senescence in individually darkened leaves. Plant Phys
2009; 149:885-93; http://dx.doi.org/10.1104/pp.108.130013.

801. Michaeli S, Honig A, Levanony H, Peled-Zehavi H, Galili G. Arabi-
dopsis ATG8-INTERACTING PROTEIN1 is involved in auto-
phagy-dependent vesicular trafficking of plastid proteins to the
vacuole. Plant Cell 2014; 26:4084-101; http://dx.doi.org/10.1105/
tpc.114.129999.

802. Spitzer C, Li F, Buono R, Roschzttardtz H, Chung T, Zhang M,
Osteryoung KW, Vierstra RD, Otegui MS. The endosomal protein
CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the
autophagic turnover of plastids in Arabidopsis. Plant Cell 2015;
27:391-402.

803. Changou CA, Chen YR, Xing L, Yen Y, Chuang FY, Cheng RH,
Bold RJ, Ann DK, Kung HJ. Arginine starvation-associated atypical
cellular death involves mitochondrial dysfunction, nuclear DNA
leakage, and chromatin autophagy. Proc Natl Acad Sci USA 2014;
111:14147-52; http://dx.doi.org/10.1073/pnas.1404171111.

804. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quan-
titative proteomics identifies NCOA4 as the cargo receptor mediat-
ing ferritinophagy. Nature 2014.

805. Kurz T, Eaton JW, Brunk UT. The role of lysosomes in iron metab-
olism and recycling. Int J Biochem Cell Biol 2011; 43:1686-97;
http://dx.doi.org/10.1016/j.biocel.2011.08.016.

806. Terman A, Kurz T. Lysosomal iron, iron chelation, and cell death.
Antioxid Redox Sign 2013; 18:888-98; http://dx.doi.org/10.1089/
ars.2012.4885.

807. Asano T, Komatsu M, Yamaguchi-Iwai Y, Ishikawa F, Mizushima
N, Iwai K. Distinct mechanisms of ferritin delivery to lysosomes in
iron-depleted and iron-replete cells. Mol Cell Biol 2011; 31:2040-
52; http://dx.doi.org/10.1128/MCB.01437-10.

808. Bauckman KA, Haller E, Flores I, Nanjundan M. Iron modulates
cell survival in a Ras- and MAPK-dependent manner in ovarian
cells. Cell Death Dis 2013; 4:e592; http://dx.doi.org/10.1038/
cddis.2013.87.

809. De Domenico I, Ward DM, Kaplan J. Autophagy, ferritin and iron
chelation. Autophagy 2010; 6:157; http://dx.doi.org/10.4161/
auto.6.1.10587.

810. Sturm B, Goldenberg H, Scheiber-Mojdehkar B. Transient increase
of the labile iron pool in HepG2 cells by intravenous iron prepara-
tions. Eur J Biochem 2003; 270:3731-8; http://dx.doi.org/10.1046/
j.1432-1033.2003.03759.x.

811. Nagl W. ‘’Plastolysomes’ - Plastids involved in the autolysis of the
embryo-suspensor in Phaseolus. Zeitschrift Pflanzenphysiol 1977;
85:45-51; http://dx.doi.org/10.1016/S0044-328X(77)80263-8.

812. Gartner PJ, Nagl W. Acid phosphatase activity in plastids (plastoly-
somes) of senescing embryo-suspensor cells. Planta 1980; 149:341-
9; http://dx.doi.org/10.1007/BF00571168.

813. van Doorn WG, Kirasak K, Sonong A, Srihiran Y, van Lent J, Ketsa
S. Do plastids in Dendrobium cv. Lucky Duan petals function simi-
lar to autophagosomes and autolysosomes? Autophagy 2011; 7:584-
97; http://dx.doi.org/10.4161/auto.7.6.15099.

AUTOPHAGY 145

http://dx.doi.org/10.1038/cdd.2012.2
http://dx.doi.org/10.1111/j.1600-0854.2009.00970.x
http://dx.doi.org/10.1111/j.1600-0854.2009.00970.x
http://dx.doi.org/10.1242/jcs.114819
http://dx.doi.org/10.1083/jcb.201001039
http://dx.doi.org/10.1098/rsob.120080
http://dx.doi.org/10.1093/hmg/ddr048
http://dx.doi.org/10.1073/pnas.1321207111
http://dx.doi.org/10.1073/pnas.1321207111
http://dx.doi.org/10.1172/JCI44736
http://dx.doi.org/10.1007/s10048-011-0303-8
http://dx.doi.org/10.1371/journal.pone.0095288
http://dx.doi.org/10.1371/journal.pone.0095288
http://dx.doi.org/10.1016/j.bbabio.2008.03.027
http://dx.doi.org/10.1073/pnas.1404651111
http://dx.doi.org/10.1016/j.yexcr.2008.09.015
http://dx.doi.org/10.1002/iub.537
http://dx.doi.org/10.1002/iub.537
http://dx.doi.org/10.1104/pp.108.122770
http://dx.doi.org/10.1104/pp.108.130013
http://dx.doi.org/10.1105/tpc.114.129999
http://dx.doi.org/10.1105/tpc.114.129999
http://dx.doi.org/10.1073/pnas.1404171111
http://dx.doi.org/10.1016/j.biocel.2011.08.016
http://dx.doi.org/10.1089/ars.2012.4885
http://dx.doi.org/10.1089/ars.2012.4885
http://dx.doi.org/10.1128/MCB.01437-10
http://dx.doi.org/10.1038/cddis.2013.87
http://dx.doi.org/10.1038/cddis.2013.87
http://dx.doi.org/10.4161/auto.6.1.10587
http://dx.doi.org/10.4161/auto.6.1.10587
http://dx.doi.org/10.1046/j.1432-1033.2003.03759.x
http://dx.doi.org/10.1046/j.1432-1033.2003.03759.x
http://dx.doi.org/10.1016/S0044-328X(77)80263-8
http://dx.doi.org/10.1007/BF00571168
http://dx.doi.org/10.4161/auto.7.6.15099


814. Parra-Vega V, Corral-Mart�ınez P, Rivas-Sendra A, Segui-Simarro
JM. Formation and excretion of autophagic plastids (plastolysomes)
in Brassica napus embryogenic microspores. Front Plant Sci 2015;
6:94.

815. Gonzalez-Melendi P, Uyttewaal M, Morcillo CN, Hernandez Mora
JR, Fajardo S, Budar F, Lucas MM. A light and electron microscopy
analysis of the events leading to male sterility in Ogu-INRA CMS of
rapeseed (Brassica napus). J Exp Bot 2008; 59:827-38; http://dx.doi.
org/10.1093/jxb/erm365.

816. Newcomb EH. Fine structure of protein-storing plastids in bean
root tips. J Cell Biol 1967; 33:143-63; http://dx.doi.org/10.1083/
jcb.33.1.143.

817. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M,
Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metab-
olism. Nature 2009; 458:1131-5; http://dx.doi.org/10.1038/
nature07976.

818. Koenig U, Fobker M, Lengauer B, Brandstetter M, Resch GP, Gro-
ger M, Plenz G, Pammer J, Barresi C, Hartmann C, et al. Autophagy
facilitates secretion and protects against degeneration of the Har-
derian gland. Autophagy 2015; 11:298-313; http://dx.doi.org/
10.4161/15548627.2014.978221.

819. Shi Y, Han JJ, Tennakoon JB, Mehta FF, Merchant FA, Burns AR,
Howe MK, McDonnell DP, Frigo DE. Androgens promote prostate
cancer cell growth through induction of autophagy. Mol Endocrinol
2013; 27:280-95; http://dx.doi.org/10.1210/me.2012-1260.

820. O’Rourke EJ, Soukas AA, Carr CE, Ruvkun G. C. elegans major fats
are stored in vesicles distinct from lysosome-related organelles. Cell
Metab 2009; 10:430-5; http://dx.doi.org/10.1016/j.cmet.2009.10.002.

821. Inokuchi-Shimizu S, Park EJ, Roh YS, Yang L, Zhang B, Song J,
Liang S, Pimienta M, Taniguchi K, Wu X, et al. TAK1-mediated
autophagy and fatty acid oxidation prevent hepatosteatosis and
tumorigenesis. J Clin Invest 2014; 124:3566-78; http://dx.doi.org/
10.1172/JCI74068.

822. Lee JH, Budanov AV, Talukdar S, Park EJ, Park HL, Park HW, Ban-
dyopadhyay G, Li N, Aghajan M, Jang I, et al. Maintenance of meta-
bolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 2012;
16:311-21; http://dx.doi.org/10.1016/j.cmet.2012.08.004.

823. Settembre C, De Cegli R, Mansueto G, Saha PK, Vetrini F, Visvikis
O, Huynh T, Carissimo A, Palmer D, Klisch TJ, et al. TFEB controls
cellular lipid metabolism through a starvation-induced autoregula-
tory loop. Nat Cell Biol 2013; 15:647-58; http://dx.doi.org/10.1038/
ncb2718.

824. Cuervo AM. Preventing lysosomal fat indigestion. Nat Cell Biol
2013; 15:565-7; http://dx.doi.org/10.1038/ncb2778.

825. Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the
lysosome: a control centre for cellular clearance and energy metabo-
lism. Nature Rev Mol Cell Biol 2013; 14:283-96; http://dx.doi.org/
10.1038/nrm3565.

826. Chiang PM, Ling J, Jeong YH, Price DL, Aja SM, Wong PC. Dele-
tion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity,
and alters body fat metabolism. Proc Natl Acad Sci USA 2010;
107:16320-4; http://dx.doi.org/10.1073/pnas.1002176107.

827. Heck MV, Azizov M, Stehning T, Walter M, Kedersha N,
Auburger G. Dysregulated expression of lipid storage and mem-
brane dynamics factors in Tia1 knockout mouse nervous tissue.
Neurogenetics 2014; 15:135-44; http://dx.doi.org/10.1007/
s10048-014-0397-x.

828. Popovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I.
Rab GTPase-activating proteins in autophagy: regulation of endo-
cytic and autophagy pathways by direct binding to human ATG8
modifiers. Mol Cell Biol 2012; 32:1733-44; http://dx.doi.org/
10.1128/MCB.06717-11.

829. Hung YH, Chen LM, Yang JY, Yang WY. Spatiotemporally con-
trolled induction of autophagy-mediated lysosome turnover. Nat
Commun 2013; 4:2111; http://dx.doi.org/10.1038/ncomms3111.

830. Maejima I, Takahashi A, Omori H, Kimura T, Takabatake Y, Saitoh
T, Yamamoto A, Hamasaki M, Noda T, Isaka Y, et al. Autophagy
sequesters damaged lysosomes to control lysosomal biogenesis and
kidney injury. EMBO J 2013; 32:2336-47; http://dx.doi.org/10.1038/
emboj.2013.171.

831. De Meyer GR, Grootaert MO, Michiels CF, Kurdi A, Schrijvers DM,
Martinet W. Autophagy in vascular disease. Circ Res 2015; 116:468-
79; http://dx.doi.org/10.1161/CIRCRESAHA.116.303804.

832. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclero-
sis 1999; 142:1-28; http://dx.doi.org/10.1016/S0021-9150(98)00196-
8.

833. He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, Le YZ, Xie Z. 7-
Ketocholesterol induces autophagy in vascular smooth muscle cells
through Nox4 and Atg4B. Am J Pathol 2013; 183:626-37; http://dx.
doi.org/10.1016/j.ajpath.2013.04.028.

834. Martinet W, Schrijvers DM, Timmermans JP, Bult H. Interactions
between cell death induced by statins and 7-ketocholesterol in rab-
bit aorta smooth muscle cells. Br J Pharmacol 2008; 154:1236-46;
http://dx.doi.org/10.1038/bjp.2008.181.

835. Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M,
O’Brien N, Lizard G. Involvement of oxysterols in age-related dis-
eases and ageing processes. Ageing Res Rev 2014; 18:148-62; http://
dx.doi.org/10.1016/j.arr.2014.09.006.

836. Monier S, Samadi M, Prunet C, Denance M, Laubriet A, Athias A,
Berthier A, Steinmetz E, Jurgens G, Negre-Salvayre A, et al.
Impairment of the cytotoxic and oxidative activities of 7 beta-
hydroxycholesterol and 7-ketocholesterol by esterification with ole-
ate. Biochem Biophys Res Commun 2003; 303:814-24; http://dx.
doi.org/10.1016/S0006-291X(03)00412-1.

837. Nury T, Zarrouk A, Mackrill JJ, Samadi M, Durand P, Riedinger
JM, Doria M, Vejux A, Limagne E, Delmas D, et al. Induction of
oxiapoptophagy on 158N murine oligodendrocytes treated by 7-
ketocholesterol-, 7beta-hydroxycholesterol-, or 24(S)-hydroxycho-
lesterol: Protective effects of alpha-tocopherol and docosahexaenoic
acid (DHA; C22:6 n-3). Steroids 2015; 99:194-203; http://dx.doi.
org/10.1016/j.steroids.2015.02.003.

838. Nury T, Zarrouk A, Vejux A, Doria M, Riedinger JM, Delage-Mour-
roux R, Lizard G. Induction of oxiapoptophagy, a mixed mode of
cell death associated with oxidative stress, apoptosis and autophagy,
on 7-ketocholesterol-treated 158N murine oligodendrocytes:
impairment by alpha-tocopherol. Biochem Biophys Res Commun
2014; 446:714-9; http://dx.doi.org/10.1016/j.bbrc.2013.11.081.

839. Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y,
Nakatogawa H. Receptor-mediated selective autophagy degrades
the endoplasmic reticulum and the nucleus. Nature 2015; 522:359-
62; http://dx.doi.org/10.1038/nature14506.

840. Yorimitsu T, Nair U, Yang Z, Klionsky DJ. Endoplasmic reticulum
stress triggers autophagy. J Biol Chem 2006; 281:30299-304; http://
dx.doi.org/10.1074/jbc.M607007200.

841. Schuck S, Gallagher CM, Walter P. ER-phagy mediates selective
degradation of endoplasmic reticulum independently of the core
autophagy machinery. J Cell Sci 2014; 127:4078-88; http://dx.doi.
org/10.1242/jcs.154716.

842. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of
the endoplasmic reticulum. Autophagy 2007; 3:285-7; http://dx.doi.
org/10.4161/auto.3930.

843. Klionsky DJ, Cuervo AM, Dunn WA, Jr., Levine B, van der Klei I,
Seglen PO. How shall I eat thee? Autophagy 2007; 3:413-6; http://
dx.doi.org/10.4161/auto.4377.

844. Bolender RP, Weibel ER. A morphometric study of the removal of
phenobarbital-induced membranes from hepatocytes after cessation
of threatment. J Cell Biol 1973; 56:746-61; http://dx.doi.org/
10.1083/jcb.56.3.746.

845. Khaminets A, Heinrich T, Mari M, Grumati P, Huebner AK,
Akutsu M, Liebmann L, Stolz A, Nietzsche S, Koch N, et al. Regula-
tion of endoplasmic reticulum turnover by selective autophagy.
Nature 2015; 522:354-8; http://dx.doi.org/10.1038/nature14498.

846. Lipatova Z, Segev N. A Role for Macro-ER-Phagy in ER Quality
Control. PLoS Genet 2015; 11:e1005390.

847. Kraft C, Deplazes A, Sohrmann M, Peter M. Mature ribosomes are
selectively degraded upon starvation by an autophagy pathway
requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 2008;
10:602-10; http://dx.doi.org/10.1038/ncb1723.

848. Ossareh-Nazari B, Nino CA, Bengtson MH, Lee JW, Joazeiro CA,
Dargemont C. Ubiquitylation by the Ltn1 E3 ligase protects 60S

146 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1093/jxb/erm365
http://dx.doi.org/10.1083/jcb.33.1.143
http://dx.doi.org/10.1083/jcb.33.1.143
http://dx.doi.org/10.1038/nature07976
http://dx.doi.org/10.1038/nature07976
http://dx.doi.org/10.4161/15548627.2014.978221
http://dx.doi.org/10.1210/me.2012-1260
http://dx.doi.org/10.1016/j.cmet.2009.10.002
http://dx.doi.org/10.1172/JCI74068
http://dx.doi.org/10.1016/j.cmet.2012.08.004
http://dx.doi.org/10.1038/ncb2718
http://dx.doi.org/10.1038/ncb2718
http://dx.doi.org/10.1038/ncb2778
http://dx.doi.org/10.1038/nrm3565
http://dx.doi.org/10.1073/pnas.1002176107
http://dx.doi.org/10.1007/s10048-014-0397-x
http://dx.doi.org/10.1007/s10048-014-0397-x
http://dx.doi.org/10.1128/MCB.06717-11
http://dx.doi.org/10.1038/ncomms3111
http://dx.doi.org/10.1038/emboj.2013.171
http://dx.doi.org/10.1038/emboj.2013.171
http://dx.doi.org/10.1161/CIRCRESAHA.116.303804
http://dx.doi.org/10.1016/S0021-9150(98)00196-8
http://dx.doi.org/10.1016/S0021-9150(98)00196-8
http://dx.doi.org/10.1016/j.ajpath.2013.04.028
http://dx.doi.org/10.1038/bjp.2008.181
http://dx.doi.org/10.1016/j.arr.2014.09.006
http://dx.doi.org/10.1016/S0006-291X(03)00412-1
http://dx.doi.org/10.1016/j.steroids.2015.02.003
http://dx.doi.org/10.1016/j.bbrc.2013.11.081
http://dx.doi.org/10.1038/nature14506
http://dx.doi.org/10.1074/jbc.M607007200
http://dx.doi.org/10.1242/jcs.154716
http://dx.doi.org/10.4161/auto.3930
http://dx.doi.org/10.4161/auto.4377
http://dx.doi.org/10.1083/jcb.56.3.746
http://dx.doi.org/10.1038/nature14498
http://dx.doi.org/10.1038/ncb1723


ribosomes from starvation-induced selective autophagy. J Cell Biol
2014; 204:909-17; http://dx.doi.org/10.1083/jcb.201308139.

849. Derrien B, Baumberger N, Schepetilnikov M, Viotti C, De Cillia J,
Ziegler-Graff V, Isono E, Schumacher K, Genschik P. Degradation
of the antiviral component ARGONAUTE1 by the autophagy path-
way. Proc Natl Acad Sci USA 2012; 109:15942-6; http://dx.doi.org/
10.1073/pnas.1209487109.

850. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O.
Selective autophagy degrades DICER and AGO2 and regulates
miRNA activity. Nat Cell Biol 2012; 14:1314-21; http://dx.doi.org/
10.1038/ncb2611.

851. Zhang P, Zhang H. Autophagy modulates miRNA-mediated gene
silencing and selectively degrades AIN-1/GW182 in C. elegans.
EMBO Rep 2013; 14:568-76; http://dx.doi.org/10.1038/embor.
2013.53.

852. Brown CR, Chiang H-L. A selective autophagy pathway that
degrades gluconeogenic enzymes during catabolite inactivation.
Commun Integr Biol 2009; 2:177-83; http://dx.doi.org/10.4161/
cib.7711.

853. Schule T, Rose M, Entian KD, Thumm M, Wolf DH. Ubc8p func-
tions in catabolite degradation of fructose-1, 6-bisphosphatase in
yeast. EMBO J 2000; 19:2161-7; http://dx.doi.org/10.1093/emboj/
19.10.2161.

854. Schork SM, Thumm M, Wolf DH. Catabolite inactivation of fruc-
tose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation
occurs via the ubiquitin pathway. J Biol Chem 1995; 270:26446-50;
http://dx.doi.org/10.1074/jbc.270.44.26446.

855. Regelmann J, Schule T, Josupeit FS, Horak J, Rose M, Entian KD,
Thumm M, Wolf DH. Catabolite degradation of fructose-1,6-
bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-
wide screen identifies eight novel GID genes and indicates the exis-
tence of two degradation pathways. Mol Biol Cell 2003; 14:1652-63;
http://dx.doi.org/10.1091/mbc.E02-08-0456.

856. Hung GC, Brown CR, Wolfe AB, Liu J, Chiang HL. Degradation of
the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate
dehydrogenase is mediated by distinct proteolytic pathways and sig-
naling events. J Biol Chem 2004; 279:49138-50; http://dx.doi.org/
10.1074/jbc.M404544200.

857. Chiang H-L, Schekman R, Hamamoto S. Selective uptake of cyto-
solic, peroxisomal, and plasma membrane proteins into the yeast
lysosome for degradation. J Biol Chem 1996; 271:9934-41; http://
dx.doi.org/10.1074/jbc.271.50.32359.

858. Huang PH, Chiang H-L. Identification of novel vesicles in the cyto-
sol to vacuole protein degradation pathway. J Cell Biol 1997;
136:803-10; http://dx.doi.org/10.1083/jcb.136.4.803.

859. Alibhoy AA, Giardina BJ, Dunton DD, Chiang H-L. Vid30 is
required for the association of Vid vesicles and actin patches in the
vacuole import and degradation pathway. Autophagy 2012; 8:29-46.

860. Brown CR, Wolfe AB, Cui D, Chiang H-L. The vacuolar import and
degradation pathway merges with the endocytic pathway to deliver
fructose-1,6-bisphosphatase to the vacuole for degradation. J Biol
Chem 2008; 283:26116-27; http://dx.doi.org/10.1074/jbc.M709922200.

861. Chiang MC, Chiang H-L. Vid24p, a novel protein localized to the
fructose-1, 6-bisphosphatase-containing vesicles, regulates targeting
of fructose-1,6-bisphosphatase from the vesicles to the vacuole for
degradation. J Cell Biol 1998; 140:1347-56; http://dx.doi.org/
10.1083/jcb.140.6.1347.

862. Vida TA, Emr SD. A new vital stain for visualizing vacuolar mem-
brane dynamics and endocytosis in yeast. J Cell Biol 1995; 128:779-
92; http://dx.doi.org/10.1083/jcb.128.5.779.

863. Brown CR, Hung GC, Dunton D, Chiang H-L. The TOR complex 1
is distributed in endosomes and in retrograde vesicles that form
from the vacuole membrane and plays an important role in the vac-
uole import and degradation pathway. J Biol Chem 2010;
285:23359-70; http://dx.doi.org/10.1074/jbc.M109.075143.

864. Brown CR, Dunton D, Chiang H-L. The vacuole import and degra-
dation pathway utilizes early steps of endocytosis and actin poly-
merization to deliver cargo proteins to the vacuole for degradation.
J Biol Chem 2010; 285:1516-28; http://dx.doi.org/10.1074/jbc.
M109.028241.

865. Webster P. Cytoplasmic bacteria and the autophagic pathway.
Autophagy 2006; 2:159-61; http://dx.doi.org/10.4161/auto.2826.

866. Dubuisson JF, Swanson MS. Mouse infection by Legionella, a model
to analyze autophagy. Autophagy 2006; 2:179-82; http://dx.doi.org/
10.4161/auto.2831.

867. Jordan TX, Randall G. Manipulation or capitulation: virus interac-
tions with autophagy. Microbes Infect 2011.

868. Knodler LA, Celli J. Eating the strangers within: host control of
intracellular bacteria via xenophagy. Cell Microbiol 2011; 13:1319-
27; http://dx.doi.org/10.1111/j.1462-5822.2011.01632.x.

869. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and
inflammation. Nature 2011; 469:323-35; http://dx.doi.org/10.1038/
nature09782.

870. Deretic V. Autophagy in immunity and cell-autonomous defense
against intracellular microbes. Immunol Rev 2011; 240:92-104;
http://dx.doi.org/10.1111/j.1600-065X.2010.00995.x.

871. Dong X, Levine B. Autophagy and viruses: adversaries or allies?
J Innate Immun 2013; 5:480-93; http://dx.doi.org/10.1159/
000346388.

872. Wang C, Symington JW, Mysorekar IU. ATG16L1 and pathogene-
sis of urinary tract infections. Autophagy 2012; 8:1693-4; http://dx.
doi.org/10.4161/auto.21600.

873. Choy A, Roy CR. Autophagy and bacterial infection: an evolving
arms race. Trends Microbiol 2013; 21:451-6; http://dx.doi.org/
10.1016/j.tim.2013.06.009.

874. Mostowy S, Cossart P. Bacterial autophagy: restriction or promo-
tion of bacterial replication? Trends Cell Biol 2012; 22:283-91;
http://dx.doi.org/10.1016/j.tcb.2012.03.006.

875. Kageyama S, Omori H, Saitoh T, Sone T, Guan JL, Akira S, Ima-
moto F, Noda T, Yoshimori T. The LC3 recruitment mechanism is
separate from Atg9L1-dependent membrane formation in the auto-
phagic response against Salmonella. Mol Biol Cell 2011; 22:2290-
300; http://dx.doi.org/10.1091/mbc.E10-11-0893.

876. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F.
Galectin 8 targets damaged vesicles for autophagy to defend cells
against bacterial invasion. Nature 2012; 482:414-8; http://dx.doi.
org/10.1038/nature10744.

877. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell
JH. The adaptor protein p62/SQSTM1 targets invading bacteria to
the autophagy pathway. J Immunol 2009; 183:5909-16; http://dx.
doi.org/10.4049/jimmunol.0900441.

878. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F.
The TBK1 adaptor and autophagy receptor NDP52 restricts the
proliferation of ubiquitin-coated bacteria. Nat Immunol 2009;
10:1215-21; http://dx.doi.org/10.1038/ni.1800.

879. Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Ken-
drick-Jones J, Buss F. The autophagy receptor TAX1BP1 and the
molecular motor myosin VI are required for clearance of Salmo-
nella Typhimurium by autophagy. PLoS Pathog 2015;11:e1005174.

880. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR,
Richter B, Korac J, Waidmann O, Choudhary C, et al. Phosphoryla-
tion of the autophagy receptor optineurin restricts Salmonella
growth. Science 2011; 333:228-33; http://dx.doi.org/10.1126/
science.1205405.

881. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magal-
haes MA, Glogauer M, Grinstein S, Brumell JH. Activation of anti-
bacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA
2009; 106:6226-31; http://dx.doi.org/10.1073/pnas.0811045106.

882. Rich KA, Burkett C, Webster P. Cytoplasmic bacteria can be targets
for autophagy. Cell Microbiol 2003; 5:455-68; http://dx.doi.org/
10.1046/j.1462-5822.2003.00292.x.

883. Shahnazari S, Brumell JH. Mechanisms and consequences of bacte-
rial targeting by the autophagy pathway. Current opinion in micro-
biology 2011; 14:68-75; http://dx.doi.org/10.1016/j.mib.2010.11.001.

884. Klionsky DJ, Eskelinen EL, Deretic V. Autophagosomes, phago-
somes, autolysosomes, phagolysosomes, autophagolysosomes…
wait, I’m confused. Autophagy 2014; 10:549-51; http://dx.doi.org/
10.4161/auto.28448.

885. Li X, Ye Y, Zhou X, Huang C, Wu M. Atg7 enhances host defense
against infection via downregulation of superoxide but upregulation

AUTOPHAGY 147

http://dx.doi.org/10.1083/jcb.201308139
http://dx.doi.org/10.1073/pnas.1209487109
http://dx.doi.org/10.1038/ncb2611
http://dx.doi.org/10.1038/embor.<?A3B2 RE3J?>2013.53
http://dx.doi.org/10.1038/embor.<?A3B2 RE3J?>2013.53
http://dx.doi.org/10.4161/cib.7711
http://dx.doi.org/10.4161/cib.7711
http://dx.doi.org/10.1093/emboj/19.10.2161
http://dx.doi.org/10.1093/emboj/19.10.2161
http://dx.doi.org/10.1074/jbc.270.44.26446
http://dx.doi.org/10.1091/mbc.E02-08-0456
http://dx.doi.org/10.1074/jbc.M404544200
http://dx.doi.org/10.1074/jbc.271.50.32359
http://dx.doi.org/10.1083/jcb.136.4.803
http://dx.doi.org/10.1074/jbc.M709922200
http://dx.doi.org/10.1083/jcb.140.6.1347
http://dx.doi.org/10.1083/jcb.128.5.779
http://dx.doi.org/10.1074/jbc.M109.075143
http://dx.doi.org/10.1074/jbc.M109.028241
http://dx.doi.org/10.1074/jbc.M109.028241
http://dx.doi.org/10.4161/auto.2826
http://dx.doi.org/10.4161/auto.2831
http://dx.doi.org/10.1111/j.1462-5822.2011.01632.x
http://dx.doi.org/10.1038/nature09782
http://dx.doi.org/10.1038/nature09782
http://dx.doi.org/10.1111/j.1600-065X.2010.00995.x
http://dx.doi.org/10.1159/000346388
http://dx.doi.org/10.1159/000346388
http://dx.doi.org/10.4161/auto.21600
http://dx.doi.org/10.1016/j.tim.2013.06.009
http://dx.doi.org/10.1016/j.tcb.2012.03.006
http://dx.doi.org/10.1091/mbc.E10-11-0893
http://dx.doi.org/10.1038/nature10744
http://dx.doi.org/10.4049/jimmunol.0900441
http://dx.doi.org/10.1038/ni.1800
http://dx.doi.org/10.1126/science.1205405
http://dx.doi.org/10.1126/science.1205405
http://dx.doi.org/10.1073/pnas.0811045106
http://dx.doi.org/10.1046/j.1462-5822.2003.00292.x
http://dx.doi.org/10.1016/j.mib.2010.11.001
http://dx.doi.org/10.4161/auto.28448


of nitric oxide. J Immunol 2015; 194:1112-21; http://dx.doi.org/
10.4049/jimmunol.1401958.

886. Ye Y, Tan S, Zhou X, Li X, Jundt MC, Lichter N, Hidebrand A,
Dhasarathy A, Wu M. Inhibition of p-IkappaBalpha Ubiquitylation
by Autophagy-Related Gene 7 to Regulate Inflammatory Responses
to Bacterial Infection. J Infect Dis 2015; 212:1816-26.

887. Yuan K, Huang C, Fox J, Laturnus D, Carlson E, Zhang B, Yin Q,
Gao H, Wu M. Autophagy plays an essential role in the clearance of
Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 2012;
125:507-15; http://dx.doi.org/10.1242/jcs.094573.

888. Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ,
Thomas BJ, Malosse C, Gantier MP, Casillas LN, et al. The immune
receptor NOD1 and kinase RIP2 interact with bacterial peptidogly-
can on early endosomes to promote autophagy and inflammatory
signaling. Cell Host Microbe 2014; 15:623-35; http://dx.doi.org/
10.1016/j.chom.2014.04.001.

889. Kaparakis-Liaskos M, Ferrero RL. Immune modulation by bacterial
outer membrane vesicles. Nature reviews Immunology 2015;
15:375-87; http://dx.doi.org/10.1038/nri3837.

890. McLean JE, Wudzinska A, Datan E, Quaglino D, Zakeri Z. Flavivi-
rus NS4A-induced autophagy protects cells against death and
enhances virus replication. J Biol Chem 2011; 286:22147-59; http://
dx.doi.org/10.1074/jbc.M110.192500.

891. Mao Y, Da L, Tang H, Yang J, Lei Y, Tiollais P, Li T, Zhao M. Hepa-
titis B virus X protein reduces starvation-induced cell death through
activation of autophagy and inhibition of mitochondrial apoptotic
pathway. Biochem Biophys Res Commun 2011; 415:68-74; http://
dx.doi.org/10.1016/j.bbrc.2011.10.013.

892. Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W,
Burns D, Leib DA, Levine B. HSV-1 ICP34.5 confers neuroviru-
lence by targeting the Beclin 1 autophagy protein. Cell Host
Microbe 2007; 1:23-35; http://dx.doi.org/10.1016/j.chom.2006.
12.001.

893. Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA. Analysis
of the role of autophagy in replication of herpes simplex virus in cell
culture. J Virol 2007; 81:12128-34; http://dx.doi.org/10.1128/
JVI.01356-07.

894. Leib DA, Alexander DE, Cox D, Yin J, Ferguson TA. Interaction of
ICP34.5 with Beclin 1 modulates herpes simplex virus type 1 patho-
genesis through control of CD4C T-cell responses. J Virol 2009;
83:12164-71; http://dx.doi.org/10.1128/JVI.01676-09.

895. Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A. A neuron-specific
role for autophagy in antiviral defense against herpes simplex virus.
Cell Host Microbe 2012; 12:334-45; http://dx.doi.org/10.1016/j.
chom.2012.07.013.

896. Liang CEX, Jung JU. Downregulation of autophagy by herpesvirus
Bcl-2 homologs. Autophagy 2008; 4:268-72; http://dx.doi.org/
10.4161/auto.5210.

897. Hernaez B, Cabezas M, Munoz-Moreno R, Galindo I, Cuesta-Geijo
MA, Alonso C. A179L, a new viral Bcl2 homolog targeting Beclin 1
autophagy related protein. Curr Mol Med 2013; 13:305-16; http://
dx.doi.org/10.2174/156652413804810736.

898. Alonso C, Galindo I, Cuesta-Geijo MA, Cabezas M, Hernaez B,
Munoz-Moreno R. African swine fever virus-cell interactions: from
virus entry to cell survival. Virus Res 2013; 173:42-57; http://dx.doi.
org/10.1016/j.virusres.2012.12.006.

899. Galindo I, Hernaez B, Diaz-Gil G, Escribano JM, Alonso C. A179L,
a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery
and its upstream BH3 activators with selective binding restrictions
for Bid and Noxa. Virology 2008; 375:561-72; http://dx.doi.org/
10.1016/j.virol.2008.01.050.

900. Gannage M, Ramer PC, Munz C. Targeting Beclin 1 for viral sub-
version of macroautophagy. Autophagy 2010; 6:166-7; http://dx.
doi.org/10.4161/auto.6.1.10624.

901. Killian MS. Dual role of autophagy in HIV-1 replication and patho-
genesis. AIDS Res Ther 2012; 9:16; http://dx.doi.org/10.1186/1742-
6405-9-16.

902. Kyei GB, Dinkins C, Davis AS, Roberts E, Singh SB, Dong C, Wu L,
Kominami E, Ueno T, Yamamoto A, et al. Autophagy pathway
intersects with HIV-1 biosynthesis and regulates viral yields in

macrophages. J Cell Biol 2009; 186:255-68; http://dx.doi.org/
10.1083/jcb.200903070.

903. Nardacci R, Amendola A, Ciccosanti F, Corazzari M, Esposito V,
Vlassi C, Taibi C, Fimia GM, Del Nonno F, Ippolito G, et al. Auto-
phagy plays an important role in the containment of HIV-1 in non-
progressor-infected patients. Autophagy 2014; 10:1167-78; http://
dx.doi.org/10.4161/auto.28678.

904. Zhang H, Monken CE, Zhang Y, Lenard J, Mizushima N, Lattime
EC, Jin S. Cellular autophagy machinery is not required for vaccinia
virus replication and maturation. Autophagy 2006; 2:91-5; http://
dx.doi.org/10.4161/auto.2.2.2297.

905. Heaton NS, Randall G. Dengue virus and autophagy. Viruses 2011;
3:1332-41; http://dx.doi.org/10.3390/v3081332.

906. Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy
machinery is required to initiate hepatitis C virus replication. Proc
Natl Acad Sci USA 2009; 106:14046-51; http://dx.doi.org/10.1073/
pnas.0907344106.

907. Collins CA, De Maziere A, van Dijk S, Carlsson F, Klumperman J,
Brown EJ. Atg5-independent sequestration of ubiquitinated myco-
bacteria. PLoS Pathog 2009; 5:e1000430; http://dx.doi.org/10.1371/
journal.ppat.1000430.

908. Moreau K, Lacas-Gervais S, Fujita N, Sebbane F, Yoshimori T,
Simonet M, Lafont F. Autophagosomes can support Yersinia pseu-
dotuberculosis replication in macrophages. Cell Microbiol 2010;
12:1108-23; http://dx.doi.org/10.1111/j.1462-5822.2010.01456.x.

909. Grasso D, Ropolo A, Lo Re A, Boggio V, Molejon MI, Iovanna JL,
Gonzalez CD, Urrutia R, Vaccaro MI. Zymophagy, a novel selective
autophagy pathway mediated by VMP1-USP9x-p62, prevents pan-
creatic cell death. J Biol Chem 2011; 286:8308-24; http://dx.doi.org/
10.1074/jbc.M110.197301.

910. Gorbunov NV, Kiang JG. Autophagy-Mediated Innate Defense
Mechanism in Crypt Paneth Cells Responding to Impairment of
Small Intestine Barrier after Total-Body Gamma-Photon Irradia-
tion. In: Gorbunov NV, ed. Autophagy: Principles, Regulation and
Roles in Disease. Hauppauge, NY: NOVA SCIENCE PUBLISHERS,
INC., 2011:61-84.

911. Seglen PO, Gordon PB, Tolleshaug H, Høyvik H. Use of [3H]raffi-
nose as a specific probe of autophagic sequestration. Exp Cell Res
1986; 162:273-7.

912. Kopitz J, Kisen GO, Gordon PB, Bohley P, Seglen PO. Nonselective
autophagy of cytosolic enzymes by isolated rat hepatocytes. J Cell
Biol 1990; 111:941-53; http://dx.doi.org/10.1083/jcb.111.3.941.

913. Gordon PB, Seglen PO. Autophagic sequestration of [14C]sucrose,
introduced into rat hepatocytes by reversible electro-permeabiliza-
tion. Exp Cell Res 1982; 142:1-14; http://dx.doi.org/10.1016/0014-
4827(82)90402-5.

914. Seglen PO, Luhr M, Mills IG, Saetre F, Szalai P, Engedal N. Macro-
autophagic cargo sequestration assays. Methods 2015; 75:25-36;
http://dx.doi.org/10.1016/j.ymeth.2014.12.021.

915. Boland B, Smith DA, Mooney D, Jung SS, Walsh DM, Platt FM.
Macroautophagy is not directly involved in the metabolism of amy-
loid precursor protein. J Biol Chem 2010; 285:37415-26; http://dx.
doi.org/10.1074/jbc.M110.186411.

916. Nair U, Thumm M, Klionsky DJ, Krick R. GFP-Atg8 protease pro-
tection as a tool to monitor autophagosome biogenesis. Autophagy
2011; 7:1546-50; http://dx.doi.org/10.4161/auto.7.12.18424.

917. Plomp PJ, Gordon PB, Meijer AJ, Høyvik H, Seglen PO. Energy
dependence of different steps in the autophagic-lysosomal pathway.
J Biol Chem 1989; 264:6699-704.

918. Høyvik H, Gordon PB, Berg TO, Strømhaug PE, Seglen PO. Inhibi-
tion of autophagic-lysosomal delivery and autophagic lactolysis by
asparagine. J Cell Biol 1991; 113:1305-12; http://dx.doi.org/10.1083/
jcb.113.6.1305.

919. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ. Tracker dyes
to probe mitochondrial autophagy (mitophagy) in rat hepatocytes.
Autophagy 2006; 2:39-46; http://dx.doi.org/10.4161/auto.2229.

920. Lorenz H, Hailey DW, Lippincott-Schwartz J. Fluorescence protease
protection of GFP chimeras to reveal protein topology and subcel-
lular localization. Nat Methods 2006; 3:205-10; http://dx.doi.org/
10.1038/nmeth857.

148 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4049/jimmunol.1401958
http://dx.doi.org/10.1242/jcs.094573
http://dx.doi.org/10.1016/j.chom.2014.04.001
http://dx.doi.org/10.1038/nri3837
http://dx.doi.org/10.1074/jbc.M110.192500
http://dx.doi.org/10.1016/j.bbrc.2011.10.013
http://dx.doi.org/10.1016/j.chom.2006.<?A3B2 RE3J?>12.001
http://dx.doi.org/10.1016/j.chom.2006.<?A3B2 RE3J?>12.001
http://dx.doi.org/10.1128/JVI.01356-07
http://dx.doi.org/10.1128/JVI.01356-07
http://dx.doi.org/10.1128/JVI.01676-09
http://dx.doi.org/10.1016/j.chom.2012.07.013
http://dx.doi.org/10.1016/j.chom.2012.07.013
http://dx.doi.org/10.4161/auto.5210
http://dx.doi.org/10.2174/156652413804810736
http://dx.doi.org/10.1016/j.virusres.2012.12.006
http://dx.doi.org/10.1016/j.virol.2008.01.050
http://dx.doi.org/10.4161/auto.6.1.10624
http://dx.doi.org/10.1186/1742-6405-9-16
http://dx.doi.org/10.1186/1742-6405-9-16
http://dx.doi.org/10.1083/jcb.200903070
http://dx.doi.org/10.4161/auto.28678
http://dx.doi.org/10.4161/auto.2.2.2297
http://dx.doi.org/10.3390/v3081332
http://dx.doi.org/10.1073/pnas.0907344106
http://dx.doi.org/10.1073/pnas.0907344106
http://dx.doi.org/10.1371/journal.ppat.1000430
http://dx.doi.org/10.1371/journal.ppat.1000430
http://dx.doi.org/10.1111/j.1462-5822.2010.01456.x
http://dx.doi.org/10.1074/jbc.M110.197301
http://dx.doi.org/10.1083/jcb.111.3.941
http://dx.doi.org/10.1016/0014-4827(82)90402-5
http://dx.doi.org/10.1016/0014-4827(82)90402-5
http://dx.doi.org/10.1016/j.ymeth.2014.12.021
http://dx.doi.org/10.1074/jbc.M110.186411
http://dx.doi.org/10.4161/auto.7.12.18424
http://dx.doi.org/10.1083/jcb.113.6.1305
http://dx.doi.org/10.1083/jcb.113.6.1305
http://dx.doi.org/10.4161/auto.2229
http://dx.doi.org/10.1038/nmeth857


921. McNeil PL, Murphy RF, Lanni F, Taylor DL. A method for incorpo-
rating macromolecules into adherent cells. J Cell Biol 1984;
98:1556-64; http://dx.doi.org/10.1083/jcb.98.4.1556.

922. Kim J, Huang WP, Stromhaug PE, Klionsky DJ. Convergence of
multiple autophagy and cytoplasm to vacuole targeting components
to a perivacuolar membrane compartment prior to de novo vesicle
formation. J Biol Chem 2002; 277:763-73; http://dx.doi.org/
10.1074/jbc.M109134200.

923. Velikkakath AK, Nishimura T, Oita E, Ishihara N, Mizushima N.
Mammalian Atg2 proteins are essential for autophagosome forma-
tion and important for regulation of size and distribution of lipid
droplets. Mol Biol Cell 2012; 23:896-909; http://dx.doi.org/10.1091/
mbc.E11-09-0785.

924. Kov�acs AL, Laszlo L, Kov�acs J. Effect of amino acids and cyclohexi-
mide on changes caused by vinblastine, leupeptin and methylamine
in the autophagic/lysosomal system of mouse hepatocytes in vivo.
Exp Cell Res 1985; 157:83-94; http://dx.doi.org/10.1016/0014-4827
(85)90154-5.

925. Swanson MS, Byrne BG, Dubuisson JF. Kinetic analysis of autopha-
gosome formation and turnover in primary mouse macrophages.
Methods Enzymol 2009; 452:383-402; http://dx.doi.org/10.1016/
S0076-6879(08)03623-9.

926. Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of
mTOR (mammalian target of rapamycin) signalling by intracellular
amino acid availability. Biochem J 2003; 372:555-66; http://dx.doi.
org/10.1042/bj20021266.

927. Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D,
Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, et al.
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol
Cell 2007; 26:663-74; http://dx.doi.org/10.1016/j.molcel.2007.
04.020.

928. Jomain-Baum M, Garber AJ, Farber E, Hanson RW. The effect of
cycloheximide on the interaction between mitochondrial respira-
tion and gluconeogenesis in guinea pig and rat liver. J Biol Chem
1973; 248:1536-43.

929. Garber AJ, Jomain-Baum M, Salganicoff L, Farber E, Hanson RW.
The effects of cycloheximide on energy transfer in rat and guinea
pig liver mitochondria. J Biol Chem 1973; 248:1530-5.

930. Mora R, Dokic I, Kees T, Huber CM, Keitel D, Geibig R, Brugge B,
Zentgraf H, Brady NR, Regnier-Vigouroux A. Sphingolipid rheostat
alterations related to transformation can be exploited for specific
induction of lysosomal cell death in murine and human glioma.
Glia 2010; 58:1364-83.

931. Bright NA, Lindsay MR, Stewart A, Luzio JP. The relationship
between lumenal and limiting membranes in swollen late endocytic
compartments formed after wortmannin treatment or sucrose accu-
mulation. Traffic 2001; 2:631-42; http://dx.doi.org/10.1034/j.1600-
0854.2001.20906.x.

932. Deter RL. Quantitative characterization of dense body, autophagic
vacuole, and acid phosphatase-bearing particle populations during
the early phases of glucagon-induced autophagy in rat liver. J Cell
Biol 1971; 48:473-89; http://dx.doi.org/10.1083/jcb.48.3.473.

933. Deter RL. Analog modeling of glucagon-induced autophagy in rat
liver. I. Conceptual and mathematical model of telolysosome-auto-
phagosome-autolysosome interaction. Exp Cell Res 1975; 94:122-6;
http://dx.doi.org/10.1016/0014-4827(75)90538-8.

934. Deter RL. Analog modeling of glucagon-induced autophagy in rat
liver. II. Evaluation of iron labeling as a means for identifying telo-
lysosome, autophagosome and autolysosome populations. Exp Cell
Res 1975; 94:127-39; http://dx.doi.org/10.1016/0014-4827(75)
90539-X.

935. Deter RL, Baudhuin P, de Duve C. Participation of lysosomes in cel-
lular autophagy induced in rat liver by glucagon. J Cell Biol 1967;
35:C11-6; http://dx.doi.org/10.1083/jcb.35.2.C11.

936. Deter RL, de Duve C. Influence of glucagon, an inducer of cellular
autophagy, on some physical properties of rat liver lysosomes. J
Cell Biol 1967; 33:437-49; http://dx.doi.org/10.1083/jcb.33.2.437.

937. Stromhaug PE, Berg TO, Fengsrud M, Seglen PO. Purification and
characterization of autophagosomes from rat hepatocytes. Biochem
J 1998; 335 (Pt 2):217-24; http://dx.doi.org/10.1042/bj3350217.

938. Deter RL. Electron microscopic evaluation of subcellular fractions
obtained by ultracentrifugation. In: Hayat MA, ed. Principles and
Techniques of Electron Microscopy. New York: Van Nostrand
Reinhold Co., 1973:199-235.

939. Marzella L, Ahlberg J, Glaumann H. Isolation of autophagic vacuoles
from rat liver: morphological and biochemical characterization. J Cell
Biol 1982; 93:144-54; http://dx.doi.org/10.1083/jcb.93.1.144.

940. Wattiaux R, Wattiaux-De Coninck S, Ronveaux-Dupal M-F,
Dubois F. Isolation of rat liver lysosomes by isopycnic centrifuga-
tion in a metrizamide gradient. J Cell Biol 1978; 78:349-68; http://
dx.doi.org/10.1083/jcb.78.2.349.

941. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM,
Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA.
Trehalose ameliorates dopaminergic and tau pathology in parkin
deleted/tau overexpressing mice through autophagy activation.
Neuobiol Dis 2010; 39:423-38; http://dx.doi.org/10.1016/j.
nbd.2010.05.014.

942. Weibel ER, Bolender RP. Stereological techniques for electron
microscopic morphometry. In: Hayat MA, ed. Principles and Tech-
niques of Electron Microscopy. New York: Van Nostrand Reinhold
Co., 1973:237-96.

943. Baudhuin P, Evrard P, Berthet J. Electron microscopic examination
of subcellular fractions. I. The preparation of representative samples
from suspensions of particles. J Cell Biol 1967; 32:181-91; http://dx.
doi.org/10.1083/jcb.32.1.181.

944. Baudhuin P, Berthet J. Electron microscopic examination of subcel-
lular fractions. II. Quantitative analysis of the mitochondrial popu-
lation isolated from rat liver. J Cell Biol 1967; 35:631-48; http://dx.
doi.org/10.1083/jcb.35.3.631.

945. Storrie B, Madden EA. Isolation of subcellular organelles. Methods
Enzymol 1990; 182:203-25; http://dx.doi.org/10.1016/0076-6879
(90)82018-W.

946. Balch WE, Rothman JE. Characterization of protein transport
between successive compartments of the Golgi apparatus: asymmet-
ric properties of donor and acceptor activities in a cell-free system.
Arch Biochem Biophys 1985; 240:413-25; http://dx.doi.org/
10.1016/0003-9861(85)90046-3.

947. Graham JM. Isolation of lysosomes from tissues and cells by differ-
ential and density gradient centrifugation. In: Bonifacino JS, Dasso
M, Harfod JB, Lippincott-Schwartz J and Yamada KM, eds. Current
Protocols in Cell Biology: John Wiley & Sons, Inc., 2000:Unit 3.6.

948. Cuervo AM, Dice JF, Knecht E. A population of rat liver lysosomes
responsible for the selective uptake and degradation of cytosolic
proteins. J Biol Chem 1997; 272:5606-15; http://dx.doi.org/10.1074/
jbc.272.9.5606.

949. He C, Sumpter R, Jr., Levine B. Exercise induces autophagy in
peripheral tissues and in the brain. Autophagy 2012; 8:1548-51;
http://dx.doi.org/10.4161/auto.21327.

950. Sarkar C, Zhao Z, Aungst S, Sabirzhanov B, Faden AI, Lipinski MM.
Impaired autophagy flux is associated with neuronal cell death after
traumatic brain injury. Autophagy 2014:0.

951. Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim
L, Gottlieb RA. A method to measure cardiac autophagic flux in
vivo. Autophagy 2008; 4:322-9; http://dx.doi.org/10.4161/auto.5603.

952. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson
JA, Le V, Levine B, Rothermel BA, Hill JA. Cardiac autophagy is a
maladaptive response to hemodynamic stress. J Clin Invest 2007;
117:1782-93; http://dx.doi.org/10.1172/JCI27523.

953. Castillo K, Valenzuela V, Matus S, Nassif M, Onate M, Fuentealba
Y, Encina G, Irrazabal T, Parsons G, Court FA, et al. Measurement
of autophagy flux in the nervous system in vivo. Cell Death Dis
2013; 4:e917.

954. Matus S, Valenzuela V, Hetz C. A new method to measure auto-
phagy flux in the nervous system. Autophagy 2014; 10:710-4;
http://dx.doi.org/10.4161/auto.28434.

955. Castillo K, Nassif M, Valenzuela V, Rojas F, Matus S, Mercado G,
Court FA, van Zundert B, Hetz C. Trehalose delays the progression
of amyotrophic lateral sclerosis by enhancing autophagy in moto-
neurons. Autophagy 2013; 9:1308-20; http://dx.doi.org/10.4161/
auto.25188.

AUTOPHAGY 149

http://dx.doi.org/10.1083/jcb.98.4.1556
http://dx.doi.org/10.1074/jbc.M109134200
http://dx.doi.org/10.1091/mbc.E11-09-0785
http://dx.doi.org/10.1091/mbc.E11-09-0785
http://dx.doi.org/10.1016/0014-4827(85)90154-5
http://dx.doi.org/10.1016/0014-4827(85)90154-5
http://dx.doi.org/10.1016/S0076-6879(08)03623-9
http://dx.doi.org/10.1016/S0076-6879(08)03623-9
http://dx.doi.org/10.1042/bj20021266
http://dx.doi.org/10.1016/j.molcel.2007.<?A3B2 RE3J?>04.020
http://dx.doi.org/10.1016/j.molcel.2007.<?A3B2 RE3J?>04.020
http://dx.doi.org/10.1034/j.1600-0854.2001.20906.x
http://dx.doi.org/10.1034/j.1600-0854.2001.20906.x
http://dx.doi.org/10.1083/jcb.48.3.473
http://dx.doi.org/10.1016/0014-4827(75)90538-8
http://dx.doi.org/10.1016/0014-4827(75)90539-X
http://dx.doi.org/10.1016/0014-4827(75)90539-X
http://dx.doi.org/10.1083/jcb.35.2.C11
http://dx.doi.org/10.1083/jcb.33.2.437
http://dx.doi.org/10.1042/bj3350217
http://dx.doi.org/10.1083/jcb.93.1.144
http://dx.doi.org/10.1083/jcb.78.2.349
http://dx.doi.org/10.1016/j.nbd.2010.05.014
http://dx.doi.org/10.1016/j.nbd.2010.05.014
http://dx.doi.org/10.1083/jcb.32.1.181
http://dx.doi.org/10.1083/jcb.35.3.631
http://dx.doi.org/10.1016/0076-6879(90)82018-W
http://dx.doi.org/10.1016/0076-6879(90)82018-W
http://dx.doi.org/10.1016/0003-9861(85)90046-3
http://dx.doi.org/10.1074/jbc.272.9.5606
http://dx.doi.org/10.1074/jbc.272.9.5606
http://dx.doi.org/10.4161/auto.21327
http://dx.doi.org/10.4161/auto.5603
http://dx.doi.org/10.1172/JCI27523
http://dx.doi.org/10.4161/auto.28434
http://dx.doi.org/10.4161/auto.25188
http://dx.doi.org/10.4161/auto.25188


956. Chiarelli R, Agnello M, Roccheri MC. Sea urchin embryos as a model
system for studying autophagy induced by cadmium stress. Auto-
phagy 2011; 7:1028-34; http://dx.doi.org/10.4161/auto.7.9.16450.

957. Morici G, Agnello M, Spagnolo F, Roccheri MC, Di Liegro CM,
Rinaldi AM. Confocal microscopy study of the distribution, content
and activity of mitochondria during Paracentrotus lividus develop-
ment. J Microsc 2007; 228:165-73; http://dx.doi.org/10.1111/j.1365-
2818.2007.01860.x.

958. Martinet W, De Meyer GR, Andries L, Herman AG, Kockx MM.
Detection of autophagy in tissue by standard immunohistochemis-
try: possibilities and limitations. Autophagy 2006; 2:55-7; http://dx.
doi.org/10.4161/auto.2217.

959. Holt SV, Wyspianska B, Randall KJ, James D, Foster JR, Wilkinson
RW. The development of an immunohistochemical method to
detect the autophagy-associated protein LC3-II in human tumor
xenografts. Toxicol Pathol 2011; 39:516-23; http://dx.doi.org/
10.1177/0192623310396903.

960. Kimura S, Fujita N, Noda T, Yoshimori T. Monitoring autophagy in
mammalian cultured cells through the dynamics of LC3. Methods
Enzymol 2009; 452:1-12; http://dx.doi.org/10.1016/S0076-6879(08)
03601-X.

961. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P,
Vila M. Pathogenic lysosomal depletion in Parkinson’s disease.
J Neurosci 2010; 30:12535-44; http://dx.doi.org/10.1523/
JNEUROSCI.1920-10.2010.

962. Daniels BH, McComb RD, Mobley BC, Gultekin SH, Lee HS, Mar-
geta M. LC3 and p62 as diagnostic markers of drug-induced
autophagic vacuolar cardiomyopathy: a study of 3 cases.
Am J Surg Pathol 2013; 37:1014-21; http://dx.doi.org/10.1097/
PAS.0b013e3182863fa8.

963. Hiniker A, Daniels BH, Lee HS, Margeta M. Comparative utility of
LC3, p62 and TDP-43 immunohistochemistry in differentiation of
inclusion body myositis from polymyositis and related inflamma-
tory myopathies. Acta Neuropathol Commun 2013; 1:29; http://dx.
doi.org/10.1186/2051-5960-1-29.

964. Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, Margeta M.
Clinical utility of LC3 and p62 immunohistochemistry in diagnosis
of drug-induced autophagic vacuolar myopathies: a case-control
study. PloS One 2012; 7:e36221.

965. Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Auto-
phagy regulates cholesterol efflux from macrophage foam cells via
lysosomal acid lipase. Cell Metab 2011; 13:655-67; http://dx.doi.
org/10.1016/j.cmet.2011.03.023.

966. Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Mat-
sumoto N, Hisatsune C, Nakamura T, Mikoshiba K. Aberrant
calcium signaling by transglutaminase-mediated posttransla-
tional modification of inositol 1,4,5-trisphosphate receptors.
Proc Natl Acad Sci USA 2014; 111:E3966-75; http://dx.doi.org/
10.1073/pnas.1409730111.

967. Rodriguez-Muela N, Koga H, Garcia-Ledo L, de la Villa P, de la
Rosa EJ, Cuervo AM, Boya P. Balance between autophagic path-
ways preserves retinal homeostasis. Aging Cell 2013; 12:478-88;
http://dx.doi.org/10.1111/acel.12072.

968. Esteban-Martinez L, Boya P. Autophagic flux determination in vivo
and ex vivo. Methods 2015; 75:79-86; http://dx.doi.org/10.1016/j.
ymeth.2015.01.008.

969. McMahon J, Huang X, Yang J, Komatsu M, Yue Z, Qian J, Zhu X,
Huang Y. Impaired autophagy in neurons after disinhibition of
mammalian target of rapamycin and its contribution to epilepto-
genesis. J Neurosci 2012; 32:15704-14; http://dx.doi.org/10.1523/
JNEUROSCI.2392-12.2012.

970. Herrando-Grabulosa M, Casas C, Aguilera J. The C-terminal
domain of tetanus toxin protects motoneurons against acute
excitotoxic damage on spinal cord organotypic cultures. J Neu-
rochem 2013; 124:36-44; http://dx.doi.org/10.1111/jnc.12062.

971. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mito-
chondria elongate, are spared from degradation and sustain cell via-
bility. Nat Cell Biol 2011; 13:589-98; http://dx.doi.org/10.1038/
ncb2220.

972. Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia
E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, et al. Autophagy is
defective in collagen VI muscular dystrophies, and its reactivation
rescues myofiber degeneration. Nat Med 2010; 16:1313-20; http://
dx.doi.org/10.1038/nm.2247.

973. Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is
altered in skeletal and cardiac muscle of spontaneously hypertensive
rats. Acta Physiol (Oxf) 2014; 210:381-91; http://dx.doi.org/
10.1111/apha.12178.

974. Ogata T, Oishi Y, Higuchi M, Muraoka I. Fasting-related autopha-
gic response in slow- and fast-twitch skeletal muscle. Biochem Bio-
phys Res Commun 2010; 394:136-40; http://dx.doi.org/10.1016/j.
bbrc.2010.02.130.

975. Yamada E, Bastie CC, Koga H, Wang Y, Cuervo AM, Pessin JE.
Mouse skeletal muscle fiber-type-specific macroautophagy and
muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling
pathway. Cell Rep 2012; 1:557-69; http://dx.doi.org/10.1016/j.
celrep.2012.03.014.

976. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J,
Fisher J, Sun Q, et al. Exercise-induced BCL2-regulated autophagy
is required for muscle glucose homeostasis. Nature 2012; 481:511-5;
http://dx.doi.org/10.1038/nature10758.

977. Haspel J, Shaik RS, Ifedigbo E, Nakahira K, Dolinay T, Englert JA,
Choi AM. Characterization of macroautophagic flux in vivo using a
leupeptin-based assay. Autophagy 2011; 7:629-42; http://dx.doi.org/
10.4161/auto.7.6.15100.

978. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the
Langendorff technique of isolated heart perfusion. J Mol Cell Car-
diol 2011; 50:940-50; http://dx.doi.org/10.1016/j.yjmcc.2011.02.018.

979. Huang C, Andres AM, Ratliff EP, Hernandez G, Lee P, Gottlieb RA.
Preconditioning involves selective mitophagy mediated by Parkin
and p62/SQSTM1. PloS One 2011; 6:e20975; http://dx.doi.org/
10.1371/journal.pone.0020975.

980. Gottlieb RA, Finley KD, Mentzer RM, Jr. Cardioprotection requires
taking out the trash. Basic Res Cardiol 2009; 104:169-80; http://dx.
doi.org/10.1007/s00395-009-0011-9.

981. Avagliano L, Virgili E, Garo C, Quadrelli F, Doi P, Samaja M, Bulfa-
mante GP, Marconi AM. Autophagy and human parturition: evalu-
ation of LC3 expression in placenta from spontaneous or medically
induced onset of labor. BioMed Res Intl 2013; 2013:689768; http://
dx.doi.org/10.1155/2013/689768.

982. Hung TH, Hsieh TT, Chen SF, Li MJ, Yeh YL. Autophagy in the
human placenta throughout gestation. PloS One 2013; 8:e83475;
http://dx.doi.org/10.1371/journal.pone.0083475.

983. Signorelli P, Avagliano L, Virgili E, Gagliostro V, Doi P, Braidotti P,
Bulfamante GP, Ghidoni R, Marconi AM. Autophagy in term nor-
mal human placentas. Placenta 2011; 32:482-5; http://dx.doi.org/
10.1016/j.placenta.2011.03.005.

984. Hung TH, Chen SF, Lo LM, Li MJ, Yeh YL, Hsieh TT. Increased
autophagy in placentas of intrauterine growth-restricted pregnan-
cies. PloS One 2012; 7:e40957; http://dx.doi.org/10.1371/journal.
pone.0040957.

985. Chang YL, Wang TH, Chang SD, Chao AS, Hsieh PC, Wang CN.
Increased autophagy in the placental territory of selective intrauter-
ine growth-restricted monochorionic twins. Prenatal Diag 2013;
33:187-90; http://dx.doi.org/10.1002/pd.4040.

986. Oh SY, Choi SJ, Kim KH, Cho EY, Kim JH, Roh CR. Autophagy-
related proteins, LC3 and Beclin-1, in placentas from pregnancies
complicated by preeclampsia. Reprod Sci 2008; 15:912-20; http://
dx.doi.org/10.1177/1933719108319159.

987. Avagliano L, Danti L, Doi P, Felis S, Guala M, Locatelli A, Maffeo I,
Mecacci F, Plevani C, Simeone S, et al. Autophagy in placentas
from acidotic newborns: an immunohistochemical study of LC3
expression. Placenta 2013; 34:1091-4; http://dx.doi.org/10.1016/j.
placenta.2013.09.004.

988. Perry CN, Kyoi S, Hariharan N, Takagi H, Sadoshima J, Gottlieb
RA. Novel methods for measuring cardiac autophagy in vivo. Meth-
ods Enzymol 2009; 453:325-42; http://dx.doi.org/10.1016/S0076-
6879(08)04016-0.

150 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.7.9.16450
http://dx.doi.org/10.1111/j.1365-2818.2007.01860.x
http://dx.doi.org/10.1111/j.1365-2818.2007.01860.x
http://dx.doi.org/10.4161/auto.2217
http://dx.doi.org/10.1177/0192623310396903
http://dx.doi.org/10.1016/S0076-6879(08)03601-X
http://dx.doi.org/10.1016/S0076-6879(08)03601-X
http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010
http://dx.doi.org/10.1523/JNEUROSCI.1920-10.2010
http://dx.doi.org/10.1097/PAS.0b013e3182863fa8
http://dx.doi.org/10.1097/PAS.0b013e3182863fa8
http://dx.doi.org/10.1186/2051-5960-1-29
http://dx.doi.org/10.1016/j.cmet.2011.03.023
http://dx.doi.org/10.1073/pnas.1409730111
http://dx.doi.org/10.1111/acel.12072
http://dx.doi.org/10.1016/j.ymeth.2015.01.008
http://dx.doi.org/10.1016/j.ymeth.2015.01.008
http://dx.doi.org/10.1523/JNEUROSCI.2392-12.2012
http://dx.doi.org/10.1523/JNEUROSCI.2392-12.2012
http://dx.doi.org/10.1111/jnc.12062
http://dx.doi.org/10.1038/ncb2220
http://dx.doi.org/10.1038/ncb2220
http://dx.doi.org/10.1038/nm.2247
http://dx.doi.org/10.1111/apha.12178
http://dx.doi.org/10.1016/j.bbrc.2010.02.130
http://dx.doi.org/10.1016/j.bbrc.2010.02.130
http://dx.doi.org/10.1016/j.celrep.2012.03.014
http://dx.doi.org/10.1016/j.celrep.2012.03.014
http://dx.doi.org/10.1038/nature10758
http://dx.doi.org/10.4161/auto.7.6.15100
http://dx.doi.org/10.1016/j.yjmcc.2011.02.018
http://dx.doi.org/10.1371/journal.pone.0020975
http://dx.doi.org/10.1007/s00395-009-0011-9
http://dx.doi.org/10.1155/2013/689768
http://dx.doi.org/10.1371/journal.pone.0083475
http://dx.doi.org/10.1016/j.placenta.2011.03.005
http://dx.doi.org/10.1371/journal.pone.0040957
http://dx.doi.org/10.1371/journal.pone.0040957
http://dx.doi.org/10.1002/pd.4040
http://dx.doi.org/10.1177/1933719108319159
http://dx.doi.org/10.1016/j.placenta.2013.09.004
http://dx.doi.org/10.1016/j.placenta.2013.09.004
http://dx.doi.org/10.1016/S0076-6879(08)04016-0
http://dx.doi.org/10.1016/S0076-6879(08)04016-0


989. Munafo DB, Colombo MI. A novel assay to study autophagy: regu-
lation of autophagosome vacuole size by amino acid deprivation. J
Cell Sci 2001; 114:3619-29.

990. Carloni S, Buonocore G, Balduini W. Protective role of autophagy
in neonatal hypoxia-ischemia induced brain injury. Neuobiol Dis
2008; 32:329-39; http://dx.doi.org/10.1016/j.nbd.2008.07.022.

991. Carloni S, Girelli S, Scopa C, Buonocore G, Longini M, Balduini W.
Activation of autophagy and Akt/CREB signaling play an equiva-
lent role in the neuroprotective effect of rapamycin in neonatal hyp-
oxia-ischemia. Autophagy 2010; 6:366-77; http://dx.doi.org/
10.4161/auto.6.3.11261.

992. Carloni S, Albertini MC, Galluzzi L, Buonocore G, Proietti F, Bal-
duini W. Increased autophagy reduces endoplasmic reticulum stress
after neonatal hypoxia-ischemia: Role of protein synthesis and
autophagic pathways. Exp Neurol 2014; 57:192-9.

993. Ginet V, Puyal J, Clarke PG, Truttmann AC. Enhancement of auto-
phagic flux after neonatal cerebral hypoxia-ischemia and its region-
specific relationship to apoptotic mechanisms. Am J Pathol 2009;
175:1962-74; http://dx.doi.org/10.2353/ajpath.2009.090463.

994. Puyal J, Vaslin A, Mottier V, Clarke PG. Postischemic treatment of
neonatal cerebral ischemia should target autophagy. Annals Neurol
2009; 66:378-89; http://dx.doi.org/10.1002/ana.21714.

995. Penas C, Font-Nieves M, Fores J, Petegnief V, Planas A, Navarro X,
Casas C. Autophagy, and BiP level decrease are early key events in
retrograde degeneration of motoneurons. Cell Death Differ 2011;
18:1617-27; http://dx.doi.org/10.1038/cdd.2011.24.

996. Uchiyama Y. Autophagic cell death and its execution by lysosomal
cathepsins. Arch Histol Cytol 2001; 64:233-46; http://dx.doi.org/
10.1679/aohc.64.233.

997. Udelnow A, Kreyes A, Ellinger S, Landfester K, Walther P, Klapper-
stueck T, Wohlrab J, Henne-Bruns D, Knippschild U, Wurl P.
Omeprazole inhibits proliferation and modulates autophagy in pan-
creatic cancer cells. PloS One 2011; 6:e20143.

998. Weber SM, Levitz SM. Chloroquine interferes with lipopolysaccha-
ride-induced TNF-alpha gene expression by a nonlysosomotropic
mechanism. J Immunol 2000; 165:1534-40; http://dx.doi.org/
10.4049/jimmunol.165.3.1534.

999. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl
T, Munz C. Endogenous MHC class II processing of a viral nuclear
antigen after autophagy. Science 2005; 307:593-6; http://dx.doi.org/
10.1126/science.1104904.

1000. Ma D, Panda S, Lin JD. Temporal orchestration of circadian auto-
phagy rhythm by C/EBPbeta. EMBO J 2011; 30:4642-51; http://dx.
doi.org/10.1038/emboj.2011.322.

1001. Akagi Y, Isaka Y, Akagi A, Ikawa M, Takenaka M, Moriyama T,
Yamauchi A, Horio M, Ueda N, Okabe M, et al. Transcriptional acti-
vation of a hybrid promoter composed of cytomegalovirus enhancer
and beta-actin/beta-globin gene in glomerular epithelial cells in vivo.
Kidney Int 1997; 51:1265-9; http://dx.doi.org/10.1038/ki.1997.172.

1002. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I,
Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, et al.
Autophagy protects the proximal tubule from degeneration and
acute ischemic injury. J Am Soc Nephrol 2011; 22:902-13; http://dx.
doi.org/10.1681/ASN.2010070705.

1003. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T,
Kobler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT,
et al. Autophagy influences glomerular disease susceptibility and
maintains podocyte homeostasis in aging mice. J Clin Invest 2010;
120:1084-96; http://dx.doi.org/10.1172/JCI39492.

1004. Vandrovcova J, Anaya F, Kay V, Lees A, Hardy J, de Silva R. Disen-
tangling the role of the tau gene locus in sporadic tauopathies. Curr
Alzheimer Res 2010; 7:726-34; http://dx.doi.org/10.2174/
156720510793611619.

1005. Chen YS, Chen SD, Wu CL, Huang SS, Yang DI. Induction of ses-
trin2 as an endogenous protective mechanism against amyloid
beta-peptide neurotoxicity in primary cortical culture. Exp Neurol
2014; 253:63-71; http://dx.doi.org/10.1016/j.expneurol.2013.12.009.

1006. Tofaris GK, Spillantini MG. Physiological and pathological proper-
ties of alpha-synuclein. Cell Mol Life Sci 2007; 64:2194-201; http://
dx.doi.org/10.1007/s00018-007-7217-5.

1007. Wanker EE. Protein aggregation and pathogenesis of Huntington’s
disease: mechanisms and correlations. Biol Chem 2000; 381:937-42.

1008. Sandri M, Coletto L, Grumati P, Bonaldo P. Misregulation of auto-
phagy and protein degradation systems in myopathies and muscu-
lar dystrophies. J Cell Sci 2013; 126:5325-33; http://dx.doi.org/
10.1242/jcs.114041.

1009. Bentmann E, Haass C, Dormann D. Stress granules in neurodegen-
eration–lessons learnt from TAR DNA binding protein of 43 kDa
and fused in sarcoma. FEBS J 2013; 280:4348-70; http://dx.doi.org/
10.1111/febs.12287.

1010. Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and
PINK1: much more than mitophagy. Trends in Neurosci 2014;
37:315-24; http://dx.doi.org/10.1016/j.tins.2014.03.004.

1011. Ossareh-Nazari B, Bonizec M, Cohen M, Dokudovskaya S, Dela-
lande F, Schaeffer C, Van Dorsselaer A, Dargemont C. Cdc48 and
Ufd3, new partners of the ubiquitin protease Ubp3, are required for
ribophagy. EMBO Rep 2010; 11:548-54; http://dx.doi.org/10.1038/
embor.2010.74.

1012. Renton AE, Chio A, Traynor BJ. State of play in amyotrophic lateral
sclerosis genetics. Nat Neurosci 2014; 17:17-23; http://dx.doi.org/
10.1038/nn.3584.

1013. Ebrahimi-Fakhari D, Wahlster L, Hoffmann GF, Kolker S. Emerg-
ing role of autophagy in pediatric neurodegenerative and neurome-
tabolic diseases. Pediatr Res 2014; 75:217-26; http://dx.doi.org/
10.1038/pr.2013.185.

1014. Lee KM, Hwang SK, Lee JA. Neuronal autophagy and neurodeve-
lopmental disorders. Exp Neurobiol 2013; 22:133-42; http://dx.doi.
org/10.5607/en.2013.22.3.133.

1015. Yasin SA, Ali AM, Tata M, Picker SR, Anderson GW, Latimer-Bow-
man E, Nicholson SL, Harkness W, Cross JH, Paine SM, et al.
mTOR-dependent abnormalities in autophagy characterize human
malformations of cortical development: evidence from focal cortical
dysplasia and tuberous sclerosis. Acta Neuropathol 2013; 126:207-
18; http://dx.doi.org/10.1007/s00401-013-1135-4.

1016. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H,
Alafuzoff I. Emerging role of p62/sequestosome-1 in the pathogene-
sis of Alzheimer’s disease. Prog Neurobiol 2012; 96:87-95; http://dx.
doi.org/10.1016/j.pneurobio.2011.11.005.

1017. Seidel K, Brunt ER, de Vos RA, Dijk F, van der Want HJ, Rub U,
den Dunnen WF. The p62 antibody reveals various cytoplasmic
protein aggregates in spinocerebellar ataxia type 6. Clin Neuropa-
thol 2009; 28:344-9; http://dx.doi.org/10.5414/NPP28344.

1018. Harada H, Warabi E, Matsuki T, Yanagawa T, Okada K, Uwayama
J, Ikeda A, Nakaso K, Kirii K, Noguchi N, et al. Deficiency of p62/
Sequestosome 1 causes hyperphagia due to leptin resistance in the
brain. J Neurosci 2013; 33:14767-77; http://dx.doi.org/10.1523/
JNEUROSCI.2954-12.2013.

1019. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela
M, Gibbons A, Scarr E, Dean B, Levine J, Agam G, Gozes I.
Autophagy has a key role in the pathophysiology of schizophre-
nia. Mol Psychiatr 2015; 20:126-32; http://dx.doi.org/10.1038/
mp.2013.174.

1020. Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective
protein (ADNP) expression level is correlated with the expression
of the sister protein ADNP2: deregulation in schizophrenia. Eur
Neuropsychopharm 2011; 21:355-61; http://dx.doi.org/10.1016/j.
euroneuro.2010.06.004.

1021. Nishino I. Autophagic vacuolar myopathy. Semin Pediatr Neurol
2006; 13:90-5; http://dx.doi.org/10.1016/j.spen.2006.06.004.

1022. Girolamo F, Lia A, Amati A, Strippoli M, Coppola C, Virgintino D,
Roncali L, Toscano A, Serlenga L, Trojano M. Overexpression of
autophagic proteins in the skeletal muscle of sporadic inclusion
body myositis. Neuropath Appl Neuro 2013; 39:736-49; http://dx.
doi.org/10.1111/nan.12040.

1023. Temiz P, Weihl CC, Pestronk A. Inflammatory myopathies with
mitochondrial pathology and protein aggregates. J Neurol Sci 2009;
278:25-9; http://dx.doi.org/10.1016/j.jns.2008.11.010.

1024. Maugeri N, Campana L, Gavina M, Covino C, De Metrio M, Pan-
ciroli C, Maiuri L, Maseri A, D’Angelo A, Bianchi ME, et al. Acti-
vated platelets present high mobility group box 1 to neutrophils,

AUTOPHAGY 151

http://dx.doi.org/10.1016/j.nbd.2008.07.022
http://dx.doi.org/10.4161/auto.6.3.11261
http://dx.doi.org/10.2353/ajpath.2009.090463
http://dx.doi.org/10.1002/ana.21714
http://dx.doi.org/10.1038/cdd.2011.24
http://dx.doi.org/10.1679/aohc.64.233
http://dx.doi.org/10.4049/jimmunol.165.3.1534
http://dx.doi.org/10.1126/science.1104904
http://dx.doi.org/10.1038/emboj.2011.322
http://dx.doi.org/10.1038/ki.1997.172
http://dx.doi.org/10.1681/ASN.2010070705
http://dx.doi.org/10.1172/JCI39492
http://dx.doi.org/10.2174/156720510793611619
http://dx.doi.org/10.2174/156720510793611619
http://dx.doi.org/10.1016/j.expneurol.2013.12.009
http://dx.doi.org/10.1007/s00018-007-7217-5
http://dx.doi.org/10.1242/jcs.114041
http://dx.doi.org/10.1111/febs.12287
http://dx.doi.org/10.1016/j.tins.2014.03.004
http://dx.doi.org/10.1038/embor.2010.74
http://dx.doi.org/10.1038/embor.2010.74
http://dx.doi.org/10.1038/nn.3584
http://dx.doi.org/10.1038/pr.2013.185
http://dx.doi.org/10.5607/en.2013.22.3.133
http://dx.doi.org/10.1007/s00401-013-1135-4
http://dx.doi.org/10.1016/j.pneurobio.2011.11.005
http://dx.doi.org/10.5414/NPP28344
http://dx.doi.org/10.1523/JNEUROSCI.2954-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.2954-12.2013
http://dx.doi.org/10.1038/mp.2013.174
http://dx.doi.org/10.1038/mp.2013.174
http://dx.doi.org/10.1016/j.euroneuro.2010.06.004
http://dx.doi.org/10.1016/j.euroneuro.2010.06.004
http://dx.doi.org/10.1016/j.spen.2006.06.004
http://dx.doi.org/10.1111/nan.12040
http://dx.doi.org/10.1016/j.jns.2008.11.010


inducing autophagy and promoting the extrusion of neutrophil
extracellular traps. J Thromb Haemost 2014; 12:2074-88; http://dx.
doi.org/10.1111/jth.12710.

1025. Screen M, Raheem O, Holmlund-Hampf J, Jonson PH, Huovinen S,
Hackman P, Udd B. Gene expression profiling in tibial muscular
dystrophy reveals unfolded protein response and altered autophagy.
PloS One 2014; 9:e90819; http://dx.doi.org/10.1371/journal.
pone.0090819.

1026. Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL.
A retrospective cohort study identifying the principal pathological
features useful in the diagnosis of inclusion body myositis. BMJ
Open 2014; 4:e004552; http://dx.doi.org/10.1136/bmjopen-2013-
004552.

1027. Lin NY, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S,
Munoz LE, Dees C, Distler A, Wirtz S, et al. Autophagy regulates
TNFalpha-mediated joint destruction in experimental arthritis.
Ann Rheum Dis 2013; 72:761-8; http://dx.doi.org/10.1136/
annrheumdis-2012-201671.

1028. Lin NY, Stefanica A, Distler JH. Autophagy: a key pathway of TNF-
induced inflammatory bone loss. Autophagy 2013; 9:1253-5; http://
dx.doi.org/10.4161/auto.25467.

1029. Tchetina EV, Poole AR, Zaitseva EM, Sharapova EP, Kashevarova
NG, Taskina EA, Alekseeva LI, Semyonova LA, Glukhova SI, Kuzin
AN, et al. Differences in Mammalian target of rapamycin gene
expression in the peripheral blood and articular cartilages of oste-
oarthritic patients and disease activity. Arthritis 2013; 2013:461486;
http://dx.doi.org/10.1155/2013/461486.

1030. Mitroulis I, Kourtzelis I, Kambas K, Chrysanthopoulou A, Ritis K.
Evidence for the involvement of mTOR inhibition and basal auto-
phagy in familial Mediterranean fever phenotype. Hum Immunol
2011; 72:135-8; http://dx.doi.org/10.1016/j.humimm.2010.11.006.

1031. Bachetti T, Chiesa S, Castagnola P, Bani D, Di Zanni E, Ome-
netti A, D’Osualdo A, Fraldi A, Ballabio A, Ravazzolo R, et al.
Autophagy contributes to inflammation in patients with TNFR-
associated periodic syndrome (TRAPS). Ann Rheum Dis 2013;
72:1044-52; http://dx.doi.org/10.1136/annrheumdis-2012-201952.

1032. Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Par-
thoens E, De Rycke R, Noppen S, Delforge M, Willems J, Vandena-
beele P. Neutrophil extracellular trap cell death requires both
autophagy and superoxide generation. Cell Res 2011; 21:290-304;
http://dx.doi.org/10.1038/cr.2010.150.

1033. Mitroulis I, Kambas K, Chrysanthopoulou A, Skendros P, Apostoli-
dou E, Kourtzelis I, Drosos GI, Boumpas DT, Ritis K. 2011. Neutro-
phil extracellular trap formation is associated with IL-1beta and
autophagy-related signaling in gout. PLoS One. 6, e29318.

1034. Kambas K, Mitroulis I, Apostolidou E, Girod A, Chrysanthopoulou
A, Pneumatikos I, Skendros P, Kourtzelis I, Koffa M, Kotsianidis I,
et al. Autophagy mediates the delivery of thrombogenic tissue factor
to neutrophil extracellular traps in human sepsis. PloS One 2012; 7:
e45427; http://dx.doi.org/10.1371/journal.pone.0045427.

1035. Chrysanthopoulou A, Mitroulis I, Apostolidou E, Arelaki S, Mik-
roulis D, Konstantinidis T, Sivridis E, Koffa M, Giatromanolaki A,
Boumpas DT, et al. Neutrophil extracellular traps promote differen-
tiation and function of fibroblasts. J Pathol 2014; 233:294-307;
http://dx.doi.org/10.1002/path.4359.

1036. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic
V. Autophagy-based unconventional secretory pathway for extra-
cellular delivery of IL-1beta. EMBO J 2011; 30:4701-11; http://dx.
doi.org/10.1038/emboj.2011.398.

1037. Kambas K, Chrysanthopoulou A, Vassilopoulos D, Apostolidou E,
Skendros P, Girod A, Arelaki S, Froudarakis M, Nakopoulou L, Gia-
tromanolaki A, et al. Tissue factor expression in neutrophil extracel-
lular traps and neutrophil derived microparticles in antineutrophil
cytoplasmic antibody associated vasculitis may promote throm-
boinflammation and the thrombophilic state associated with the
disease. Ann Rheum Dis 2013.

1038. Masini M, Bugliani M, Lupi R, del Guerra S, Boggi U, Filipponi F,
Marselli L, Masiello P, Marchetti P. Autophagy in human type 2
diabetes pancreatic beta cells. Diabetologia 2009; 52:1083-6; http://
dx.doi.org/10.1007/s00125-009-1347-2.

1039. Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida
T, Yagihashi S. Involvement of oxidative stress-induced DNA dam-
age, endoplasmic reticulum stress, and autophagy deficits in the
decline of beta-cell mass in Japanese type 2 diabetic patients. Diabe-
tes Care 2014; 37:1966-74; http://dx.doi.org/10.2337/dc13-2018.

1040. Ost A, Svensson K, Ruishalme I, Brannmark C, Franck N, Krook H,
Sandstrom P, Kjolhede P, Stralfors P. Attenuated mTOR signaling
and enhanced autophagy in adipocytes from obese patients with
type 2 diabetes. Mol Med 2010; 16:235-46; http://dx.doi.org/
10.2119/molmed.2010.00023.

1041. Kosacka J, Kern M, Kloting N, Paeschke S, Rudich A, Haim Y, Ger-
icke M, Serke H, Stumvoll M, Bechmann I, et al. Autophagy in
adipose tissue of patients with obesity and type 2 diabetes. Mol
Cell Endocrinol 2015; 409:21-32; http://dx.doi.org/10.1016/j.mce.
2015.03.015.

1042. Stienstra R, Haim Y, Riahi Y, Netea M, Rudich A, Leibowitz G.
Autophagy in adipose tissue and the beta cell: implications for obe-
sity and diabetes. Diabetologia 2014; 57:1505-16; http://dx.doi.org/
10.1007/s00125-014-3255-3.

1043. Berton G. Editorial: Gigantism: a new way to prolong neutrophil
life. J Leukocyte Biol 2014; 96:505-6; http://dx.doi.org/10.1189/
jlb.3CE0214-107R.

1044. Dyugovskaya L, Berger S, Polyakov A, Lavie L. The develop-
ment of giant phagocytes in long-term neutrophil cultures. J
Leukocyte Biol 2014; 96:511-21; http://dx.doi.org/10.1189/
jlb.0813437.

1045. Galluzzi L, Kepp O, Kroemer G. Enlightening the impact of immu-
nogenic cell death in photodynamic cancer therapy. EMBO J 2012;
31:1055-7; http://dx.doi.org/10.1038/emboj.2012.2.

1046. Panzarini E, Inguscio V, Fimia GM, Dini L. Rose Bengal Acetate
PhotoDynamic Therapy (RBAc-PDT) induces exposure and release
of damage-associated molecular patterns (DAMPs) in human HeLa
cells. PloS One 2014; 9:e105778.

1047. Santin G, Bottone MG, Malatesta M, Scovassi AI, Bottiroli G, Pellic-
ciari C, Croce AC. Regulated forms of cell death are induced by the
photodynamic action of the fluorogenic substrate, Hypocrellin B-
acetate. J Photochem Photobiol B 2013; 125:90-7; http://dx.doi.org/
10.1016/j.jphotobiol.2013.05.006.

1048. Maes H, Rubio N, Garg AD, Agostinis P. Autophagy: shaping the
tumor microenvironment and therapeutic response. Trends Mol Med
2013; 19:428-46; http://dx.doi.org/10.1016/j.molmed.2013.04.005.

1049. Garg AD, Krysko DV, Vandenabeele P, Agostinis P. The emergence
of phox-ER stress induced immunogenic apoptosis. Oncoimmunol-
ogy 2012; 1:786-8; http://dx.doi.org/10.4161/onci.19750.

1050. Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during
cancer cell death: origins, plasticity and regulation. Cell Death Dif-
fer 2014; 21:26-38; http://dx.doi.org/10.1038/cdd.2013.48.

1051. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death
in cancer therapy. Annu Rev Immunol 2013; 31:51-72; http://dx.
doi.org/10.1146/annurev-immunol-032712-100008.

1052. Dudek AM, Garg AD, Krysko DV, De Ruysscher D, Agostinis P.
Inducers of immunogenic cancer cell death. Cytokine Growth Fact
Rev 2013; 24:319-33; http://dx.doi.org/10.1016/j.cytogfr.2013.01.005.

1053. Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P,
Krysko DV, Mathieu C, Agostinis P. ROS-induced autophagy in
cancer cells assists in evasion from determinants of immunogenic
cell death. Autophagy 2013; 9:1292-307; http://dx.doi.org/10.4161/
auto.25399.

1054. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Mar-
ysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJ, et al. A novel
pathway combining calreticulin exposure and ATP secretion in
immunogenic cancer cell death. EMBO J 2012; 31:1062-79; http://
dx.doi.org/10.1038/emboj.2011.497.

1055. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pelle-
gatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al. Autophagy-
dependent anticancer immune responses induced by chemothera-
peutic agents in mice. Science 2011; 334:1573-7; http://dx.doi.org/
10.1126/science.1208347.

1056. Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K, Junger WG, Robson
SC, Wu Y. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR

152 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1111/jth.12710
http://dx.doi.org/10.1371/journal.pone.0090819
http://dx.doi.org/10.1371/journal.pone.0090819
http://dx.doi.org/10.1136/bmjopen-2013-004552
http://dx.doi.org/10.1136/bmjopen-2013-004552
http://dx.doi.org/10.1136/annrheumdis-2012-201671
http://dx.doi.org/10.1136/annrheumdis-2012-201671
http://dx.doi.org/10.4161/auto.25467
http://dx.doi.org/10.1155/2013/461486
http://dx.doi.org/10.1016/j.humimm.2010.11.006
http://dx.doi.org/10.1136/annrheumdis-2012-201952
http://dx.doi.org/10.1038/cr.2010.150
http://dx.doi.org/10.1371/journal.pone.0045427
http://dx.doi.org/10.1002/path.4359
http://dx.doi.org/10.1038/emboj.2011.398
http://dx.doi.org/10.1007/s00125-009-1347-2
http://dx.doi.org/10.2337/dc13-2018
http://dx.doi.org/10.2119/molmed.2010.00023
http://dx.doi.org/10.1016/j.mce.<?A3B2 RE3J?>2015.03.015
http://dx.doi.org/10.1016/j.mce.<?A3B2 RE3J?>2015.03.015
http://dx.doi.org/10.1007/s00125-014-3255-3
http://dx.doi.org/10.1189/jlb.3CE0214-107R
http://dx.doi.org/10.1189/jlb.3CE0214-107R
http://dx.doi.org/10.1189/jlb.0813437
http://dx.doi.org/10.1189/jlb.0813437
http://dx.doi.org/10.1038/emboj.2012.2
http://dx.doi.org/10.1016/j.jphotobiol.2013.05.006
http://dx.doi.org/10.1016/j.molmed.2013.04.005
http://dx.doi.org/10.4161/onci.19750
http://dx.doi.org/10.1038/cdd.2013.48
http://dx.doi.org/10.1146/annurev-immunol-032712-100008
http://dx.doi.org/10.1016/j.cytogfr.2013.01.005
http://dx.doi.org/10.4161/auto.25399
http://dx.doi.org/10.4161/auto.25399
http://dx.doi.org/10.1038/emboj.2011.497
http://dx.doi.org/10.1126/science.1208347


signaling pathways to mediate tumor cell death. PloS One 2013; 8:
e60184; http://dx.doi.org/10.1371/journal.pone.0060184.

1057. Di Virgilio F. Liaisons dangereuses: P2X(7) and the inflammasome.
Trends Pharmacol Sci 2007; 28:465-72; http://dx.doi.org/10.1016/j.
tips.2007.07.002.

1058. Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is
abrogated in cells lacking, chaperone-mediated autophagy-essential
gene, LAMP2A. Cell Death Dis 2013; 4:e826; http://dx.doi.org/
10.1038/cddis.2013.372.

1059. Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppres-
sion of cancer immunogenicity and effector mechanisms of innate
and adaptive immunity. Oncoimmunology 2013; 2:e26260; http://
dx.doi.org/10.4161/onci.26260.

1060. Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T,
Derde S, Meersseman P, Derese I, Mesotten D, Wouters PJ, et al.
Effect of tolerating macronutrient deficit on the development of
intensive-care unit acquired weakness: a subanalysis of the EPaNIC
trial. Lancet Resp Med 2013; 1:621-9; http://dx.doi.org/10.1016/
S2213-2600(13)70183-8.

1061. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza
F, Martinet W, Timmermans JP, D’Hoore A, Wouters PJ, et al.
Insufficient activation of autophagy allows cellular damage to accu-
mulate in critically ill patients. J Clin Endocrinol Metab 2011; 96:
E633-45; http://dx.doi.org/10.1210/jc.2010-2563.

1062. Czaja MJ, Ding WX, Donohue TM, Jr., Friedman SL, Kim JS,
Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, et al. Func-
tions of autophagy in normal and diseased liver. Autophagy 2013;
9:1131-58; http://dx.doi.org/10.4161/auto.25063.

1063. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel
MI, Yue Z, Czaja MJ, Friedman SL. Autophagy releases lipid that
promotes fibrogenesis by activated hepatic stellate cells in mice and
in human tissues. Gastroenterology 2012; 142:938-46; http://dx.doi.
org/10.1053/j.gastro.2011.12.044.

1064. Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley
SU, Ballabio A. Autophagy in lysosomal storage disorders. Auto-
phagy 2012; 8:719-30; http://dx.doi.org/10.4161/auto.19469.

1065. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa
I, Cortes E, Honig LS, Dauer W, Consiglio A, et al. Interplay of
LRRK2 with chaperone-mediated autophagy. Nat Neurosci 2013;
16:394-406; http://dx.doi.org/10.1038/nn.3350.

1066. Napolitano G, Johnson JL, He J, Rocca CJ, Monfregola J, Pestonja-
masp K, Cherqui S, Catz SD. Impairment of chaperone-mediated
autophagy leads to selective lysosomal degradation defects in the
lysosomal storage disease cystinosis. EMBO Mol Med 2015; 7:158-
74; http://dx.doi.org/10.15252/emmm.201404223.

1067. Venugopal B, Mesires NT, Kennedy JC, Curcio-Morelli C, Laplante
JM, Dice JF, Slaugenhaupt SA. Chaperone-mediated autophagy is
defective in mucolipidosis type IV. J Cell Physiol 2009; 219:344-53;
http://dx.doi.org/10.1002/jcp.21676.

1068. Franch HA. Pathways of proteolysis affecting renal cell growth.
Curr Opin Nephrol Hypertens 2002; 11:445-50; http://dx.doi.org/
10.1097/00041552-200207000-00012.

1069. Sooparb S, Price SR, Shaoguang J, Franch HA. Suppression of chap-
erone-mediated autophagy in the renal cortex during acute diabetes
mellitus. Kidney Int 2004; 65:2135-44; http://dx.doi.org/10.1111/
j.1523-1755.2004.00639.x.

1070. Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz
DB, Dhir R, Landreneau RJ, Schuchert MJ, Yousem SA, et al. Egr-1
regulates autophagy in cigarette smoke-induced chronic obstructive
pulmonary disease. PloS One 2008; 3:e3316.

1071. Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries
JF, Ward MM. Hydroxychloroquine and risk of diabetes in patients
with rheumatoid arthritis. JAMA 2007; 298:187-93; http://dx.doi.
org/10.1001/jama.298.2.187.

1072. Merlini L, Nishino I, Consortium for Autophagy in Muscular D.
201st ENMC International Workshop: Autophagy in muscular dys-
trophies–translational approach, 1-3 November 2013, Bussum, The
Netherlands. Neuromuscular Disord 2014; 24:546-61; http://dx.doi.
org/10.1016/j.nmd.2014.03.009.

1073. Berry DL, Baehrecke EH. Growth arrest and autophagy are required
for salivary gland cell degradation in Drosophila. Cell 2007;
131:1137-48; http://dx.doi.org/10.1016/j.cell.2007.10.048.

1074. Aits S, Gustafsson L, Hallgren O, Brest P, Gustafsson M, Trulsson
M, Mossberg AK, Simon HU, Mograbi B, Svanborg C. HAMLET
(human alpha-lactalbumin made lethal to tumor cells) triggers
autophagic tumor cell death. Int J Cancer 2009; 124:1008-19; http://
dx.doi.org/10.1002/ijc.24076.

1075. Koike M, Shibata M, Tadakoshi M, Gotoh K, Komatsu M, Waguri
S, Kawahara N, Kuida K, Nagata S, Kominami E, et al. Inhibition of
autophagy prevents hippocampal pyramidal neuron death after
hypoxic-ischemic injury. Am J Pathol 2008; 172:454-69; http://dx.
doi.org/10.2353/ajpath.2008.070876.

1076. Hou YC, Hannigan AM, Gorski SM. An executioner caspase regu-
lates autophagy. Autophagy 2009; 5:530-3; http://dx.doi.org/
10.4161/auto.5.4.8061.

1077. Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjorkoy G, Johansen
T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic
degradation of dBruce controls DNA fragmentation in nurse cells
during late Drosophila melanogaster oogenesis. J Cell Biol 2010;
190:523-31; http://dx.doi.org/10.1083/jcb.201002035.

1078. Piras A, Gianetto D, Conte D, Bosone A, Vercelli A. Activation of
autophagy in a rat model of retinal ischemia following high intraoc-
ular pressure. PloS One 2011; 6:e22514; http://dx.doi.org/10.1371/
journal.pone.0022514.

1079. Schwarze PE, Seglen PO. Reduced autophagic activity, improved
protein balance and enhanced in vitro survival of hepatocytes iso-
lated from carcinogen-treated rats. Exp Cell Res 1985; 157:15-28;
http://dx.doi.org/10.1016/0014-4827(85)90148-X.

1080. Liu Y, Shoji-Kawata S, Sumpter RM, Jr., Wei Y, Ginet V, Zhang L,
Posner B, Tran KA, Green DR, Xavier RJ, et al. Autosis is a NaC,
KC-ATPase-regulated form of cell death triggered by autophagy-
inducing peptides, starvation, and hypoxia-ischemia. Proc Natl
Acad Sci USA 2013; 110:20364-71; http://dx.doi.org/10.1073/
pnas.1319661110.

1081. Santoni M, Amantini C, Morelli MB, Liberati S, Farfariello V,
Nabissi M, Bonfili L, Eleuteri AM, Mozzicafreddo M, Burattini L,
et al. Pazopanib and sunitinib trigger autophagic and non-autopha-
gic death of bladder tumour cells. Brit J Cancer 2013; 109:1040-50;
http://dx.doi.org/10.1038/bjc.2013.420.

1082. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci
C, Rotiroti D, Morrone LA, Bagetta G, Corasaniti MT. Calpain-
mediated cleavage of Beclin-1 and autophagy deregulation follow-
ing retinal ischemic injury in vivo. Cell Death Dis 2011; 2:e144.

1083. Denton D, Nicolson S, Kumar S. Cell death by autophagy: facts and
apparent artefacts. Cell Death Differ 2012; 19:87-95.

1084. Beaulaton J, Lockshin RA. Ultrastructural study of the normal
degeneration of the intersegmental muscles of Anthereae polyphe-
mus and Manduca sexta (Insecta, Lepidoptera) with particular ref-
erence of cellular autophagy. J Morphol 1977; 154:39-57; http://dx.
doi.org/10.1002/jmor.1051540104.

1085. Clarke PG. Developmental cell death: morphological diversity and
multiple mechanisms. Anat Embryol 1990; 181:195-213.

1086. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagos-
klonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, et al.
Molecular definitions of cell death subroutines: recommendations
of the Nomenclature Committee on Cell Death 2012. Cell Death
Differ 2011.

1087. Kroemer G, Levine B. Autophagic cell death: the story of a misno-
mer. Nature Rev Mol Cell Biol 2008; 9:1004-10; http://dx.doi.org/
10.1038/nrm2529.

1088. Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT,
Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, et al.
Mechanism of liponecrosis, a distinct mode of programmed cell
death. Cell Cycle 2014; 13:3707-26; http://dx.doi.org/10.4161/
15384101.2014.965003.

1089. Sheibani S, Richard VR, Beach A, Leonov A, Feldman R, Mattie S,
Khelghatybana L, Piano A, Greenwood M, Vali H, et al. Macromi-
tophagy, neutral lipids synthesis, and peroxisomal fatty acid

AUTOPHAGY 153

http://dx.doi.org/10.1371/journal.pone.0060184
http://dx.doi.org/10.1016/j.tips.2007.07.002
http://dx.doi.org/10.1016/j.tips.2007.07.002
http://dx.doi.org/10.1038/cddis.2013.372
http://dx.doi.org/10.4161/onci.26260
http://dx.doi.org/10.1016/S2213-2600(13)70183-8
http://dx.doi.org/10.1016/S2213-2600(13)70183-8
http://dx.doi.org/10.1210/jc.2010-2563
http://dx.doi.org/10.4161/auto.25063
http://dx.doi.org/10.1053/j.gastro.2011.12.044
http://dx.doi.org/10.4161/auto.19469
http://dx.doi.org/10.1038/nn.3350
http://dx.doi.org/10.15252/emmm.201404223
http://dx.doi.org/10.1002/jcp.21676
http://dx.doi.org/10.1097/00041552-200207000-00012
http://dx.doi.org/10.1111/j.1523-1755.2004.00639.x
http://dx.doi.org/10.1111/j.1523-1755.2004.00639.x
http://dx.doi.org/10.1001/jama.298.2.187
http://dx.doi.org/10.1016/j.nmd.2014.03.009
http://dx.doi.org/10.1016/j.cell.2007.10.048
http://dx.doi.org/10.1002/ijc.24076
http://dx.doi.org/10.2353/ajpath.2008.070876
http://dx.doi.org/10.4161/auto.5.4.8061
http://dx.doi.org/10.1083/jcb.201002035
http://dx.doi.org/10.1371/journal.pone.0022514
http://dx.doi.org/10.1371/journal.pone.0022514
http://dx.doi.org/10.1016/0014-4827(85)90148-X
http://dx.doi.org/10.1073/pnas.1319661110
http://dx.doi.org/10.1073/pnas.1319661110
http://dx.doi.org/10.1038/bjc.2013.420
http://dx.doi.org/10.1002/jmor.1051540104
http://dx.doi.org/10.1038/nrm2529
http://dx.doi.org/10.4161/15384101.2014.965003
http://dx.doi.org/10.4161/15384101.2014.965003


oxidation protect yeast from “liponecrosis”, a previously unknown
form of programmed cell death. Cell Cycle 2014; 13:138-47; http://
dx.doi.org/10.4161/cc.26885.

1090. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW,
Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner
C, et al. Guidelines for the use and interpretation of assays for mon-
itoring cell death in higher eukaryotes. Cell Death Differ 2009;
16:1093-107; http://dx.doi.org/10.1038/cdd.2009.44.

1091. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams
JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-
Petruzzelli M, et al. Essential versus accessory aspects of cell death:
recommendations of the NCCD 2015. Cell Death Differ 2015;
22:58-73; http://dx.doi.org/10.1038/cdd.2014.137.

1092. Minina EA, Bozhkov PV, Hofius D. Autophagy as initiator or exe-
cutioner of cell death. Trends Plant Sci 2014; 19:692-7.

1093. van Doorn WG, Beers EP, Dangl JL, Franklin-Tong VE, Gallois P,
Hara-Nishimura I, Jones AM, Kawai-Yamada M, Lam E, Mundy J,
et al. Morphological classification of plant cell deaths. Cell Death
Differ 2011; 18:1241-6; http://dx.doi.org/10.1038/cdd.2011.36.

1094. Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK. The
Rab GTPase RabG3b functions in autophagy and contributes to tra-
cheary element differentiation in Arabidopsis. Plant J 2010; 64:151-64.

1095. Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V,
Clapham D, Sanchez-Vera V, Suarez MF, Zhivotovsky B, Daniel G,
et al. Autophagy and metacaspase determine the mode of cell death
in plants. J Cell Biol 2013; 203:917-27; http://dx.doi.org/10.1083/
jcb.201307082.

1096. Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen
NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M.
Autophagic components contribute to hypersensitive cell death in
Arabidopsis. Cell 2009; 137:773-83; http://dx.doi.org/10.1016/j.
cell.2009.02.036.

1097. Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death:
analysis in Dictyostelium. Biochim Biophys Acta 2009; 1793:1422-
31; http://dx.doi.org/10.1016/j.bbamcr.2008.12.005.

1098. Luciani MF, Giusti C, Harms B, Oshima Y, Kikuchi H, Kubohara Y,
Golstein P. Atg1 allows second-signaled autophagic cell death in
Dictyostelium. Autophagy 2011; 7:501-8; http://dx.doi.org/10.4161/
auto.7.5.14957.

1099. Uchikawa T, Yamamoto A, Inouye K. Origin and function of the
stalk-cell vacuole in Dictyostelium. Dev Biol 2011; 352:48-57;
http://dx.doi.org/10.1016/j.ydbio.2011.01.014.

1100. Guimar[a]es CA, Benchimol M, Amarante-Mendes GP, Linden R.
Alternative programs of cell death in developing retinal tissue. J
Biol Chem 2003; 278:41938-46; http://dx.doi.org/10.1074/jbc.
M306547200.

1101. Lossi L, Gambino G, Mioletti S, Merighi A. In vivo analysis reveals
different apoptotic pathways in pre- and postmigratory cerebellar
granule cells of rabbit. J Neurobiol 2004; 60:437-52; http://dx.doi.
org/10.1002/neu.20032.

1102. Lossi L, Alasia S, Salio C, Merighi A. Cell death and proliferation in
acute slices and organotypic cultures of mammalian CNS. Prog
Neurobiol 2009; 88:221-45; http://dx.doi.org/10.1016/j.pneurobio.
2009.01.002.

1103. Thorburn A. I think autophagy controls the death of my cells: what
do I do to get my paper published? Autophagy 2011; 7:455-6;
http://dx.doi.org/10.4161/auto.7.5.14797.

1104. Kaushik S, Bandyopadhyay U, Sridhar S, Kiffin R, Martinez-Vicente
M, Kon M, Orenstein SJ, Wong E, Cuervo AM. Chaperone-medi-
ated autophagy at a glance. J Cell Sci 2011; 124:495-9; http://dx.doi.
org/10.1242/jcs.073874.

1105. Arias E, Cuervo AM. Chaperone-mediated autophagy in protein
quality control. Curr Opin Cell Biol 2010; 23:184-9; http://dx.doi.
org/10.1016/j.ceb.2010.10.009.

1106. Kaushik S, Cuervo AM. Methods to monitor chaperone-mediated
autophagy. Methods Enzymol 2009; 452:297-324; http://dx.doi.org/
10.1016/S0076-6879(08)03619-7.

1107. Dice JF. Peptide sequences that target cytosolic proteins for lyso-
somal proteolysis. Trends Biochem Sci 1990; 15:305-9; http://dx.
doi.org/10.1016/0968-0004(90)90019-8.

1108. Cuervo AM, Dice JF. A receptor for the selective uptake and degra-
dation of proteins by lysosomes. Science 1996; 273:501-3; http://dx.
doi.org/10.1126/science.273.5274.501.

1109. Cuervo AM, Dice JF. Unique properties of lamp2a compared to
other lamp2 isoforms. J Cell Sci 2000; 113:4441-50.

1110. Finn PF, Mesires NT, Vine M, Dice JF. Effects of small molecules on
chaperone-mediated autophagy. Autophagy 2005; 1:141-5; http://
dx.doi.org/10.4161/auto.1.3.2000.

1111. Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The
chaperone-mediated autophagy receptor organizes in dynamic
protein complexes at the lysosomal membrane. Mol Cell Biol
2008; 28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07.

1112. Aniento F, Emans N, Griffiths G, Gruenberg J. Cytoplasmic dynein-
dependent vesicular transport from early to late endosomes. J Cell
Biol 1993; 123:1373-87; http://dx.doi.org/10.1083/jcb.123.6.1373.

1113. Salvador N, Aguado C, Horst M, Knecht E. Import of a cytosolic
protein into lysosomes by chaperone-mediated autophagy depends
on its folding state. J Biol Chem 2000; 275:27447-56.

1114. Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo
AM. A photoconvertible fluorescent reporter to track chaperone-
mediated autophagy. Nat Commun 2011; 2:386; http://dx.doi.org/
10.1038/ncomms1393.

1115. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A,
Potolicchio I, Nieves E, Cuervo AM, Santambrogio L. Microauto-
phagy of cytosolic proteins by late endosomes. Dev Cell 2011;
20:131-9; http://dx.doi.org/10.1016/j.devcel.2010.12.003.

1116. Arndt V, Dick N, Tawo R, Dreiseidler M, Wenzel D, Hesse M, Furst
DO, Saftig P, Saint R, Fleischmann BK, et al. Chaperone-assisted
selective autophagy is essential for muscle maintenance. Curr Biol
2010; 20:143-8; http://dx.doi.org/10.1016/j.cub.2009.11.022.

1117. Eskelinen EL, Schmidt CK, Neu S, Willenborg M, Fuertes G, Salva-
dor N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.
Disturbed cholesterol traffic but normal proteolytic function in
LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004;
15:3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103.

1118. Eskelinen EL, Illert AL, Tanaka Y, Schwarzmann G, Blanz J, Von
Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and
autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/
10.1091/mbc.E02-02-0114.

1119. Huynh KK, Eskelinen EL, Scott CC, Malevanets A, Saftig P, Grin-
stein S. LAMP proteins are required for fusion of lysosomes with
phagosomes. EMBO J 2007; 26:313-24; http://dx.doi.org/10.1038/sj.
emboj.7601511.

1120. Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C,
Uchida K, Yoshimura A, Tamai Y, Wada K, et al. Discovery of a
novel type of autophagy targeting RNA. Autophagy 2013; 9:403-9;
http://dx.doi.org/10.4161/auto.23002.

1121. Fujiwara Y, Hase K, Wada K, Kabuta T. An RNautophagy/DNauto-
phagy receptor, LAMP2C, possesses an arginine-rich motif that
mediates RNA/DNA-binding. Biochem Biophys Res Commun
2015; 460:281-6; http://dx.doi.org/10.1016/j.bbrc.2015.03.025.

1122. Fujiwara Y, Kikuchi H, Aizawa S, Furuta A, Hatanaka Y, Konya C,
Uchida K, Wada K, Kabuta T. Direct uptake and degradation of
DNA by lysosomes. Autophagy 2013; 9:1167-71; http://dx.doi.org/
10.4161/auto.24880.

1123. Hase K, Fujiwara Y, Kikuchi H, Aizawa S, Hakuno F, Takahashi S,
Wada K, Kabuta T. RNautophagy/DNautophagy possesses selectiv-
ity for RNA/DNA substrates. Nucleic Acids Res 2015; 43:6439-49;
http://dx.doi.org/10.1093/nar/gkv579.

1124. Furuta A, Kikuchi H, Fujita H, Yamada D, Fujiwara Y, Kabuta
T, Nishino I, Wada K, Uchiyama Y. Property of lysosomal stor-
age disease associated with midbrain pathology in the central
nervous system of lamp-2-deficient mice. Am J Pathol 2015;
185:1713-23; http://dx.doi.org/10.1016/j.ajpath.2015.02.015.

1125. Rothaug M, Stroobants S, Schweizer M, Peters J, Zunke F, Allerding
M, D’Hooge R, Saftig P, Blanz J. LAMP-2 deficiency leads to hippo-
campal dysfunction but normal clearance of neuronal substrates of
chaperone-mediated autophagy in a mouse model for Danon dis-
ease. Acta Neuropathol Commun 2015; 3:6; http://dx.doi.org/
10.1186/s40478-014-0182-y.

154 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/cc.26885
http://dx.doi.org/10.1038/cdd.2009.44
http://dx.doi.org/10.1038/cdd.2014.137
http://dx.doi.org/10.1038/cdd.2011.36
http://dx.doi.org/10.1083/jcb.201307082
http://dx.doi.org/10.1083/jcb.201307082
http://dx.doi.org/10.1016/j.cell.2009.02.036
http://dx.doi.org/10.1016/j.cell.2009.02.036
http://dx.doi.org/10.1016/j.bbamcr.2008.12.005
http://dx.doi.org/10.4161/auto.7.5.14957
http://dx.doi.org/10.4161/auto.7.5.14957
http://dx.doi.org/10.1016/j.ydbio.2011.01.014
http://dx.doi.org/10.1074/jbc.M306547200
http://dx.doi.org/10.1074/jbc.M306547200
http://dx.doi.org/10.1002/neu.20032
http://dx.doi.org/10.1016/j.pneurobio.<?A3B2 re3j?>2009.01.002
http://dx.doi.org/10.1016/j.pneurobio.<?A3B2 re3j?>2009.01.002
http://dx.doi.org/10.4161/auto.7.5.14797
http://dx.doi.org/10.1242/jcs.073874
http://dx.doi.org/10.1016/j.ceb.2010.10.009
http://dx.doi.org/10.1016/S0076-6879(08)03619-7
http://dx.doi.org/10.1016/0968-0004(90)90019-8
http://dx.doi.org/10.1126/science.273.5274.501
http://dx.doi.org/10.4161/auto.1.3.2000
http://dx.doi.org/10.1128/MCB.02070-07
http://dx.doi.org/10.1083/jcb.123.6.1373
http://dx.doi.org/10.1038/ncomms1393
http://dx.doi.org/10.1016/j.devcel.2010.12.003
http://dx.doi.org/10.1016/j.cub.2009.11.022
http://dx.doi.org/10.1091/mbc.E04-02-0103
http://dx.doi.org/10.1091/mbc.E02-02-0114
http://dx.doi.org/10.1038/sj.emboj.7601511
http://dx.doi.org/10.1038/sj.emboj.7601511
http://dx.doi.org/10.4161/auto.23002
http://dx.doi.org/10.1016/j.bbrc.2015.03.025
http://dx.doi.org/10.4161/auto.24880
http://dx.doi.org/10.1093/nar/gkv579
http://dx.doi.org/10.1016/j.ajpath.2015.02.015
http://dx.doi.org/10.1186/s40478-014-0182-y


1126. Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, Hersch
N, Vakeel P, Stadel D, Haas A, Saftig P, et al. Cellular mechano-
transduction relies on tension-induced and chaperone-assisted
autophagy. Curr Biol 2013; 23:430-5; http://dx.doi.org/10.1016/j.
cub.2013.01.064.

1127. Carra S, Seguin SJ, Lambert H, Landry J. HspB8 chaperone activity
toward poly(Q)-containing proteins depends on its association with
Bag3, a stimulator of macroautophagy. J Biol Chem 2008; 283:1437-
44; http://dx.doi.org/10.1074/jbc.M706304200.

1128. Carra S, Seguin SJ, Landry J. HspB8 and Bag3: a new chaperone
complex targeting misfolded proteins to macroautophagy. Auto-
phagy 2008; 4:237-9; http://dx.doi.org/10.4161/auto.5407.

1129. Niemann A, Baltes J, Elsasser HP. Fluorescence properties
and staining behavior of monodansylpentane, a structural homo-
logue of the lysosomotropic agent monodansylcadaverine. J
Histochem Cytochem 2001; 49:177-85; http://dx.doi.org/10.1177/
002215540104900205.

1130. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas
E, Domingo D, Yahalom J. A novel response of cancer cells to radia-
tion involves autophagy and formation of acidic vesicles. Cancer
Res 2001; 61:439-44.

1131. Florez-McClure ML, Linseman DA, Chu CT, Barker PA, Bouchard
RJ, Le SS, Laessig TA, Heidenreich KA. The p75 neurotrophin
receptor can induce autophagy and death of cerebellar Purkinje
neurons. J Neurosci 2004; 24:4498-509; http://dx.doi.org/10.1523/
JNEUROSCI.5744-03.2004.

1132. Moriyasu Y, Hattori M, Jauh G-Y, Rogers JC. Alpha tonoplast
intrinsic protein is specifically associated with vacuole membrane
involved in an autophagic process. Plant Cell Physiol 2003; 44:795-
802; http://dx.doi.org/10.1093/pcp/pcg100.

1133. Wolfe DM, Lee JH, Kumar A, Lee S, Orenstein SJ, Nixon RA. Auto-
phagy failure in Alzheimer’s disease and the role of defective lyso-
somal acidification. Eur J Neurosci 2013; 37:1949-61; http://dx.doi.
org/10.1111/ejn.12169.

1134. Biederbick A, Kern HF, Elsasser HP. Monodansylcadaverine
(MDC) is a specific in vivo marker for autophagic vacuoles. Eur J
Cell Biol 1995; 66:3-14.

1135. Hoyer-Hansen M, Bastholm L, Mathiasen IS, Elling F, Jaattela M.
Vitamin D analog EB1089 triggers dramatic lysosomal changes and
Beclin 1-mediated autophagic cell death. Cell Death Differ 2005;
12:1297-309; http://dx.doi.org/10.1038/sj.cdd.4401651.

1136. Gutierrez MG, Munafo DB, Beron W, Colombo MI. Rab7 is
required for the normal progression of the autophagic pathway in
mammalian cells. J Cell Sci 2004; 117:2687-97; http://dx.doi.org/
10.1242/jcs.01114.

1137. Fogel JL, Thein TZ, Mariani FV. Use of LysoTracker to detect pro-
grammed cell death in embryos and differentiating embryonic stem
cells. J Vis Exp 2012; 68; doi: 10.3791/4254

1138. Freundt EC, Czapiga M, Lenardo MJ. Photoconversion of Lyso-
tracker Red to a green fluorescent molecule. Cell Res 2007; 17:956-
8; http://dx.doi.org/10.1038/cr.2007.80.

1139. Oeste CL, Seco E, Patton WF, Boya P, Perez-Sala D. Interactions
between autophagic and endo-lysosomal markers in endothelial
cells. Histochem Cell Biol 2013; 139:659-70; http://dx.doi.org/
10.1007/s00418-012-1057-6.

1140. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential
therapeutic applications of autophagy. Nat Rev Drug Discov 2007;
6:304-12; http://dx.doi.org/10.1038/nrd2272.

1141. Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex–at
the crossroads of autophagy and beyond. Trends Cell Biol 2010;
20:355-62; http://dx.doi.org/10.1016/j.tcb.2010.03.002.

1142. Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regula-
tors of apoptosis and autophagy. Autophagy 2008; 4:600-6; http://
dx.doi.org/10.4161/auto.6260.

1143. Simonsen A, Tooze SA. Coordination of membrane events during
autophagy by multiple class III PI3-kinase complexes. J Cell Biol
2009; 186:773-82; http://dx.doi.org/10.1083/jcb.200907014.

1144. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH,
Choi B, Lee H, Kim JH, et al. Essential roles of Atg5 and FADD in
autophagic cell death: dissection of autophagic cell death into

vacuole formation and cell death. J Biol Chem 2005; 280:20722-9;
http://dx.doi.org/10.1074/jbc.M413934200.

1145. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Dis-
tinct classes of phosphatidylinositol 3’-kinases are involved in sig-
naling pathways that control macroautophagy in HT-29 cells. J Biol
Chem 2000; 275:992-8; http://dx.doi.org/10.1074/jbc.275.2.992.

1146. Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, Sharp FA,
Lambe EM, Creagh EM, Golenbock DT, Tschopp J, et al. Auto-
phagy controls IL-1beta secretion by targeting pro-IL-1beta for deg-
radation. J Biol Chem 2011; 286:9587-97; http://dx.doi.org/10.1074/
jbc.M110.202911.

1147. Crisan TO, Plantinga TS, van de Veerdonk FL, Farcas MF, Stoffels
M, Kullberg BJ, van der Meer JW, Joosten LA, Netea MG. Inflam-
masome-independent modulation of cytokine response by auto-
phagy in human cells. PloS One 2011; 6:e18666.

1148. Kleinnijenhuis J, Oosting M, Plantinga TS, van der Meer JW, Joos-
ten LA, Crevel RV, Netea MG. Autophagy modulates the Mycobac-
terium tuberculosis-induced cytokine response. Immunology 2011;
134:341-8; http://dx.doi.org/10.1111/j.1365-2567.2011.03494.x.

1149. Peral de Castro C, Jones SA, Ni Cheallaigh C, Hearnden CA, Wil-
liams L, Winter J, Lavelle EC, Mills KH, Harris J. Autophagy regu-
lates IL-23 secretion and innate T cell responses through effects on
IL-1 secretion. J Immunol 2012; 189:4144-53; http://dx.doi.org/
10.4049/jimmunol.1201946.

1150. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E,
Menon S, Wang Z, Honda A, Pardee G, et al. Selective VPS34 inhib-
itor blocks autophagy and uncovers a role for NCOA4 in ferritin
degradation and iron homeostasis in vivo. Nat Cell Biol 2014;
16:1069-79; http://dx.doi.org/10.1038/ncb3053.

1151. Ronan B, Flamand O, Vescovi L, Dureuil C, Durand L, Fassy F,
Bachelot MF, Lamberton A, Mathieu M, Bertrand T, et al. A highly
potent and selective Vps34 inhibitor alters vesicle trafficking and
autophagy. Nat Chem Biol 2014; 10:1013-9; http://dx.doi.org/
10.1038/nchembio.1681.

1152. Chen J, Chen MX, Fogo AB, Harris RC, Chen JK. mVps34 deletion
in podocytes causes glomerulosclerosis by disrupting intracellular
vesicle trafficking. J Am Soc Nephrol 2013; 24:198-207; http://dx.
doi.org/10.1681/ASN.2012010101.

1153. Cantino D, Mosso R, Baccino FM. Changes induced by fasting and
cycloheximide in the vacuolar apparatus of rat hepatocytes. A mor-
phometric investigation. Boll Soc Ital Biol Sper 1979; 55:1884-9.

1154. Kov�acs J. Morphometric study of the effect of leupeptin, vinblastine,
estron acetate and cycloheximide on the autophagic vacuole-lyso-
somal compartments in mouse seminal vesicle cells. Virchows Arch
B Cell Pathol Incl Mol Pathol 1983; 42:83-93; http://dx.doi.org/
10.1007/BF02890372.

1155. Papadopoulos T, Pfeifer U. Regression of rat liver autophagic
vacuoles by locally applied cycloheximide. Lab Investig 1986;
54:100-7.

1156. Rumpelt HJ, Albring M, Thoenes W. Prevention of D-galactos-
amine-induced hepatocellular autophagocytosis by cycloheximide.
Virchows Arch B Cell Pathol 1974; 16:195-203; http://dx.doi.org/
10.1007/BF02894074.

1157. Rumpelt HJ, Weisbach T. Effect of cycloheximide on glucagon-
induced autophagy. Quantitative examinations on hepatocytes in
the rat. Am J Pathol 1978; 91:49-55.

1158. Kov�acs AL, Kov�acs J. Autophagocytosis in mouse seminal vesicle
cells in vitro. Temperature dependence and effects of vinblastine
and inhibitors of protein synthesis. Virchows Arch B Cell Pathol
Incl Mol Pathol 1980; 32:97-104; http://dx.doi.org/10.1007/
BF02889018.

1159. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-
signaling and control of DNA-damage repair. Int J Radiat Biol 2007;
83:781-91; http://dx.doi.org/10.1080/09553000701769970.

1160. Chaachouay H, Ohneseit P, Toulany M, Kehlbach R, Multhoff G,
Rodemann HP. Autophagy contributes to resistance of tumor cells
to ionizing radiation. Radiother Oncol 2011; 99:287-92; http://dx.
doi.org/10.1016/j.radonc.2011.06.002.

1161. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked auto-
phagy sensitizes resistant carcinoma cells to radiation therapy.

AUTOPHAGY 155

http://dx.doi.org/10.1016/j.cub.2013.01.064
http://dx.doi.org/10.1016/j.cub.2013.01.064
http://dx.doi.org/10.1074/jbc.M706304200
http://dx.doi.org/10.4161/auto.5407
http://dx.doi.org/10.1177/002215540104900205
http://dx.doi.org/10.1177/002215540104900205
http://dx.doi.org/10.1523/JNEUROSCI.5744-03.2004
http://dx.doi.org/10.1523/JNEUROSCI.5744-03.2004
http://dx.doi.org/10.1093/pcp/pcg100
http://dx.doi.org/10.1111/ejn.12169
http://dx.doi.org/10.1038/sj.cdd.4401651
http://dx.doi.org/10.1242/jcs.01114
http://dx.doi.org/10.1038/cr.2007.80
http://dx.doi.org/10.1007/s00418-012-1057-6
http://dx.doi.org/10.1038/nrd2272
http://dx.doi.org/10.1016/j.tcb.2010.03.002
http://dx.doi.org/10.4161/auto.6260
http://dx.doi.org/10.1083/jcb.200907014
http://dx.doi.org/10.1074/jbc.M413934200
http://dx.doi.org/10.1074/jbc.275.2.992
http://dx.doi.org/10.1074/jbc.M110.202911
http://dx.doi.org/10.1074/jbc.M110.202911
http://dx.doi.org/10.1111/j.1365-2567.2011.03494.x
http://dx.doi.org/10.4049/jimmunol.1201946
http://dx.doi.org/10.1038/ncb3053
http://dx.doi.org/10.1038/nchembio.1681
http://dx.doi.org/10.1681/ASN.2012010101
http://dx.doi.org/10.1007/BF02890372
http://dx.doi.org/10.1007/BF02894074
http://dx.doi.org/10.1007/BF02889018
http://dx.doi.org/10.1007/BF02889018
http://dx.doi.org/10.1080/09553000701769970
http://dx.doi.org/10.1016/j.radonc.2011.06.002


Cancer Res 2008; 68:1485-94; http://dx.doi.org/10.1158/0008-5472.
CAN-07-0562.

1162. Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived
from glutaminolysis is a diffusible regulator of autophagy. Sci Signal
2010; 3:ra31.

1163. Seglen PO, Gordon PB. Effects of lysosomotropic monoamines, dia-
mines, amino alcohols, and other amino compounds on protein
degradation and protein synthesis in isolated rat hepatocytes. Mol
Pharmacol 1980; 18:468-75.

1164. Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-
induced autophagy is independent of ULK1/ULK2 kinases. Proc
Natl Acad Sci USA 2011; 108:11121-6; http://dx.doi.org/10.1073/
pnas.1107969108.

1165. Pellegrini P, Strambi A, Zipoli C, Hagg-Olofsson M, Buoncervello
M, Linder S, De Milito A. Acidic extracellular pH neutralizes the
autophagy-inhibiting activity of chloroquine: implications for can-
cer therapies. Autophagy 2014; 10:562-71; http://dx.doi.org/
10.4161/auto.27901.

1166. Fischer S, Ronellenfitsch MW, Thiepold AL, Harter PN, Reichert S,
Kogel D, Paschke R, Mittelbronn M, Weller M, Steinbach JP, et al.
Hypoxia enhances the antiglioma cytotoxicity of B10, a glycosylated
derivative of betulinic acid. PloS One 2014; 9:e94921; http://dx.doi.
org/10.1371/journal.pone.0094921.

1167. Gonzalez P, Mader I, Tchoghandjian A, Enzenmuller S, Cristofanon
S, Basit F, Debatin KM, Fulda S. Impairment of lysosomal integrity
by B10, a glycosylated derivative of betulinic acid, leads to lysosomal
cell death and converts autophagy into a detrimental process. Cell
Death Differ 2012; 19:1337-46; http://dx.doi.org/10.1038/cdd.2012.10.

1168. Potze L, Mullauer FB, Colak S, Kessler JH, Medema JP. Betulinic
acid-induced mitochondria-dependent cell death is counterbal-
anced by an autophagic salvage response. Cell Death Dis 2014; 5:
e1169; http://dx.doi.org/10.1038/cddis.2014.139.

1169. Broniatowski M, Flasinski M, Wydro P. Investigation of the interac-
tions of lupane type pentacyclic triterpenes with outer leaflet mem-
brane phospholipids–Langmuir monolayer and synchrotron X-ray
scattering study. J Colloid Interface Sci 2012; 381:116-24; http://dx.
doi.org/10.1016/j.jcis.2012.05.020.

1170. Chen Y, Sun R, Wang B. Monolayer behavior of binary systems of
betulinic acid and cardiolipin: thermodynamic analyses of Lang-
muir monolayers and AFM study of Langmuir-Blodgett mono-
layers. J Colloid Interface Sci 2011; 353:294-300; http://dx.doi.org/
10.1016/j.jcis.2010.09.019.

1171. Gao M, Lau PM, Kong SK. Mitochondrial toxin betulinic acid indu-
ces in vitro eryptosis in human red blood cells through membrane
permeabilization. Arch Toxicol 2014; 88:755-68.

1172. Wei P, Zhang L, Lu Y, Man N, Wen L. C60(Nd) nanoparticles
enhance chemotherapeutic susceptibility of cancer cells by modula-
tion of autophagy. Nanotechnology 2010; 21:495101; http://dx.doi.
org/10.1088/0957-4484/21/49/495101.

1173. Lee DH, Goldberg AL. Proteasome inhibitors: valuable new tools
for cell biologists. Trends Cell Biol 1998; 8:397-403; http://dx.doi.
org/10.1016/S0962-8924(98)01346-4.

1174. Mehdi S. Cell-penetrating inhibitors of calpain. Trends Biochem Sci
1991; 16:150-3; http://dx.doi.org/10.1016/0968-0004(91)90058-4.

1175. Holen I, Gordon PB, Seglen PO. Inhibition of hepatocytic auto-
phagy by okadaic acid and other protein phosphatase inhibitors.
Eur J Biochem 1993; 215:113-22; http://dx.doi.org/10.1111/j.1432-
1033.1993.tb18013.x.

1176. Sasaki K, Murata M, Yasumoto T, Mieskes G, Takai A. Affinity of
okadaic acid to type-1 and type-2A protein phosphatases is
markedly reduced by oxidation of its 27-hydroxyl group. Biochem J
1994; 298:259-62; http://dx.doi.org/10.1042/bj2980259.

1177. Robinson DG, Albrecht S, Moriyasu Y. The V-ATPase inhibitors
concanamycin A and bafilomycin A lead to Golgi swelling in
tobacco BY-2 cells. Protoplasma 2004; 224:255-60; http://dx.doi.
org/10.1007/s00709-004-0070-6.

1178. Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY,
Liang Y, Lu Z, et al. The lysosomal v-ATPase-Ragulator complex is
a common activator for AMPK and mTORC1, acting as a switch

between catabolism and anabolism. Cell Metab 2014; 20:526-40;
http://dx.doi.org/10.1016/j.cmet.2014.06.014.

1179. Wu YC, Wu WK, Li Y, Yu L, Li ZJ, Wong CC, Li HT, Sung JJ, Cho
CH. Inhibition of macroautophagy by bafilomycin A1 lowers prolif-
eration and induces apoptosis in colon cancer cells. Biochem Bio-
phys Res Commun 2009; 382:451-6; http://dx.doi.org/10.1016/j.
bbrc.2009.03.051.

1180. Ostenfeld MS, Hoyer-Hansen M, Bastholm L, Fehrenbacher N,
Olsen OD, Groth-Pedersen L, Puustinen P, Kirkegaard-Sorensen T,
Nylandsted J, Farkas T, et al. Anti-cancer agent siramesine is a lyso-
somotropic detergent that induces cytoprotective autophagosome
accumulation. Autophagy 2008; 4:487-99; http://dx.doi.org/
10.4161/auto.5774.

1181. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI,
Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition
enhances therapy-induced apoptosis in a Myc-induced model of
lymphoma. J Clin Invest 2007.

1182. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco
R. Impairment of Atg5-dependent autophagic flux promotes para-
quat- and MPP(C)-induced apoptosis but not rotenone or 6-
hydroxydopamine toxicity. Toxicol Sci 2013; 136:166-82; http://dx.
doi.org/10.1093/toxsci/kft188.

1183. Maclean KH, Dorsey FC, Cleveland JL, Kastan MB. Targeting lyso-
somal degradation induces p53-dependent cell death and prevents
cancer in mouse models of lymphomagenesis. J Clin Invest 2008;
118:79-88; http://dx.doi.org/10.1172/JCI33700.

1184. Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH
in mouse peritoneal macrophages. J Cell Biol 1981; 90:665-9; http://
dx.doi.org/10.1083/jcb.90.3.665.

1185. Matsuoka K, Higuchi T, Maeshima M, Nakamura K. A vacuolar-
type HC-ATPase in a nonvacuolar organelle is required for the
sorting of soluble vacuolar protein precursors in tobacco cells. Plant
Cell 1997; 9:533-46.

1186. Arstila AU, Nuuja IJ, Trump BF. Studies on cellular autophagocyto-
sis. Vinblastine-induced autophagy in the rat liver. Exp Cell Res
1974; 87:249-52; http://dx.doi.org/10.1016/0014-4827(74)90477-7.

1187. Hirsimaki Y, Arstila AU, Trump BF. Autophagocytosis: in vitro
induction by microtuble poisons. Exp Cell Res 1975; 92:11-4; http://
dx.doi.org/10.1016/0014-4827(75)90630-8.

1188. Kominami E, Hashida S, Khairallah EA, Katunuma N. Sequestra-
tion of cytoplasmic enzymes in an autophagic vacuole-lysosomal
system induced by injection of leupeptin. J Biol Chem 1983;
258:6093-100.

1189. R�ez G, Fellinger E, Reti M, Biczo I, Kov�acs AL. Time course of
quantitative morphological changes of the autophagic-lysosomal
compartment of murine seminal vesicle epithelial cells under
the influence of vinblastine. J Submicrosc Cytol Pathol 1990;
22:529-34.

1190. Oliva O, R�ez G, P�alfia Z, Fellinger E. Dynamics of vinblastine-
induced autophagocytosis in murine pancreatic acinar cells: influ-
ence of cycloheximide post-treatments. Exp Mol Pathol 1992;
56:76-86; http://dx.doi.org/10.1016/0014-4800(92)90025-7.

1191. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D,
Shokat KM. Active-site inhibitors of mTOR target rapamycin-resis-
tant outputs of mTORC1 and mTORC2. PLoS Biol 2009; 7:e38;
http://dx.doi.org/10.1371/journal.pbio.1000038.

1192. Fleming A, Noda T, Yoshimori T, Rubinsztein DC. Chemical mod-
ulators of autophagy as biological probes and potential therapeutics.
Nat Chem Biol 2011; 7:9-17; http://dx.doi.org/10.1038/nchembio.500.

1193. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y,
Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competi-
tive mammalian target of rapamycin inhibitor reveals rapamy-
cin-resistant functions of mTORC1. J Biol Chem 2009;
284:8023-32; http://dx.doi.org/10.1074/jbc.M900301200.

1194. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J,
Verheijen J, Curran K, Malwitz DJ, et al. Biochemical, cellular,
and in vivo activity of novel ATP-competitive and selective
inhibitors of the mammalian target of rapamycin. Cancer Res
2009; 69:6232-40; http://dx.doi.org/10.1158/0008-5472.CAN-09-0299.

156 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1158/0008-5472.CAN-07-0562
http://dx.doi.org/10.1158/0008-5472.CAN-07-0562
http://dx.doi.org/10.1073/pnas.1107969108
http://dx.doi.org/10.1073/pnas.1107969108
http://dx.doi.org/10.4161/auto.27901
http://dx.doi.org/10.1371/journal.pone.0094921
http://dx.doi.org/10.1038/cdd.2012.10
http://dx.doi.org/10.1038/cddis.2014.139
http://dx.doi.org/10.1016/j.jcis.2012.05.020
http://dx.doi.org/10.1016/j.jcis.2010.09.019
http://dx.doi.org/10.1088/0957-4484/21/49/495101
http://dx.doi.org/10.1016/S0962-8924(98)01346-4
http://dx.doi.org/10.1016/0968-0004(91)90058-4
http://dx.doi.org/10.1111/j.1432-1033.1993.tb18013.x
http://dx.doi.org/10.1111/j.1432-1033.1993.tb18013.x
http://dx.doi.org/10.1042/bj2980259
http://dx.doi.org/10.1007/s00709-004-0070-6
http://dx.doi.org/10.1016/j.cmet.2014.06.014
http://dx.doi.org/10.1016/j.bbrc.2009.03.051
http://dx.doi.org/10.1016/j.bbrc.2009.03.051
http://dx.doi.org/10.4161/auto.5774
http://dx.doi.org/10.1093/toxsci/kft188
http://dx.doi.org/10.1172/JCI33700
http://dx.doi.org/10.1083/jcb.90.3.665
http://dx.doi.org/10.1016/0014-4827(74)90477-7
http://dx.doi.org/10.1016/0014-4827(75)90630-8
http://dx.doi.org/10.1016/0014-4800(92)90025-7
http://dx.doi.org/10.1371/journal.pbio.1000038
http://dx.doi.org/10.1038/nchembio.500
http://dx.doi.org/10.1074/jbc.M900301200
http://dx.doi.org/10.1158/0008-5472.CAN-09-0299


1195. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Crit-
chlow SE, Vincent JP, Ellston R, Jones D, Sini P, et al. AZD8055 is a
potent, selective, and orally bioavailable ATP-competitive mamma-
lian target of rapamycin kinase inhibitor with in vitro and in vivo
antitumor activity. Cancer Res 2010; 70:288-98; http://dx.doi.org/
10.1158/0008-5472.CAN-09-1751.

1196. Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induc-
tion of autophagy with catalytic mTOR inhibitors reduces hunting-
tin aggregates in a neuronal cell model. J Neurochem 2011;
119:398-407; http://dx.doi.org/10.1111/j.1471-4159.2011.07435.x.

1197. Fan QW, Cheng C, Hackett C, Feldman M, Houseman BT, Nico-
laides T, Haas-Kogan D, James CD, Oakes SA, Debnath J, et al. Akt
and autophagy cooperate to promote survival of drug-resistant gli-
oma. Sci Signal 2010; 3:ra81.

1198. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic
autophagy in obesity promotes ER stress and causes insulin resis-
tance. Cell Metab 2010; 11:467-78; http://dx.doi.org/10.1016/j.
cmet.2010.04.005.

1199. Yamamoto A, Yue Z. Autophagy and its normal and pathogenic
States in the brain. Annu Rev Neurosci 2014; 37:55-78; http://dx.
doi.org/10.1146/annurev-neuro-071013-014149.

1200. Tsvetkov AS, Miller J, Arrasate M, Wong JS, Pleiss MA, Finkbeiner
S. A small-molecule scaffold induces autophagy in primary neurons
and protects against toxicity in a Huntington disease model. Proc
Natl Acad Sci USA 2010; 107:16982-7; http://dx.doi.org/10.1073/
pnas.1004498107.

1201. Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jah-
reiss L, Fleming A, Pask D, Goldsmith P, et al. Novel targets for
Huntington’s disease in an mTOR-independent autophagy path-
way. Nat Chem Biol 2008; 4:295-305; http://dx.doi.org/10.1038/
nchembio.79.

1202. Palomo GM, Cerrato T, Gargini R, Diaz-Nido J. Silencing of fra-
taxin gene expression triggers p53-dependent apoptosis in human
neuron-like cells. Hum Mol Genet 2011; 20:2807-22; http://dx.doi.
org/10.1093/hmg/ddr187.

1203. Bolinches-Amoros A, Molla B, Pla-Martin D, Palau F, Gonzalez-
Cabo P. Mitochondrial dysfunction induced by frataxin deficiency
is associated with cellular senescence and abnormal calcium metab-
olism. Front Cell Neurosci 2014; 8:124.

1204. Sakagami H, Kawase M, Wakabayashi H, Kurihara T. Factors that
affect the type of cell death induced by chemicals. Autophagy 2007;
3:493-5; http://dx.doi.org/10.4161/auto.4594.

1205. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra
RD. The APG8/12-activating enzyme APG7 is required for proper
nutrient recycling and senescence in Arabidopsis thaliana. J Biol
Chem 2002; 277:33105-14; http://dx.doi.org/10.1074/jbc.M204630200.

1206. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S,
Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, et al.
Ambra1 regulates autophagy and development of the nervous sys-
tem. Nature 2007; 447:1121-5.

1207. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshi-
mori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of auto-
phagy during the early neonatal starvation period. Nature 2004;
432:1032-6; http://dx.doi.org/10.1038/nature03029.

1208. Hwang S, Maloney NS, Bruinsma MW, Goel G, Duan E, Zhang L,
Shrestha B, Diamond MS, Dani A, Sosnovtsev SV, et al. Nondegra-
dative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in
antiviral activity of interferon gamma. Cell Host Microbe 2012;
11:397-409; http://dx.doi.org/10.1016/j.chom.2012.03.002.

1209. Zhu H, Wu H, Liu X, Li B, Chen Y, Ren X, Liu CG, Yang JM. Regu-
lation of autophagy by a beclin 1-targeted microRNA, miR-30a, in
cancer cells. Autophagy 2009; 5:816-23; http://dx.doi.org/10.4161/
auto.9064.

1210. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kir-
shenbaum LA, Gottlieb RA, Gustafsson AB. Response to myocar-
dial ischemia/reperfusion injury involves Bnip3 and autophagy.
Cell Death Differ 2007; 14:146-57; http://dx.doi.org/10.1038/sj.
cdd.4401936.

1211. Poeck H, Besch R, Maihoefer C, Renn M, Tormo D, Morskaya SS,
Kirschnek S, Gaffal E, Landsberg J, Hellmuth J, et al.

50-Triphosphate-siRNA: turning gene silencing and Rig-I activation
against melanoma. Nat Med 2008; 14:1256-63; http://dx.doi.org/
10.1038/nm.1887.

1212. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like
receptors control autophagy. EMBO J 2008; 27:1110-21; http://dx.
doi.org/10.1038/emboj.2008.31.

1213. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW. A critical
role for the autophagy gene Atg5 in T cell survival and proliferation. J
Exp Med 2007; 204:25-31; http://dx.doi.org/10.1084/jem.20061303.

1214. Miller BC, Zhao Z, Stephenson LM, Cadwell K, Pua HH, Lee HK,
Mizushima NN, Iwasaki A, He YW, Swat W, et al. The autophagy
gene ATG5 plays an essential role in B lymphocyte development.
Autophagy 2008; 4:309-14; http://dx.doi.org/10.4161/auto.5474.

1215. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR, Chang H, Zhou FC,
Gao SJ, Liang C, et al. FLIP-mediated autophagy regulation in cell
death control. Nat Cell Biol 2009; 11:1355-62; http://dx.doi.org/
10.1038/ncb1980.

1216. Kimball SR, Siegfried BA, Jefferson LS. Glucagon represses sig-
naling through the mammalian target of rapamycin in rat liver
by activating AMP-activated protein kinase. J Biol Chem 2004;
279:54103-9; http://dx.doi.org/10.1074/jbc.M410755200.

1217. Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer
AJ. Phosphorylation of ribosomal protein S6 is inhibitory for auto-
phagy in isolated rat hepatocytes. J Biol Chem 1995; 270:2320-6;
http://dx.doi.org/10.1074/jbc.270.5.2320.

1218. Klionsky DJ, Meijer AJ, Codogno P, Neufeld TP, Scott RC. Auto-
phagy and p70S6 kinase. Autophagy 2005; 1:59-61; http://dx.doi.
org/10.4161/auto.1.1.1536.

1219. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue,
controls autophagy in yeast. J Biol Chem 1998; 273:3963-6; http://
dx.doi.org/10.1074/jbc.273.7.3963.

1220. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M,
Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting
inositol monophosphatase. J Cell Biol 2005; 170:1101-11; http://dx.
doi.org/10.1083/jcb.200504035.

1221. Renna M, Jimenez-Sanchez M, Sarkar S, Rubinsztein DC. Chemical
inducers of autophagy that enhance the clearance of mutant pro-
teins in neurodegenerative diseases. J Biol Chem 2010; 285:11061-7;
http://dx.doi.org/10.1074/jbc.R109.072181.

1222. Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X,
Ma D, et al. Small molecule regulators of autophagy identified by an
image-based high-throughput screen. Proc Natl Acad Sci USA
2007; 104:19023-8; http://dx.doi.org/10.1073/pnas.0709695104.

1223. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Sza-
badkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R,
et al. Control of macroautophagy by calcium, calmodulin-depen-
dent kinase kinase-[b], and Bcl-2. Mol Cell 2007; 25:193-205;
http://dx.doi.org/10.1016/j.molcel.2006.12.009.

1224. Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De
Smedt H, Bultynck G, Parys JB. mTOR-Controlled Autophagy
Requires Intracellular Ca(2C) Signaling. PloS One 2013; 8:e61020;
http://dx.doi.org/10.1371/journal.pone.0061020.

1225. Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C,
Han SW, Stilhano RS, Ureshino RP, Bloor-Young D, Churchill
G, et al. Nicotinic acid adenine dinucleotide phosphate
(NAADP) regulates autophagy in cultured astrocytes. J Biol
Chem 2011; 286:27875-81; http://dx.doi.org/10.1074/jbc.
C110.216580.

1226. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch
L, Wilkins AD, Sun Q, Pallauf K, MacDuff D, et al. Identification of
a candidate therapeutic autophagy-inducing peptide. Nature 2013;
494:201-6; http://dx.doi.org/10.1038/nature11866.

1227. Su M, Mei Y, Sanishvili R, Levine B, Colbert CL, Sinha S. Targeting
gamma-herpesvirus 68 Bcl-2-mediated down-regulation of auto-
phagy. J Biol Chem 2014; 289:8029-40; http://dx.doi.org/10.1074/
jbc.M113.515361.

1228. Winter G, Hazan R, Bakalinsky AT, Abeliovich H. Caffeine induces
macroautophagy and confers a cytocidal effect on food spoilage
yeast in combination with benzoic acid. Autophagy 2008; 4:28-36;
http://dx.doi.org/10.4161/auto.5127.

AUTOPHAGY 157

http://dx.doi.org/10.1158/0008-5472.CAN-09-1751
http://dx.doi.org/10.1111/j.1471-4159.2011.07435.x
http://dx.doi.org/10.1016/j.cmet.2010.04.005
http://dx.doi.org/10.1016/j.cmet.2010.04.005
http://dx.doi.org/10.1146/annurev-neuro-071013-014149
http://dx.doi.org/10.1073/pnas.1004498107
http://dx.doi.org/10.1073/pnas.1004498107
http://dx.doi.org/10.1038/nchembio.79
http://dx.doi.org/10.1038/nchembio.79
http://dx.doi.org/10.1093/hmg/ddr187
http://dx.doi.org/10.4161/auto.4594
http://dx.doi.org/10.1074/jbc.M204630200
http://dx.doi.org/10.1038/nature03029
http://dx.doi.org/10.1016/j.chom.2012.03.002
http://dx.doi.org/10.4161/auto.9064
http://dx.doi.org/10.4161/auto.9064
http://dx.doi.org/10.1038/sj.cdd.4401936
http://dx.doi.org/10.1038/sj.cdd.4401936
http://dx.doi.org/10.1038/nm.1887
http://dx.doi.org/10.1038/emboj.2008.31
http://dx.doi.org/10.1084/jem.20061303
http://dx.doi.org/10.4161/auto.5474
http://dx.doi.org/10.1038/ncb1980
http://dx.doi.org/10.1074/jbc.M410755200
http://dx.doi.org/10.1074/jbc.270.5.2320
http://dx.doi.org/10.4161/auto.1.1.1536
http://dx.doi.org/10.1074/jbc.273.7.3963
http://dx.doi.org/10.1083/jcb.200504035
http://dx.doi.org/10.1074/jbc.R109.072181
http://dx.doi.org/10.1073/pnas.0709695104
http://dx.doi.org/10.1016/j.molcel.2006.12.009
http://dx.doi.org/10.1371/journal.pone.0061020
http://dx.doi.org/10.1074/jbc.C110.216580
http://dx.doi.org/10.1074/jbc.C110.216580
http://dx.doi.org/10.1038/nature11866
http://dx.doi.org/10.1074/jbc.M113.515361
http://dx.doi.org/10.1074/jbc.M113.515361
http://dx.doi.org/10.4161/auto.5127


1229. Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, Tanida I,
Kobayashi H, Sato F, Sato S, Ishikawa K, et al. Caffeine induces apo-
ptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K
inhibition. Autophagy 2011; 7:176-87; http://dx.doi.org/10.4161/
auto.7.2.14074.

1230. Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP,
Long MJ, Bishop DK, Haber JE. Caffeine impairs resection during
DNA break repair by reducing the levels of nucleases Sae2 and
Dna2. Nucleic Acids Res 2015; 43:6889-901; http://dx.doi.org/
10.1093/nar/gkv520.

1231. Fu J, Shao CJ, Chen FR, Ng HK, Chen ZP. Autophagy induced by
valproic acid is associated with oxidative stress in glioma cell lines.
Neuro-oncology 2010; 12:328-40; http://dx.doi.org/10.1093/
neuonc/nop005.

1232. Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein
R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, et al. HDACs
link the DNA damage response, processing of double-strand breaks
and autophagy. Nature 2011; 471:74-9; http://dx.doi.org/10.1038/
nature09803.

1233. Bartholomew CR, Suzuki T, Du Z, Backues SK, Jin M, Lynch-Day
MA, Umekawa M, Kamath A, Zhao M, Xie Z, et al. Ume6 transcrip-
tion factor is part of a signaling cascade that regulates autophagy.
Proc Natl Acad Sci USA 2012; 109:11206-10; http://dx.doi.org/
10.1073/pnas.1200313109.

1234. Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S,
Feng W, et al. Function and molecular mechanism of acetylation in
autophagy regulation. Science 2012; 336:474-7; http://dx.doi.org/
10.1126/science.1216990.

1235. Katagiri N, Kuroda T, Kishimoto H, Hayashi Y, Kumazawa T,
Kimura K. The nucleolar protein nucleophosmin is essential for
autophagy induced by inhibiting Pol I transcription. Sci Rep 2015;
5:8903; http://dx.doi.org/10.1038/srep08903.

1236. Kreiner G, Bierhoff H, Armentano M, Rodriguez-Parkitna J,
Sowodniok K, Naranjo JR, Bonfanti L, Liss B, Schutz G, Grummt I,
et al. A neuroprotective phase precedes striatal degeneration upon
nucleolar stress. Cell Death Differ 2013; 20:1455-64.

1237. Furuya N, Liang XH, Levine B. Autophagy and cancer. In: Klionsky
DJ, ed. Autophagy. Georgetown, TX: Landes Bioscience, 2004:241-
55.

1238. de Medina P, Paillasse MR, Segala G, Khallouki F, Brillouet S,
Dalenc F, Courbon F, Record M, Poirot M, Silvente-Poirot S.
Importance of cholesterol and oxysterols metabolism in the phar-
macology of tamoxifen and other AEBS ligands. Chem Phys Lipids
2011; 164:432-7.

1239. de Medina P, Payre B, Boubekeur N, Bertrand-Michel J, Terce F,
Silvente-Poirot S, Poirot M. Ligands of the antiestrogen-binding
site induce active cell death and autophagy in human breast cancer
cells through the modulation of cholesterol metabolism. Cell Death
Differ 2009; 16:1372-84.

1240. Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglath-
lin RL, Webster JA, Lewis TA, O’Kane CJ, Schreiber SL, et al. Small
molecules enhance autophagy and reduce toxicity in Huntington’s
disease models. Nat Chem Biol 2007; 3:331-8.

1241. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Tre-
halose, a novel mTOR-independent autophagy enhancer, acceler-
ates the clearance of mutant huntingtin and [a]-synuclein. J Biol
Chem 2007; 282:5641-52.

1242. Kruger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degra-
dation of tau in primary neurons and its enhancement by trehalose.
Neurobiol Aging 2012; 33:2291-305.

1243. Koshkina NV, Briggs K, Palalon F, Curley SA. Autophagy and
enhanced chemosensitivity in experimental pancreatic cancers
induced by noninvasive radiofrequency field treatment. Cancer
2014; 120:480-91.

1244. Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H,
Cheung KH, Yang J, Parker I, et al. Essential regulation of cell bio-
energetics by constitutive InsP3 receptor Ca2C transfer to mito-
chondria. Cell 2010; 142:270-83.

1245. Decuypere JP, Bultynck G, Parys JB. A dual role for Ca2C in auto-
phagy regulation. Cell Calcium 2011; 50:242-50.

1246. Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L,
Joza N, Vitale I, Morselli E, Tailler M, et al. The inositol 1,4,5-tri-
sphosphate receptor regulates autophagy through its interaction
with Beclin 1. Cell Death Differ 2009; 16:1006-17.

1247. Dayan F, Bilton RL, Laferriere J, Trottier E, Roux D, Pouyssegur J,
Mazure NM. Activation of HIF-1alpha in exponentially growing
cells via hypoxic stimulation is independent of the Akt/mTOR path-
way. J Cell Physiol 2009; 218:167-74.

1248. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysse-
gur J, Mazure NM. Hypoxia-induced autophagy is mediated
through hypoxia-inducible factor induction of BNIP3 and BNIP3L
via their BH3 domains. Mol Cell Biol 2009; 29:2570-81.

1249. Yamashita S, Yurimoto H, Murakami D, Yoshikawa M, Oku M,
Sakai Y. Lag-phase autophagy in the methylotrophic yeast Pichia
pastoris. Genes Cells 2009; 14:861-70.

1250. van Zutphen T, Baerends RJ, Susanna KA, de Jong A, Kuipers OP,
Veenhuis M, van der Klei IJ. Adaptation of Hansenula polymorpha
to methanol: a transcriptome analysis. BMC Genomics 2010; 11:1.

1251. Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu
Y. AtATG genes, homologs of yeast autophagy genes, are involved
in constitutive autophagy in Arabidopsis root tip cells. Plant Cell
Physiol 2006; 47:1641-52.

1252. Yano K, Suzuki T, Moriyasu Y. Constitutive autophagy in plant root
cells. Autophagy 2007; 3:360-2.

1253. Gordon PB, Kisen GO, Kovacs AL, Seglen PO. Experimental char-
acterization of the autophagic-lysosomal pathway in isolated rat
hepatocytes. Biochem Soc Symp 1989; 55:129-43.

1254. Poli A, Gordon PB, Schwarze PE, Grinde B, Seglen PO. Effects of
insulin and anchorage on hepatocytic protein metabolism and
amino acid transport. J Cell Sci 1981; 48:1-18.

1255. Schliess F, Reissmann R, Reinehr R, vom Dahl S, H€aussinger D.
Involvement of integrins and Src in insulin signaling toward auto-
phagic proteolysis in rat liver. J Biol Chem 2004; 279:21294-301.

1256. vom Dahl S, Dombrowski F, Schmitt M, Schliess F, Pfeifer U, Haus-
singer D. Cell hydration controls autophagosome formation in rat
liver in a microtubule-dependent way downstream from p38MAPK
activation. Biochem J 2001; 354:31-6.

1257. vom Dahl S, Stoll B, Gerok W, H€aussinger D. Inhibition of proteol-
ysis by cell swelling in the liver requires intact microtubular struc-
tures. Biochem J 1995; 308 (Pt 2):529-36.

1258. Klionsky DJ, Bruford EA, Cherry JM, Hodgkin J, Laulederkind SJ,
Singer AG. In the beginning there was babble. Autophagy 2012;
8:1165-7.

1259. Kovacs AL, Zhang H. Role of autophagy in Caenorhabditis elegans.
FEBS Lett 2010; 584:1335-41.

1260. Wu F, Li Y, Wang F, Noda NN, Zhang H. Differential function of
the two Atg4 homologues in the aggrephagy pathway in Caeno-
rhabditis elegans. J Biol Chem 2012; 287:29457-67.

1261. Zhang H, Wu F, Wang X, Du H, Wang X, Zhang H. The two C. ele-
gans ATG-16 homologs have partially redundant functions in the
basal autophagy pathway. Autophagy 2013; 9:1965-74.

1262. Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z,
Song B, Han J, et al. SEPA-1 mediates the specific recognition and
degradation of P granule components by autophagy in C. elegans.
Cell 2009; 136:308-21.

1263. Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Pali-
karas K, Criollo A, Galluzzi L, Malik SA, Vitale I, et al. Caloric
restriction and resveratrol promote longevity through the Sirtuin-1-
dependent induction of autophagy. Cell Death Dis 2010; 1:e10.

1264. Samara C, Syntichaki P, Tavernarakis N. Autophagy is required for
necrotic cell death in Caenorhabditis elegans. Cell Death Differ
2008; 15:105-12.

1265. Alberti A, Michelet X, Djeddi A, Legouis R. The autophagosomal
protein LGG-2 acts synergistically with LGG-1 in dauer formation
and longevity in C. elegans. Autophagy 2010; 6:622-33.

1266. Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C,
Satiat-Jeunemaitre B, Legouis R. The C. elegans LC3 acts down-
stream of GABARAP to degrade autophagosomes by interacting
with the HOPS subunit VPS39. Dev Cell 2014; 28:43-55; http://dx.
doi.org/10.1016/j.devcel.2013.11.022.

158 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.7.2.14074
http://dx.doi.org/10.4161/auto.7.2.14074
http://dx.doi.org/10.1093/nar/gkv520
http://dx.doi.org/10.1093/neuonc/nop005
http://dx.doi.org/10.1093/neuonc/nop005
http://dx.doi.org/10.1038/nature09803
http://dx.doi.org/10.1038/nature09803
http://dx.doi.org/10.1073/pnas.1200313109
http://dx.doi.org/10.1126/science.1216990
http://dx.doi.org/10.1038/srep08903
http://dx.doi.org/10.1016/j.devcel.2013.11.022


1267. Kang C, You YJ, Avery L. Dual roles of autophagy in the survival of
Caenorhabditis elegans during starvation. Genes Dev 2007;
21:2161-71; http://dx.doi.org/10.1101/gad.1573107.

1268. Liang Q, Yang P, Tian E, Han J, Zhang H. Dual roles of autophagy
in the survival of Caenorhabditis elegans during starvation. Auto-
phagy 2012; 8:1426-33; http://dx.doi.org/10.4161/auto.21163.

1269. Yang P, Zhang H. The coiled-coil domain protein EPG-8 plays an
essential role in the autophagy pathway in C. elegans. Autophagy
2011; 7:159-65; http://dx.doi.org/10.4161/auto.7.2.14223.

1270. SenGupta T, Torgersen ML, Kassahun H, Vellai T, Simonsen A,
Nilsen H. Base excision repair AP endonucleases and mismatch
repair act together to induce checkpoint-mediated autophagy. Nat
Commun 2013; 4:2674; http://dx.doi.org/10.1038/ncomms3674.

1271. Schiavi A, Maglioni S, Palikaras K, Shaik A, Strappazzon F,
Brinkmann V, Torgovnick A, Castelein N, De Henau S, Braeck-
man BP, et al. Iron-starvation-induced mitophagy mediates life-
span extension upon mitochondrial stress in C. elegans. Curr Biol
2015; 25:1810-22; http://dx.doi.org/10.1016/j.cub.2015.05.059.

1272. Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M,
D’Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al. Regula-
tion of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10:676-
87; http://dx.doi.org/10.1038/ncb1730.

1273. Tavernarakis N, Pasparaki A, Tasdemir E, Maiuri MC, Kroemer G.
The effects of p53 on whole organism longevity are mediated by auto-
phagy. Autophagy 2008; 4:870-3; http://dx.doi.org/10.4161/auto.6730.

1274. Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I,
Marzocchella L, Gelino S, Hansen M, Malisan F, et al. Autophagy
induction extends lifespan and reduces lipid content in response to
frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201;
http://dx.doi.org/10.1016/j.exger.2012.12.002.

1275. Palikaras K, Lionaki E, Tavernarakis N. Coordination of mitophagy
and mitochondrial biogenesis during ageing in C. elegans. Nature
2015; 521:525-8; http://dx.doi.org/10.1038/nature14300.

1276. Zhang H, Chang JT, Guo B, Hansen M, Jia K, Kovacs AL, Kumsta
C, Lapierre LR, Legouis R, Lin L, et al. Guidelines for monitoring
autophagy in Caenorhabditis elegans. Autophagy 2015; 11:9-27.

1277. Alers S, L{o}ffler AS, Paasch F, Dieterle AM, Keppeler H, Lauber K,
Campbell DG, Fehrenbacher B, Schaller M, Wesselborg S, et al.
Atg13 and FIP200 act independently of Ulk1 and Ulk2 in auto-
phagy induction. Autophagy 2011; 7:1424-33; http://dx.doi.org/
10.4161/auto.7.12.18027.

1278. Brown WR, Hubbard SJ, Tickle C, Wilson SA. The chicken as a
model for large-scale analysis of vertebrate gene function. Nature
reviews Genetics 2003; 4:87-98; http://dx.doi.org/10.1038/nrg998.

1279. Wang L, Rodrigues NA, Wu Y, Maslikowski BM, Singh N, Lacroix
S, Bedard PA. Pleiotropic action of AP-1 in v-Src-transformed cells.
J Virol 2011; 85:6725-35; http://dx.doi.org/10.1128/JVI.01013-10.

1280. Baba TW, Giroir BP, Humphries EH. Cell lines derived from avian
lymphomas exhibit two distinct phenotypes. Virology 1985;
144:139-51; http://dx.doi.org/10.1016/0042-6822(85)90312-5.

1281. Perez-Martin M, Perez-Perez ME, Lemaire SD, Crespo JL. Oxida-
tive Stress Contributes to Autophagy Induction in Response to
Endoplasmic Reticulum Stress in Chlamydomonas reinhardtii. Plant
Physiol 2014; 166:997-1008; http://dx.doi.org/10.1104/pp.114.243659.

1282. Perez-Perez ME, Couso I, Crespo JL. Carotenoid deficiency trig-
gers autophagy in the model green alga Chlamydomonas rein-
hardtii. Autophagy 2012; 8:376-88; http://dx.doi.org/10.4161/
auto.18864.

1283. Mauvezin C, Ayala C, Braden CR, Kim J, Neufeld TP. Assays to
monitor autophagy in Drosophila. Methods 2014; 68:134-9; http://
dx.doi.org/10.1016/j.ymeth.2014.03.014.

1284. Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW, Park H, Ro
SH, Kim JS, Juhasz G, et al. Drosophila Gyf/GRB10 interacting
GYF protein is an autophagy regulator that controls neuron and
muscle homeostasis. Autophagy 2015; 11:1358-72; http://dx.doi.
org/10.1080/15548627.2015.1063766.

1285. Juhasz G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neu-
feld TP. The class III PI(3)K Vps34 promotes autophagy and endo-
cytosis but not TOR signaling in Drosophila. J Cell Biol 2008;
181:655-66; http://dx.doi.org/10.1083/jcb.200712051.

1286. Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy
is an essential component of Drosophila immunity against vesicular
stomatitis virus. Immunity 2009; 30:588-98; http://dx.doi.org/
10.1016/j.immuni.2009.02.009.

1287. Anding AL, Baehrecke EH. Vps15 is required for stress induced and
developmentally triggered autophagy and salivary gland protein
secretion in Drosophila. Cell Death Differ 2014.

1288. Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM. Effector
caspase Dcp-1 and IAP protein Bruce regulate starvation-induced
autophagy during Drosophila melanogaster oogenesis. J Cell Biol
2008; 182:1127-39; http://dx.doi.org/10.1083/jcb.200712091.

1289. Pircs K, Nagy P, Varga A, Venkei Z, Erdi B, Hegedus K, Juhasz G.
Advantages and limitations of different p62-based assays for esti-
mating autophagic activity in Drosophila. PloS One 2012; 7:e44214;
http://dx.doi.org/10.1371/journal.pone.0044214.

1290. Hindle SJ, Elliott CJ. Spread of neuronal degeneration in a dopami-
nergic, Lrrk-G2019S model of Parkinson disease. Autophagy 2013;
9:936-8; http://dx.doi.org/10.4161/auto.24397.

1291. Shravage BV, Hill JH, Powers CM, Wu L, Baehrecke EH. Atg6 is
required for multiple vesicle trafficking pathways and hematopoie-
sis in Drosophila. Development 2013; 140:1321-9; http://dx.doi.org/
10.1242/dev.089490.

1292. Marinkovic D, Zhang X, Yalcin S, Luciano JP, Brugnara C, Huber T,
Ghaffari S. Foxo3 is required for the regulation of oxidative stress in
erythropoiesis. J Clin Invest 2007; 117:2133-44; http://dx.doi.org/
10.1172/JCI31807.

1293. McIver SC, Kang YA, DeVilbiss AW, O’Driscoll CA, Ouellette JN,
Pope NJ, Camprecios G, Chang CJ, Yang D, Bouhassira EE, et al.
The exosome complex establishes a barricade to erythroid matura-
tion. Blood 2014; 124:2285-97; http://dx.doi.org/10.1182/blood-
2014-04-571083.

1294. Fujiwara T, O’Geen H, Keles S, Blahnik K, Linnemann AK, Kang
YA, Choi K, Farnham PJ, Bresnick EH. Discovering hematopoietic
mechanisms through genome-wide analysis of GATA factor chro-
matin occupancy. Mol Cell 2009; 36:667-81; http://dx.doi.org/
10.1016/j.molcel.2009.11.001.

1295. Welch JJ, Watts JA, Vakoc CR, Yao Y, Wang H, Hardison RC,
Blobel GA, Chodosh LA, Weiss MJ. Global regulation of
erythroid gene expression by transcription factor GATA-1.
Blood 2004; 104:3136-47; http://dx.doi.org/10.1182/blood-2004-04-
1603.

1296. Yu M, Riva L, Xie H, Schindler Y, Moran TB, Cheng Y, Yu D, Har-
dison R, Weiss MJ, Orkin SH, et al. Insights into GATA-1-mediated
gene activation versus repression via genome-wide chromatin occu-
pancy analysis. Mol Cell 2009; 36:682-95; http://dx.doi.org/10.1016/
j.molcel.2009.11.002.

1297. Kundu M, Lindsten T, Yang CY, Wu J, Zhao F, Zhang J, Selak MA,
Ney PA, Thompson CB. Ulk1 plays a critical role in the autophagic
clearance of mitochondria and ribosomes during reticulocyte matu-
ration. Blood 2008; 112:1493-502; http://dx.doi.org/10.1182/blood-
2008-02-137398.

1298. Mortensen M, Ferguson DJ, Edelmann M, Kessler B, Morten KJ,
Komatsu M, Simon AK. Loss of autophagy in erythroid cells leads
to defective removal of mitochondria and severe anemia in vivo.
Proc Natl Acad Sci USA 2010; 107:832-7; http://dx.doi.org/10.1073/
pnas.0913170107.

1299. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT,
Chen M, Wang J. Essential role for Nix in autophagic maturation of
erythroid cells. Nature 2008; 454:232-5; http://dx.doi.org/10.1038/
nature07006.

1300. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC,
Kundu M, Opferman JT, Cleveland JL, Miller JL, et al. NIX is
required for programmed mitochondrial clearance during reticulo-
cyte maturation. Proc Natl Acad Sci USA 2007; 104:19500-5; http://
dx.doi.org/10.1073/pnas.0708818104.

1301. Josefsen L, Droce A, Sondergaard TE, Sørensen JL, Bormann J,
Sch€afer W, Giese H, Olsson S. Autophagy provides nutrients for
nonassimilating fungal structures and is necessary for plant coloni-
zation but not for infection in the necrotrophic plant pathogen
Fusarium gaminearum. Autophagy 2012; 8:326-37.

AUTOPHAGY 159

http://dx.doi.org/10.1101/gad.1573107
http://dx.doi.org/10.4161/auto.21163
http://dx.doi.org/10.4161/auto.7.2.14223
http://dx.doi.org/10.1038/ncomms3674
http://dx.doi.org/10.1016/j.cub.2015.05.059
http://dx.doi.org/10.1038/ncb1730
http://dx.doi.org/10.4161/auto.6730
http://dx.doi.org/10.1016/j.exger.2012.12.002
http://dx.doi.org/10.1038/nature14300
http://dx.doi.org/10.4161/auto.7.12.18027
http://dx.doi.org/10.1038/nrg998
http://dx.doi.org/10.1128/JVI.01013-10
http://dx.doi.org/10.1016/0042-6822(85)90312-5
http://dx.doi.org/10.1104/pp.114.243659
http://dx.doi.org/10.4161/auto.18864
http://dx.doi.org/10.4161/auto.18864
http://dx.doi.org/10.1016/j.ymeth.2014.03.014
http://dx.doi.org/10.1080/15548627.2015.1063766
http://dx.doi.org/10.1083/jcb.200712051
http://dx.doi.org/10.1016/j.immuni.2009.02.009
http://dx.doi.org/10.1083/jcb.200712091
http://dx.doi.org/10.1371/journal.pone.0044214
http://dx.doi.org/10.4161/auto.24397
http://dx.doi.org/10.1242/dev.089490
http://dx.doi.org/10.1172/JCI31807
http://dx.doi.org/10.1182/blood-2014-04-571083
http://dx.doi.org/10.1182/blood-2014-04-571083
http://dx.doi.org/10.1016/j.molcel.2009.11.001
http://dx.doi.org/10.1182/blood-2004-04-<?A3B2 re3j?>1603
http://dx.doi.org/10.1182/blood-2004-04-<?A3B2 re3j?>1603
http://dx.doi.org/10.1016/j.molcel.2009.11.002
http://dx.doi.org/10.1016/j.molcel.2009.11.002
http://dx.doi.org/10.1182/blood-2008-02-137398
http://dx.doi.org/10.1182/blood-2008-02-137398
http://dx.doi.org/10.1073/pnas.0913170107
http://dx.doi.org/10.1073/pnas.0913170107
http://dx.doi.org/10.1038/nature07006
http://dx.doi.org/10.1038/nature07006
http://dx.doi.org/10.1073/pnas.0708818104


1302. Nadal M, Gold SE. The autophagy genes ATG8 and ATG1 affect
morphogenesis and pathogenicity in Ustilago maydis. Mol Plant
Pathol 2010; 11:463-78; http://dx.doi.org/10.1111/j.1364-3703.
2010.00620.x.

1303. Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi.
Fungal Genet Biol 2009; 46:1-8; http://dx.doi.org/10.1016/j.
fgb.2008.10.010.

1304. Richie DL, Fuller KK, Fortwendel J, Miley MD, McCarthy JW, Feld-
messer M, Rhodes JC, Askew DS. Unexpected link between metal
ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot
Cell 2007; 6:2437-47; http://dx.doi.org/10.1128/EC.00224-07.

1305. Voigt O, Poggeler S. Self-eating to grow and kill: autophagy in fila-
mentous ascomycetes. Appl Microbiol Biot 2013; 97:9277-90;
http://dx.doi.org/10.1007/s00253-013-5221-2.

1306. Kim Y, Islam N, Moss BJ, Nandakumar MP, Marten MR. Auto-
phagy induced by rapamycin and carbon-starvation have distinct
proteome profiles in Aspergillus nidulans. Biotechnol Bioeng 2011;
108:2705-15; http://dx.doi.org/10.1002/bit.23223.

1307. Pinan-Lucarre B, Balguerie A, Clave C. Accelerated cell death in
Podospora autophagy mutants. Eukaryot Cell 2005; 4:1765-74;
http://dx.doi.org/10.1128/EC.4.11.1765-1774.2005.

1308. Deng YZ, Naqvi NI. A vacuolar glucoamylase, Sga1, participates in
glycogen autophagy for proper asexual differentiation in Magna-
porthe oryzae. Autophagy 2010; 6:455-61; http://dx.doi.org/
10.4161/auto.6.4.11736.

1309. Deng YZ, Ramos-Pamplona M, Naqvi NI. Autophagy-assisted gly-
cogen catabolism regulates asexual differentiation in Magnaporthe
oryzae. Autophagy 2009; 5:33-43; http://dx.doi.org/10.4161/
auto.5.1.7175.

1310. Knuppertz L, Hamann A, Pampaloni F, Stelzer E, Osiewacz HD.
Identification of autophagy as a longevity-assurance mechanism in
the aging model Podospora anserina. Autophagy 2014; 10:822-34;
http://dx.doi.org/10.4161/auto.28148.

1311. Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T,
Sakai Y, TakanoY. Atg26-mediated pexophagy is required for host inva-
sion by the plant pathogenic fungusColletotrichum orbiculare. Plant Cell
2009; 21:1291-304; http://dx.doi.org/10.1105/tpc.108.060996.

1312. Liu XH, Lu JP, Zhang L, Dong B, Min H, Lin FC. Involvement of a
Magnaporthe grisea serine/threonine kinase gene, MgATG1, in
appressorium turgor and pathogenesis. Eukaryot Cell 2007; 6:997-
1005; http://dx.doi.org/10.1128/EC.00011-07.

1313. Nguyen LN, Bormann J, Le GT, Starkel C, Olsson S, Nosanchuk JD,
Giese H, Schafer W. Autophagy-related lipase FgATG15 of Fusar-
ium graminearum is important for lipid turnover and plant infec-
tion. Fungal Genet Biol 2011; 48:217-24; http://dx.doi.org/10.1016/
j.fgb.2010.11.004.

1314. Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C. Linkage of
autophagy to fungal development, lipid storage and virulence in
Metarhizium robertsii. Autophagy 2013; 9:538-49; http://dx.doi.org/
10.4161/auto.23575.

1315. Deng YZ, Ramos-Pamplona M, Naqvi NI. Methods for functional
analysis of macroautophagy in filamentous fungi. Methods Enzy-
mol 2008; 451:295-310; http://dx.doi.org/10.1016/S0076-6879(08)
03220-5.

1316. Kershaw MJ, Talbot NJ. Genome-wide functional analysis reveals
that infection-associated fungal autophagy is necessary for rice blast
disease. Proc Natl Acad Sci USA 2009; 106:15967-72; http://dx.doi.
org/10.1073/pnas.0901477106.

1317. Liu TB, Liu XH, Lu JP, Zhang L, Min H, Lin FC. The cysteine prote-
ase MoAtg4 interacts with MoAtg8 and is required for differentia-
tion and pathogenesis in Magnaporthe oryzae. Autophagy 2010;
6:74-85; http://dx.doi.org/10.4161/auto.6.1.10438.

1318. Penalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli
AM, Arst HN, Pantazopoulou A. Searching for gold beyond mitosis:
Mining intracellular membrane traffic in Aspergillus nidulans. Cell
Log 2012; 2:2-14; http://dx.doi.org/10.4161/cl.19304.

1319. Pinar M, Pantazopoulou A, Penalva MA. Live-cell imaging of
Aspergillus nidulans autophagy: RAB1 dependence, Golgi indepen-
dence and ER involvement. Autophagy 2013; 9:1024-43; http://dx.
doi.org/10.4161/auto.24483.

1320. Lipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N.
Regulation of selective autophagy onset by a Ypt/Rab GTPase mod-
ule. Proc Natl Acad Sci USA 2012; 109:6981-6; http://dx.doi.org/
10.1073/pnas.1121299109.

1321. Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholo-
mew CR, Brumell JH, Ferro-Novick S, Klionsky DJ. Trs85 directs a
Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy.
Proc Natl Acad Sci USA 2010; 107:7811-6; http://dx.doi.org/
10.1073/pnas.1000063107.

1322. Deng Y, Qu Z, Naqvi NI. The role of snx41-based pexophagy in
magnaporthe development. PloS One 2013; 8:e79128.

1323. Piggott N, Cook MA, Tyers M, Measday V. Genome-wide fitness
profiles reveal a requirement for autophagy during yeast fermenta-
tion. Genes Genomes Genetics 2011; 1:353-67.

1324. Cebollero E, Gonzalez R. Induction of autophagy by second-fer-
mentation yeasts during elaboration of sparkling wines. Appl Envi-
ron Microbiol 2006; 72:4121-7; http://dx.doi.org/10.1128/
AEM.02920-05.

1325. Marks VD, Ho Sui SJ, Erasmus D, van der Merwe GK, Brumm J,
Wasserman WW, Bryan J, van Vuuren HJ. Dynamics of the yeast
transcriptome during wine fermentation reveals a novel fermenta-
tion stress response. FEMS Yeast Res 2008; 8:35-52; http://dx.doi.
org/10.1111/j.1567-1364.2007.00338.x.

1326. Mendes-Ferreira A, Sampaio-Marques B, Barbosa C, Rodrigues F,
Costa V, Mendes-Faia A, Ludovico P, Leao C. Accumulation of
non-superoxide anion reactive oxygen species mediates nitrogen-
limited alcoholic fermentation by Saccharomyces cerevisiae. Appl
Environ Microbiol 2010; 76:7918-24; http://dx.doi.org/10.1128/
AEM.01535-10.

1327. Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitor-
ing of wine yeast gene expression during alcoholic fermentation.
Yeast 2003; 20:1369-85; http://dx.doi.org/10.1002/yea.1046.

1328. Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I.
Genome-wide identification of Saccharomyces cerevisiae genes
required for maximal tolerance to ethanol. Appl Environ Microbiol
2009; 75:5761-72; http://dx.doi.org/10.1128/AEM.00845-09.

1329. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shi-
mizu H. Comprehensive phenotypic analysis for identification of
genes affecting growth under ethanol stress in Saccharomyces cere-
visiae. FEMS Yeast Res 2009; 9:32-44; http://dx.doi.org/10.1111/
j.1567-1364.2008.00456.x.

1330. Hazan R, Levine A, Abeliovich H. Benzoic acid, a weak organic acid
food preservative, exerts specific effects on intracellular membrane
trafficking pathways in Saccharomyces cerevisiae. Appl Environ
Microbiol 2004; 70:4449-57; http://dx.doi.org/10.1128/AEM.70.
8.4449-4457.2004.

1331. Singletary K, Milner J. Diet, autophagy, and cancer: a review. Can-
cer Epidemiol Biomark Prev 2008; 17:1596-610; http://dx.doi.org/
10.1158/1055-9965.EPI-07-2917.

1332. Su CL, Chen FN, Won SJ. Involvement of apoptosis and autophagy
in reducing mouse hepatoma ML-1 cell growth in inbred BALB/c
mice by bacterial fermented soybean products. Food Chem Toxicol
2011; 49:17-24; http://dx.doi.org/10.1016/j.fct.2010.08.017.

1333. Abeliovich H, Gonzalez R. Autophagy in food biotechnology. Auto-
phagy 2009; 5:925-9; http://dx.doi.org/10.4161/auto.5.7.9213.

1334. Berger B, Abdalla FC, Cruz-Landim C. Effect of narcosis with CO2
on the ovarian development in queens of Apis mellifera (Hymenop-
tera, Apini). Sociobiology 2005; 45:261-70.

1335. Silva-Zacarin ECM, Tomaino GA, Brocheto-Braga MR, Taboga SR,
Silva de Moraes RLM. Programmed cell death in the larval salivary
glands of Apis mellifera (Hymenoptera, Apidae). J Biosci 2007;
32:309-28; http://dx.doi.org/10.1007/s12038-007-0031-2.

1336. Gregorc A, Bowen ID. Programmed cell death in the honey-bee
(Apis mellifera L.) larvae midgut. Cell Biol Int 1997; 21:151-8;
http://dx.doi.org/10.1006/cbir.1997.0127.

1337. Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G,
Evans J, Cros-Arteil S, Crauser D, Le Conte Y. Differential gene
expression of the honey bee Apis mellifera associated with Varroa
destructor infection. BMC Genomics 2008; 9:301; http://dx.doi.org/
10.1186/1471-2164-9-301.

160 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1111/j.1364-3703.<?A3B2 re3j?>2010.00620.x
http://dx.doi.org/10.1111/j.1364-3703.<?A3B2 re3j?>2010.00620.x
http://dx.doi.org/10.1016/j.fgb.2008.10.010
http://dx.doi.org/10.1016/j.fgb.2008.10.010
http://dx.doi.org/10.1128/EC.00224-07
http://dx.doi.org/10.1007/s00253-013-5221-2
http://dx.doi.org/10.1002/bit.23223
http://dx.doi.org/10.1128/EC.4.11.1765-1774.2005
http://dx.doi.org/10.4161/auto.6.4.11736
http://dx.doi.org/10.4161/auto.5.1.7175
http://dx.doi.org/10.4161/auto.5.1.7175
http://dx.doi.org/10.4161/auto.28148
http://dx.doi.org/10.1105/tpc.108.060996
http://dx.doi.org/10.1128/EC.00011-07
http://dx.doi.org/10.1016/j.fgb.2010.11.004
http://dx.doi.org/10.1016/j.fgb.2010.11.004
http://dx.doi.org/10.4161/auto.23575
http://dx.doi.org/10.1016/S0076-6879(08)03220-5
http://dx.doi.org/10.1016/S0076-6879(08)03220-5
http://dx.doi.org/10.1073/pnas.0901477106
http://dx.doi.org/10.4161/auto.6.1.10438
http://dx.doi.org/10.4161/cl.19304
http://dx.doi.org/10.4161/auto.24483
http://dx.doi.org/10.1073/pnas.1121299109
http://dx.doi.org/10.1073/pnas.1000063107
http://dx.doi.org/10.1128/AEM.02920-05
http://dx.doi.org/10.1128/AEM.02920-05
http://dx.doi.org/10.1111/j.1567-1364.2007.00338.x
http://dx.doi.org/10.1128/AEM.01535-10
http://dx.doi.org/10.1128/AEM.01535-10
http://dx.doi.org/10.1002/yea.1046
http://dx.doi.org/10.1128/AEM.00845-09
http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x
http://dx.doi.org/10.1111/j.1567-1364.2008.00456.x
http://dx.doi.org/10.1128/AEM.70.<?A3B2 re3j?>8.4449-4457.2004
http://dx.doi.org/10.1128/AEM.70.<?A3B2 re3j?>8.4449-4457.2004
http://dx.doi.org/10.1158/1055-9965.EPI-07-2917
http://dx.doi.org/10.1016/j.fct.2010.08.017
http://dx.doi.org/10.4161/auto.5.7.9213
http://dx.doi.org/10.1007/s12038-007-0031-2
http://dx.doi.org/10.1006/cbir.1997.0127
http://dx.doi.org/10.1186/1471-2164-9-301


1338. Kimura T, Takabatake Y, Takahashi A, Isaka Y. Chloroquine in
cancer therapy: a double-edged sword of autophagy. Cancer Res
2013; 73:3-7; http://dx.doi.org/10.1158/0008-5472.CAN-12-2464.

1339. Takahashi A, Kimura T, Takabatake Y, Namba T, Kaimori J, Kita-
mura H, Matsui I, Niimura F, Matsusaka T, Fujita N, et al. Auto-
phagy guards against cisplatin-induced acute kidney injury. Am J
Pathol 2012; 180:517-25; http://dx.doi.org/10.1016/j.ajpath.2011.
11.001.

1340. Colasanti T, Vomero M, Alessandri C, Barbati C, Maselli A, Camp-
erio C, Conti F, Tinari A, Carlo-Stella C, Tuosto L, et al. Role of
alpha-synuclein in autophagy modulation of primary human T
lymphocytes. Cell Death Dis 2014; 5:e1265; http://dx.doi.org/
10.1038/cddis.2014.211.

1341. Spruessel A, Steimann G, Jung M, Lee SA, Carr T, Fentz AK, Span-
genberg J, Zornig C, Juhl HH, David KA. Tissue ischemia time
affects gene and protein expression patterns within minutes follow-
ing surgical tumor excision. BioTechniques 2004; 36:1030-7.

1342. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B,
Banks S, Deng J, VanMeter AJ, Geho DH, et al. A portrait of tissue
phosphoprotein stability in the clinical tissue procurement process.
Mol Cell Proteomics: MCP 2008; 7:1998-2018; http://dx.doi.org/
10.1074/mcp.M700596-MCP200.

1343. Barth S, Glick D, Macleod KF. Autophagy: assays and artifacts. J
Pathol 2010; 221:117-24; http://dx.doi.org/10.1002/path.2694.

1344. Domart MC, Esposti DD, Sebagh M, Olaya N, Harper F, Pierron G,
Franc B, Tanabe KK, Debuire B, Azoulay D, et al. Concurrent
induction of necrosis, apoptosis, and autophagy in ischemic precon-
ditioned human livers formerly treated by chemotherapy. J Hepatol
2009; 51:881-9; http://dx.doi.org/10.1016/j.jhep.2009.06.028.

1345. Jahania SM, Sengstock D, Vaitkevicius P, Andres A, Ito BR, Gottlieb
RA, Mentzer RM, Jr. Activation of the homeostatic intracellular
repair response during cardiac surgery. J Am Coll Surgeons 2013;
216:719-26; discussion 26-9; http://dx.doi.org/10.1016/j.jamcollsurg.
2012.12.034.

1346. Singh KK, Yanagawa B, Quan A, Wang R, Garg A, Khan R, Pan Y,
Wheatcroft MD, Lovren F, Teoh H, et al. Autophagy gene finger-
print in human ischemia and reperfusion. J Thor Cardio Surg 2014;
147:1065-72 e1; http://dx.doi.org/10.1016/j.jtcvs.2013.04.042.

1347. Nyman E, Brannmark C, Palmer R, Brugard J, Nystrom FH, Stral-
fors P, Cedersund G. A hierarchical whole-body modeling approach
elucidates the link between in Vitro insulin signaling and in Vivo
glucose homeostasis. J Biol Chem 2011; 286:26028-41; http://dx.doi.
org/10.1074/jbc.M110.188987.

1348. Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley
DS, Wu J. A novel mouse model of nonalcoholic steatohepatitis
with significant insulin resistance. Lab Investig 2013; 93:1313-22;
http://dx.doi.org/10.1038/labinvest.2013.123.

1349. Lake AD, Novak P, Hardwick RN, Flores-Keown B, Zhao F, Kli-
mecki WT, Cherrington NJ. The adaptive endoplasmic reticulum
stress response to lipotoxicity in progressive human nonalcoholic
fatty liver disease. Toxicol Sci 2014; 137:26-35; http://dx.doi.org/
10.1093/toxsci/kft230.

1350. Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y,
Ilkayeva OR, Gooding J, Ching J, Zhou J, et al. Caffeine stimu-
lates hepatic lipid metabolism by the autophagy-lysosomal path-
way in mice. Hepatology 2014; 59:1366-80; http://dx.doi.org/
10.1002/hep.26667.

1351. Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo
V, Miquilena-Colina ME, Vargas-Castrillon J, Lo Iacono O, Coraz-
zari M, Fimia GM, et al. Impaired autophagic flux is associated with
increased endoplasmic reticulum stress during the development of
NAFLD. Cell Death Dis 2014; 5:e1179; http://dx.doi.org/10.1038/
cddis.2014.162.

1352. Buzgariu W, Chera S, Galliot B. Methods to investigate autophagy
during starvation and regeneration in hydra. Methods Enzymol
2008; 451:409-37; http://dx.doi.org/10.1016/S0076-6879(08)03226-6.

1353. Chera S, Buzgariu W, Ghila L, Galliot B. Autophagy in Hydra: a
response to starvation and stress in early animal evolution. Biochim
Biophys Acta 2009; 1793:1432-43; http://dx.doi.org/10.1016/j.
bbamcr.2009.03.010.

1354. Chera S, de Rosa R, Miljkovic-Licina M, Dobretz K, Ghila L, Kalou-
lis K, Galliot B. Silencing of the hydra serine protease inhibitor
Kazal1 gene mimics the human SPINK1 pancreatic phenotype. J
Cell Sci 2006; 119:846-57; http://dx.doi.org/10.1242/jcs.02807.

1355. Galliot B. Autophagy and self-preservation: a step ahead from cell
plasticity? Autophagy 2006; 2:231-3; http://dx.doi.org/10.4161/
auto.2706.

1356. Galliot B, Miljkovic-Licina M, de Rosa R, Chera S. Hydra, a niche
for cell and developmental plasticity. Seminars Cell Dev Biol 2006;
17:492-502; http://dx.doi.org/10.1016/j.semcdb.2006.05.005.

1357. Sala-Mercado JA, Wider J, Undyala VV, Jahania S, Yoo W, Mentzer
RM, Jr., Gottlieb RA, Przyklenk K. Profound cardioprotection with
chloramphenicol succinate in the swine model of myocardial ische-
mia-reperfusion injury. Circulation 2010; 122:S179-84; http://dx.
doi.org/10.1161/CIRCULATIONAHA.109.928242.

1358. Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL.
Chronic hypoxemia in late gestation decreases cardiomyocyte num-
ber but does not change expression of hypoxia-responsive genes. J
Am Heart Assoc 2014; 3.

1359. Wang KC, Brooks DA, Summers-Pearce B, Bobrovskaya L, Tosh
DN, Duffield JA, Botting KJ, Zhang S, Caroline McMillen I, Morri-
son JL. Low birth weight activates the renin-angiotensin system,
but limits cardiac angiogenesis in early postnatal life. Physiol Rep
2015; 3.

1360. Zhang S, Regnault TR, Barker PL, Botting KJ, McMillen IC, McMil-
lan CM, Roberts CT, Morrison JL. Placental adaptations in growth
restriction. Nutrients 2015; 7:360-89; http://dx.doi.org/10.3390/
nu7010360.

1361. Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B,
Martinet W, Vervenne H, Ververs EJ, Larsson L, et al. Early paren-
teral nutrition evokes a phenotype of autophagy deficiency in liver
and skeletal muscle of critically ill rabbits. Endocrinology 2012;
153:2267-76; http://dx.doi.org/10.1210/en.2011-2068.

1362. Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den
Berghe G, Vanhorebeek I. Insufficient autophagy contributes to
mitochondrial dysfunction, organ failure, and adverse outcome in
an animal model of critical illness. Crit Care Med 2013; 41:182-94;
http://dx.doi.org/10.1097/CCM.0b013e3182676657.

1363. Lopez-Alonso I, Aguirre A, Gonzalez-Lopez A, Fernandez AF,
Amado-Rodriguez L, Astudillo A, Batalla-Solis E, Albaiceta GM.
Impairment of autophagy decreases ventilator-induced lung injury
by blockade of the NF-kappaB pathway. Am J Physiol Lung Cell
Mol Physiol 2013; 304:L844-52; http://dx.doi.org/10.1152/
ajplung.00422.2012.

1364. Sun Y, Li C, Shu Y, Ju X, Zou Z, Wang H, Rao S, Guo F, Liu H, Nan
W, et al. Inhibition of autophagy ameliorates acute lung injury
caused by avian influenza A H5N1 infection. Sci Signal 2012; 5:ra16.

1365. Sobolewska A, Motyl T, Gajewska M. Role and regulation of auto-
phagy in the development of acinar structures formed by bovine
BME-UV1 mammary epithelial cells. Eur J Cell Biol 2011; 90:854-
64; http://dx.doi.org/10.1016/j.ejcb.2011.06.007.

1366. Motyl T, Gajewska M, Zarzynska J, Sobolewska A, Gajkowska B.
Regulation of autophagy in bovine mammary epithelial cells. Auto-
phagy 2007; 3:484-6; http://dx.doi.org/10.4161/auto.4491.

1367. Sobolewska A, Gajewska M, Zarzynska J, Gajkowska B, Motyl T.
IGF-I, EGF, and sex steroids regulate autophagy in bovine mam-
mary epithelial cells via the mTOR pathway. Eur J Cell Biol 2009;
88:117-30; http://dx.doi.org/10.1016/j.ejcb.2008.09.004.

1368. Facey CO, Lockshin RA. The execution phase of autophagy associ-
ated PCD during insect metamorphosis. Apoptosis 2010; 15:639-52;
http://dx.doi.org/10.1007/s10495-010-0499-3.

1369. Malagoli D, Abdalla FC, Cao Y, Feng Q, Fujisaki K, Gregorc A,
Matsuo T, Nezis IP, Papassideri IS, Sass M, et al. Autophagy and its
physiological relevance in arthropods: Current knowledge and per-
spectives. Autophagy 2010; 6:575-88; http://dx.doi.org/10.4161/
auto.6.5.11962.

1370. Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri
IS. Programmed cell death of the ovarian nurse cells during oogene-
sis of the silkmoth Bombyx mori. Dev Growth Differ 2006; 48:419-
28; http://dx.doi.org/10.1111/j.1440-169X.2006.00878.x.

AUTOPHAGY 161

http://dx.doi.org/10.1158/0008-5472.CAN-12-2464
http://dx.doi.org/10.1016/j.ajpath.2011.<?A3B2 re3j?>11.001
http://dx.doi.org/10.1016/j.ajpath.2011.<?A3B2 re3j?>11.001
http://dx.doi.org/10.1038/cddis.2014.211
http://dx.doi.org/10.1074/mcp.M700596-MCP200
http://dx.doi.org/10.1002/path.2694
http://dx.doi.org/10.1016/j.jhep.2009.06.028
http://dx.doi.org/10.1016/j.jamcollsurg.<?A3B2 re3j?>2012.12.034
http://dx.doi.org/10.1016/j.jamcollsurg.<?A3B2 re3j?>2012.12.034
http://dx.doi.org/10.1016/j.jtcvs.2013.04.042
http://dx.doi.org/10.1074/jbc.M110.188987
http://dx.doi.org/10.1038/labinvest.2013.123
http://dx.doi.org/10.1093/toxsci/kft230
http://dx.doi.org/10.1002/hep.26667
http://dx.doi.org/10.1038/cddis.2014.162
http://dx.doi.org/10.1038/cddis.2014.162
http://dx.doi.org/10.1016/S0076-6879(08)03226-6
http://dx.doi.org/10.1016/j.bbamcr.2009.03.010
http://dx.doi.org/10.1016/j.bbamcr.2009.03.010
http://dx.doi.org/10.1242/jcs.02807
http://dx.doi.org/10.4161/auto.2706
http://dx.doi.org/10.4161/auto.2706
http://dx.doi.org/10.1016/j.semcdb.2006.05.005
http://dx.doi.org/10.1161/CIRCULATIONAHA.109.928242
http://dx.doi.org/10.3390/nu7010360
http://dx.doi.org/10.3390/nu7010360
http://dx.doi.org/10.1210/en.2011-2068
http://dx.doi.org/10.1097/CCM.0b013e3182676657
http://dx.doi.org/10.1152/ajplung.00422.2012
http://dx.doi.org/10.1152/ajplung.00422.2012
http://dx.doi.org/10.1016/j.ejcb.2011.06.007
http://dx.doi.org/10.4161/auto.4491
http://dx.doi.org/10.1016/j.ejcb.2008.09.004
http://dx.doi.org/10.1007/s10495-010-0499-3
http://dx.doi.org/10.4161/auto.6.5.11962
http://dx.doi.org/10.4161/auto.6.5.11962
http://dx.doi.org/10.1111/j.1440-169X.2006.00878.x


1371. Mpakou VE, Nezis IP, Stravopodis DJ, Margaritis LH, Papassideri
IS. Different modes of programmed cell death during oogenesis of
the silkmoth Bombyx mori. Autophagy 2008; 4:97-100; http://dx.
doi.org/10.4161/auto.5205.

1372. Sumithra P, Britto CP, Krishnan M. Modes of cell death in the
pupal perivisceral fat body tissue of the silkworm Bombyx mori L.
Cell Tissue Res 2010; 339:349-58; http://dx.doi.org/10.1007/s00441-
009-0898-3.

1373. Tettamanti G, Grimaldi A, Casartelli M, Ambrosetti E, Ponti B,
Congiu T, Ferrarese R, Rivas-Pena ML, Pennacchio F, Eguileor M.
Programmed cell death and stem cell differentiation are responsible
for midgut replacement in Heliothis virescens during prepupal
instar. Cell Tissue Res 2007; 330:345-59; http://dx.doi.org/10.1007/
s00441-007-0449-8.

1374. Khoa DB, Takeda M. Expression of autophagy 8 (Atg8) and its role
in the midgut and other organs of the greater wax moth, Galleria
mellonella, during metamorphic remodelling and under starvation.
Insect Mol Biol 2012; 21:473-87; http://dx.doi.org/10.1111/j.1365-
2583.2012.01152.x.

1375. Gai Z, Zhang X, Islam M, Wang X, Li A, Yang Y, Li Y, Peng J,
Hong H, Liu K. Characterization of Atg8 in lepidopteran insect
cells. Arch Insect Biochem 2013; 84:57-77.

1376. Goncu E, Parlak O. Some autophagic and apoptotic features of pro-
grammed cell death in the anterior silk glands of the silkworm,
Bombyx mori. Autophagy 2008; 4:1069-72; http://dx.doi.org/
10.4161/auto.6953.

1377. Zhou S, Zhou Q, Liu Y, Wang S, Wen D, He Q, Wang W, Bendena
WG, Li S. Two Tor genes in the silkworm Bombyx mori.
Insect Mol Biol 2010; 19:727-35; http://dx.doi.org/10.1111/j.1365-
2583.2010.01026.x.

1378. Zhang X, Hu ZY, Li WF, Li QR, Deng XJ, Yang WY, Cao Y, Zhou
CZ. Systematic cloning and analysis of autophagy-related genes
from the silkworm Bombyx mori. BMC Mol Biol 2009; 10:50;
http://dx.doi.org/10.1186/1471-2199-10-50.

1379. Romanelli D, Casati B, Franzetti E, Tettamanti G. A molecular view
of autophagy in Lepidoptera. Biomed Res Int 2014; 2014:902315;
http://dx.doi.org/10.1155/2014/902315.

1380. Li Q, Deng X, Huang Z, Zheng S, Tettamanti G, Cao Y, Feng Q.
Expression of autophagy-related genes in the anterior silk gland of
the silkworm (Bombyx mori) during metamorphosis. Can J Zool
2011; 89:1019-26; http://dx.doi.org/10.1139/z11-075.

1381. Casati B, Terova G, Cattaneo AG, Rimoldi S, Franzetti E, de Egui-
leor M, Tettamanti G. Molecular cloning, characterization and
expression analysis of ATG1 in the silkworm, Bombyx mori. Gene
2012; 511:326-37; http://dx.doi.org/10.1016/j.gene.2012.09.086.

1382. Godefroy N, Hoa C, Tsokanos F, Le Goff E, Douzery EJ, Baghdi-
guian S, Martinand-Mari C. Identification of autophagy genes in
Ciona intestinalis: a new experimental model to study autophagy
mechanism. Autophagy 2009; 5:805-15; http://dx.doi.org/10.4161/
auto.8995.

1383. Martinand-Mari C, Vacelet J, Nickel M, Worheide G, Mangeat P,
Baghdiguian S. Cell death and renewal during prey capture and
digestion in the carnivorous sponge Asbestopluma hypogea (Pori-
fera: Poecilosclerida). J Exp Biol 2012; 215:3937-43; http://dx.doi.
org/10.1242/jeb.072371.

1384. Thom�e RG, Santos HB, Arantes FP, Domingos FF, Bazzoli N, Rizzo
E. Dual roles for autophagy during follicular atresia in fish ovary.
Autophagy 2009; 5:117-9; http://dx.doi.org/10.4161/auto.5.1.7302.

1385. Santos HB, Thome RG, Arantes FP, Sato Y, Bazzoli N, Rizzo E.
Ovarian follicular atresia is mediated by heterophagy, autophagy,
and apoptosis in Prochilodus argenteus and Leporinus taeniatus
(Teleostei: Characiformes). Theriogenology 2008; 70:1449-60;
http://dx.doi.org/10.1016/j.theriogenology.2008.06.091.

1386. Santos HB, Sato Y, Moro L, Bazzoli N, Rizzo E. Relationship among
follicular apoptosis, integrin beta1 and collagen type IV during early
ovarian regression in the teleost Prochilodus argenteus after
induced spawning. Cell Tissue Res 2008; 332:159-70; http://dx.doi.
org/10.1007/s00441-007-0540-1.

1387. Santos HB, Rizzo E, Bazzoli N, Sato Y, Moro L. Ovarian regression
and apoptosis in the South American teleost Leporinus taeniatus

Lutken (Characiformes, Anostomidae) from the S~ao Francisco
Basin. 2005; 67:1446-59.

1388. Couve E, Schmachtenberg O. Autophagic activity and aging in
human odontoblasts. J Dent Res 2011; 90:523-8; http://dx.doi.org/
10.1177/0022034510393347.

1389. Gonzalez-Estevez C. Autophagy in freshwater planarians. Methods
Enzymol 2008; 451:439-65; http://dx.doi.org/10.1016/S0076-6879
(08)03227-8.

1390. Gonzalez-Estevez C, Felix DA, Aboobaker AA, Salo E. Gtdap-1 pro-
motes autophagy and is required for planarian remodeling during
regeneration and starvation. Proc Natl Acad Sci USA 2007;
104:13373-8; http://dx.doi.org/10.1073/pnas.0703588104.

1391. Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka
K. Protein aggregates are transported to vacuoles by a macroauto-
phagic mechanism in nutrient-starved plant cells. Autophagy 2006;
2:96-106; http://dx.doi.org/10.4161/auto.2.2.2366.

1392. Corral-Martinez P, Parra-Vega V, Segui-Simarro JM. Novel features
of Brassica napus embryogenic microspores revealed by high pres-
sure freezing and freeze substitution: evidence for massive auto-
phagy and excretion-based cytoplasmic cleaning. J Exp Bot 2013;
64:3061-75.

1393. Le Bars R, Marion J, Le Borgne R, Satiat-Jeunemaitre B, Bianchi
MW. ATG5 defines a phagophore domain connected to the endo-
plasmic reticulum during autophagosome formation in plants. Nat
Commun 2014; 5:4121; http://dx.doi.org/10.1038/ncomms5121.

1394. Shin KD, Lee HN, Chung T. A revised assay for monitoring auto-
phagic flux in Arabidopsis thaliana reveals involvement of
AUTOPHAGY-RELATED9 in autophagy. Mol Cells 2014; 37:399-
405; http://dx.doi.org/10.14348/molcells.2014.0042.

1395. Svenning S, Lamark T, Krause K, Johansen T. Plant NBR1 is a selec-
tive autophagy substrate and a functional hybrid of the mammalian
autophagic adapters NBR1 and p62/SQSTM1. Autophagy 2011;
7:993-1010; http://dx.doi.org/10.4161/auto.7.9.16389.

1396. Zientara-Rytter K, Lukomska J, Moniuszko G, Gwozdecki R, Suro-
wiecki P, Lewandowska M, Liszewska F, Wawrzynska A, Sirko A.
Identification and functional analysis of Joka2, a tobacco member
of the family of selective autophagy cargo receptors. Autophagy
2011; 7:1145-58; http://dx.doi.org/10.4161/auto.7.10.16617.

1397. Minina EA, Sanchez-Vera V, Moschou PN, Suarez MF, Sundberg E,
Weih M, Bozhkov PV. Autophagy mediates caloric restriction-
induced lifespan extension in Arabidopsis. Aging Cell 2013; 12:327-
9; http://dx.doi.org/10.1111/acel.12048.

1398. van Doorn WG, Papini A. Ultrastructure of autophagy in plant
cells: a review. Autophagy 2013; 9:1922-36; http://dx.doi.org/
10.4161/auto.26275.

1399. Moriyasu Y, Inoue Y. Use of protease inhibitors for detecting auto-
phagy in plants. Methods Enzymol 2008; 451:557-80; http://dx.doi.
org/10.1016/S0076-6879(08)03232-1.

1400. Moriyasu Y, Ohsumi Y. Autophagy in tobacco suspension-cultured
cells in response to sucrose starvation. Plant Phys 1996; 111:1233-41.

1401. Inoue Y, Moriyasu Y. Autophagy is not a main contributor to the
degradation of phospholipids in tobacco cells cultured under
sucrose starvation conditions. Plant Cell Physiol 2006; 47:471-80;
http://dx.doi.org/10.1093/pcp/pcj013.

1402. Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y. 3-methyladenine
inhibits autophagy in tobacco culture cells under sucrose starvation
conditions. Plant Cell Physiol 2004; 45:265-74; http://dx.doi.org/
10.1093/pcp/pch031.

1403. Besteiro S, Brooks CF, Striepen B, Dubremetz J-F. Autophagy pro-
tein Atg3 is essential for maintaining mitochondrial integrity and
for normal intracellular development of Toxoplasma gondii tachy-
zoites. PLoS Pathog 2011; 7:e1002416.

1404. Calvo-Garrido J, Carilla-Latorre S, Kubohara Y, Santos-Rodrigo N,
Mesquita A, Soldati T, Golstein P, Escalante R. Autophagy in Dic-
tyostelium: genes and pathways, cell death and infection. Auto-
phagy 2010; 6:686-701; http://dx.doi.org/10.4161/auto.6.6.12513.

1405. Tung SM, Unal C, Ley A, Pena C, Tunggal B, Noegel AA, Krut O,
Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a
pleiotropic phenotype affecting growth, development, phagocytosis
and clearance and replication of Legionella pneumophila. Cell

162 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.5205
http://dx.doi.org/10.1007/s00441-009-0898-3
http://dx.doi.org/10.1007/s00441-009-0898-3
http://dx.doi.org/10.1007/s00441-007-0449-8
http://dx.doi.org/10.1007/s00441-007-0449-8
http://dx.doi.org/10.1111/j.1365-2583.2012.01152.x
http://dx.doi.org/10.1111/j.1365-2583.2012.01152.x
http://dx.doi.org/10.4161/auto.6953
http://dx.doi.org/10.1111/j.1365-2583.2010.01026.x
http://dx.doi.org/10.1111/j.1365-2583.2010.01026.x
http://dx.doi.org/10.1186/1471-2199-10-50
http://dx.doi.org/10.1155/2014/902315
http://dx.doi.org/10.1139/z11-075
http://dx.doi.org/10.1016/j.gene.2012.09.086
http://dx.doi.org/10.4161/auto.8995
http://dx.doi.org/10.4161/auto.8995
http://dx.doi.org/10.1242/jeb.072371
http://dx.doi.org/10.4161/auto.5.1.7302
http://dx.doi.org/10.1016/j.theriogenology.2008.06.091
http://dx.doi.org/10.1007/s00441-007-0540-1
http://dx.doi.org/10.1177/0022034510393347
http://dx.doi.org/10.1016/S0076-6879(08)03227-8
http://dx.doi.org/10.1016/S0076-6879(08)03227-8
http://dx.doi.org/10.1073/pnas.0703588104
http://dx.doi.org/10.4161/auto.2.2.2366
http://dx.doi.org/10.1038/ncomms5121
http://dx.doi.org/10.14348/molcells.2014.0042
http://dx.doi.org/10.4161/auto.7.9.16389
http://dx.doi.org/10.4161/auto.7.10.16617
http://dx.doi.org/10.1111/acel.12048
http://dx.doi.org/10.4161/auto.26275
http://dx.doi.org/10.1016/S0076-6879(08)03232-1
http://dx.doi.org/10.1093/pcp/pcj013
http://dx.doi.org/10.1093/pcp/pch031
http://dx.doi.org/10.4161/auto.6.6.12513


Microbiol 2010; 12:765-80; http://dx.doi.org/10.1111/j.1462-
5822.2010.01432.x.

1406. Bozzaro S, Eichinger L. The professional phagocyte Dictyostelium
discoideum as a model host for bacterial pathogens. Curr
Drug Targets 2011; 12:942-54; http://dx.doi.org/10.2174/
138945011795677782.

1407. Schlegel M, H€ulsmann N. Protists – A textbook example for a para-
phyletic taxon. Org Divers Evol 2007; 7:166-72; http://dx.doi.org/
10.1016/j.ode.2006.11.001.

1408. Kitamura K, Kishi-Itakura C, Tsuboi T, Sato S, Kita K, Ohta N,
Mizushima N. Autophagy-related Atg8 localizes to the apico-
plast of the human malaria parasite Plasmodium falciparum.
PloS One 2012; 7:e42977; http://dx.doi.org/10.1371/journal.
pone.0042977.

1409. Barquilla A, Crespo JL, Navarro M. Rapamycin inhibits trypano-
some cell growth by preventing TOR complex 2 formation. Proc
Natl Acad Sci USA 2008; 105:14579-84; http://dx.doi.org/10.1073/
pnas.0802668105.

1410. Hain AU, Bartee D, Sanders NG, Miller AS, Sullivan DJ, Levitskaya
J, Meyers CF, Bosch J. Identification of an Atg8-Atg3 protein-pro-
tein interaction inhibitor from the medicines for Malaria Venture
Malaria Box active in blood and liver stage Plasmodium falciparum
parasites. J Med Chem 2014; 57:4521-31; http://dx.doi.org/10.1021/
jm401675a.

1411. Hain AU, Weltzer RR, Hammond H, Jayabalasingham B, Dinglasan
RR, Graham DR, Colquhoun DR, Coppens I, Bosch J. Structural
characterization and inhibition of the Plasmodium Atg8-Atg3 inter-
action. J Struct Biol 2012; 180:551-62; http://dx.doi.org/10.1016/j.
jsb.2012.09.001.

1412. Navale R, Atul, Allanki AD, Sijwali PS. Characterization of the auto-
phagy marker protein Atg8 reveals atypical features of autophagy in
Plasmodium falciparum. PloS One 2014; 9:e113220; http://dx.doi.
org/10.1371/journal.pone.0113220.

1413. Morais P, Lamas J, Sanmartin ML, Orallo F, Leiro J. Resveratrol
induces mitochondrial alterations, autophagy and a cryptobiosis-
like state in scuticociliates. Protist 2009; 160:552-64; http://dx.doi.
org/10.1016/j.protis.2009.04.004.

1414. Yakisich JS, Kapler GM. The effect of phosphoinositide 3-kinase
inhibitors on programmed nuclear degradation in Tetrahymena
and fate of surviving nuclei. Cell Death Differ 2004; 11:1146-9;
http://dx.doi.org/10.1038/sj.cdd.4401473.

1415. Akematsu T, Pearlman RE, Endoh H. Gigantic macroautophagy in
programmed nuclear death of Tetrahymena thermophila. Auto-
phagy 2010; 6:901-11; http://dx.doi.org/10.4161/auto.6.7.13287.

1416. Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III
phosphatidylinositol 3-kinase during programmed nuclear death of
Tetrahymena thermophila. Autophagy 2014; 10:209-25; http://dx.
doi.org/10.4161/auto.26929.

1417. Liu ML, Yao MC. Role of ATG8 and autophagy in programmed
nuclear degradation in Tetrahymena thermophila. Eukaryot Cell
2012; 11:494-506; http://dx.doi.org/10.1128/EC.05296-11.

1418. Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ris-
tow SS, Hansen JD, Winton JR, Bartholomew JL, Nagler JJ, et al.
Status and opportunities for genomics research with rainbow trout.
Comp Biochem Phys B 2002; 133:609-46; http://dx.doi.org/
10.1016/S1096-4959(02)00167-7.

1419. Govoroun M, Le Gac F, Guiguen Y. Generation of a large scale rep-
ertoire of Expressed Sequence Tags (ESTs) from normalised rain-
bow trout cDNA libraries. BMC Genomics 2006; 7:196; http://dx.
doi.org/10.1186/1471-2164-7-196.

1420. Rexroad CE, III, Lee Y, Keele JW, Karamycheva S, Brown G, Koop
B, Gahr SA, Palti Y, Quackenbush J. Sequence analysis of a rainbow
trout cDNA library and creation of a gene index. Cytogenetic
Genome Res 2003; 102:347-54; http://dx.doi.org/10.1159/
000075773.

1421. Rise ML, von Schalburg KR, Brown GD, Mawer MA, Devlin RH,
Kuipers N, Busby M, Beetz-Sargent M, Alberto R, Gibbs AR, et al.
Development and application of a salmonid EST database and
cDNA microarray: data mining and interspecific hybridization

characteristics. Genome Res 2004; 14:478-90; http://dx.doi.org/
10.1101/gr.1687304.

1422. Salem M, Rexroad CE, III, Wang J, Thorgaard GH, Yao J. Charac-
terization of the rainbow trout transcriptome using Sanger and
454-pyrosequencing approaches. BMC Genomics 2010; 11:564;
http://dx.doi.org/10.1186/1471-2164-11-564.

1423. Polakof S, Panserat S, Craig PM, Martyres DJ, Plagnes-Juan E,
Savari S, Aris-Brosou S, Moon TW. The metabolic consequences of
hepatic AMP-kinase phosphorylation in rainbow trout. PloS One
2011; 6:e20228; http://dx.doi.org/10.1371/journal.pone.0020228.

1424. Seiliez I, Gabillard JC, Skiba-Cassy S, Garcia-Serrana D, Gutierrez J,
Kaushik S, Panserat S, Tesseraud S. An in vivo and in vitro assess-
ment of TOR signaling cascade in rainbow trout (Oncorhynchus
mykiss). Am J Physiol Reg Integ Comp Physiol 2008; 295:R329-35;
http://dx.doi.org/10.1152/ajpregu.00146.2008.

1425. Seiliez I, Gabillard J-C, Riflade M, Sadoul B, Dias K, Av�erous J, Tes-
seraud S, Skiba S, Panserat S. Amino acids downregulate the expres-
sion of several autophagy-related genes in rainbow trout myoblasts.
Autophagy 2012; 8:364-75.

1426. Chiarelli R, Agnello M, Bosco L, Roccheri MC. Sea urchin embryos
exposed to cadmium as an experimental model for studying the
relationship between autophagy and apoptosis. Mar Environ Res
2014; 93:47-55; http://dx.doi.org/10.1016/j.marenvres.2013.06.001.

1427. Umemiya R, Matsuo T, Hatta T, Sakakibara S, Boldbaatar D, Fuji-
saki K. Cloning and characterization of an autophagy-related gene,
ATG12, from the three-host tick Haemaphysalis longicornis. Insect
Biochem Molec 2007; 37:975-84; http://dx.doi.org/10.1016/j.
ibmb.2007.05.006.

1428. Kawano S, Umemiya-Shirafuji R, Boldbaatar D, Matsuoka K,
Tanaka T, Fujisaki K. Cloning and characterization of the auto-
phagy-related gene 6 from the hard tick, Haemaphysalis longicornis.
Parasitol Res 2011; 109:1341-9; http://dx.doi.org/10.1007/s00436-
011-2429-x.

1429. Umemiya-Shirafuji R, Matsuo T, Liao M, Boldbaatar D, Battur B,
Suzuki HI, Fujisaki K. Increased expression of ATG genes during
nonfeeding periods in the tick Haemaphysalis longicornis. Auto-
phagy 2010; 6:473-81; http://dx.doi.org/10.4161/auto.6.4.11668.

1430. Umemiya-Shirafuji R, Galay RL, Maeda H, Kawano S, Tanaka T,
Fukumoto S, Suzuki H, Tsuji N, Fujisaki K. Expression analysis of
autophagy-related genes in the hard tick Haemaphysalis longicor-
nis. Vet Parasitol 2014; 201:169-75; http://dx.doi.org/10.1016/j.
vetpar.2014.01.024.

1431. de la Fuente J, Kocan KM, Almazan C, Blouin EF. RNA interference
for the study and genetic manipulation of ticks. Trends Parasitol
2007; 23:427-33; http://dx.doi.org/10.1016/j.pt.2007.07.002.

1432. Ayll�on N, Villar V, Galindo RC, Kocan KM, �S�ıma R, L�opez JA,
V�azquez J, Alberdi P, Cabezas-Cruz A, Kop�a�cek P, et al. Systems
biology of tissue-specific response to Anaplasma phagocytophilum
reveals differentiated apoptosis in the tick vector Ixodes scapularis.
PLoS Genet 2015; 11:e1005120; http://dx.doi.org/10.1371/journal.
pgen.1005120.

1433. Genomic Resources Development C, Contreras M, de la Fuente J,
Estrada-Pena A, Grubhoffer L, Tobes R. Genomic resources notes
accepted 1 April 2014 - 31 May 2014. Mol Ecol Resour 2014;
14:1095.

1434. Lee E, Koo Y, Ng A, Wei Y, Luby-Phelps K, Juraszek A, Xavier RJ,
Cleaver O, Levine B, Amatruda JF. Autophagy is essential for car-
diac morphogenesis during vertebrate development. Autophagy
2014; 10:572-87; http://dx.doi.org/10.4161/auto.27649.

1435. Sasaki T, Lian S, Qi J, Bayliss PE, Carr CE, Johnson JL, Guha S,
Kobler P, Catz SD, Gill M, et al. Aberrant autolysosomal regu-
lation is linked to the induction of embryonic senescence: dif-
ferential roles of Beclin 1 and p53 in vertebrate Spns1
deficiency. PLoS Genet 2014; 10:e1004409; http://dx.doi.org/
10.1371/journal.pgen.1004409.

1436. He C, Bartholomew CR, Zhou W, Klionsky DJ. Assaying autopha-
gic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish
embryos. Autophagy 2009; 5:520-6; http://dx.doi.org/10.4161/
auto.5.4.7768.

AUTOPHAGY 163

http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.1111/j.1462-5822.2010.01432.x
http://dx.doi.org/10.2174/138945011795677782
http://dx.doi.org/10.2174/138945011795677782
http://dx.doi.org/10.1016/j.ode.2006.11.001
http://dx.doi.org/10.1371/journal.pone.0042977
http://dx.doi.org/10.1371/journal.pone.0042977
http://dx.doi.org/10.1073/pnas.0802668105
http://dx.doi.org/10.1073/pnas.0802668105
http://dx.doi.org/10.1021/jm401675a
http://dx.doi.org/10.1021/jm401675a
http://dx.doi.org/10.1016/j.jsb.2012.09.001
http://dx.doi.org/10.1016/j.jsb.2012.09.001
http://dx.doi.org/10.1371/journal.pone.0113220
http://dx.doi.org/10.1016/j.protis.2009.04.004
http://dx.doi.org/10.1038/sj.cdd.4401473
http://dx.doi.org/10.4161/auto.6.7.13287
http://dx.doi.org/10.4161/auto.26929
http://dx.doi.org/10.1128/EC.05296-11
http://dx.doi.org/10.1016/S1096-4959(02)00167-7
http://dx.doi.org/10.1186/1471-2164-7-196
http://dx.doi.org/10.1159/000075773
http://dx.doi.org/10.1159/000075773
http://dx.doi.org/10.1101/gr.1687304
http://dx.doi.org/10.1186/1471-2164-11-564
http://dx.doi.org/10.1371/journal.pone.0020228
http://dx.doi.org/10.1152/ajpregu.00146.2008
http://dx.doi.org/10.1016/j.marenvres.2013.06.001
http://dx.doi.org/10.1016/j.ibmb.2007.05.006
http://dx.doi.org/10.1016/j.ibmb.2007.05.006
http://dx.doi.org/10.1007/s00436-011-2429-x
http://dx.doi.org/10.1007/s00436-011-2429-x
http://dx.doi.org/10.4161/auto.6.4.11668
http://dx.doi.org/10.1016/j.vetpar.2014.01.024
http://dx.doi.org/10.1016/j.vetpar.2014.01.024
http://dx.doi.org/10.1016/j.pt.2007.07.002
http://dx.doi.org/10.1371/journal.pgen.1005120
http://dx.doi.org/10.1371/journal.pgen.1005120
http://dx.doi.org/10.4161/auto.27649
http://dx.doi.org/10.1371/journal.pgen.1004409
http://dx.doi.org/10.4161/auto.5.4.7768
http://dx.doi.org/10.4161/auto.5.4.7768


1437. Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M,
Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of
GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet
2010; 55:155-62; http://dx.doi.org/10.1038/jhg.2010.1.

1438. Dowling JJ, Low SE, Busta AS, Feldman EL. Zebrafish MTMR14 is
required for excitation-contraction coupling, developmental motor
function and the regulation of autophagy. Hum Mol Genet 2010;
19:2668-81; http://dx.doi.org/10.1093/hmg/ddq153.

1439. Makky K, Tekiela J, Mayer AN. Target of rapamycin (TOR) signal-
ing controls epithelial morphogenesis in the vertebrate intestine.
Dev Biol 2007; 303:501-13; http://dx.doi.org/10.1016/j.ydbio.
2006.11.030.

1440. Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL,
Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F, et al.
PICALM modulates autophagy activity and tau accumulation. Nat
Commun 2014; 5:4998; http://dx.doi.org/10.1038/ncomms5998.

1441. Hishiya A, Salman MN, Carra S, Kampinga HH, Takayama S.
BAG3 directly interacts with mutated alphaB-crystallin to suppress
its aggregation and toxicity. PloS One 2011; 6:e16828; http://dx.doi.
org/10.1371/journal.pone.0016828.

1442. Ruparelia AA, Oorschot V, Vaz R, Ramm G, Bryson-Richardson RJ.
Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic
gain of function leading to BAG3 insufficiency. Acta Neuropathol
2014; 128:821-33; http://dx.doi.org/10.1007/s00401-014-1344-5.

1443. Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P,
Hollinshead M, Cossart P, Herbomel P, Levraud JP, Colucci-Guyon
E. The zebrafish as a new model for the in vivo study of Shigella
flexneri interaction with phagocytes and bacterial autophagy. PLoS
Pathog 2013; 9:e1003588; http://dx.doi.org/10.1371/journal.
ppat.1003588.

1444. van der Vaart M, Korbee CJ, Lamers GE, Tengeler AC, Hosseini R,
Haks MC, Ottenhoff TH, Spaink HP, Meijer AH. The DNA Dam-
age-Regulated Autophagy Modulator DRAM1 Links Mycobacterial
Recognition via TLP-MYD88 to Authophagic Defense. Cell Host
Microbe 2014; 15:753-67; http://dx.doi.org/10.1016/j.chom.2014.
05.005.

1445. Varga M, Sass M, Papp D, Takacs-Vellai K, Kobolak J, Dinnyes A,
Klionsky DJ, Vellai T. Autophagy is required for zebrafish caudal
fin regeneration. Cell Death Differ 2014; 21:547-56; http://dx.doi.
org/10.1038/cdd.2013.175.

1446. Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini
M, Fimia GM, Carnevali O, Dalla Valle L. Ambra1 knockdown in
zebrafish leads to incomplete development due to severe defects in
organogenesis. Autophagy 2013; 9:476-95; http://dx.doi.org/
10.4161/auto.23278.

1447. Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castag-
naro S, Chrisam M, Di Bartolomeo S, Bonaldo P, Cecconi F, et al.
Zebrafish ambra1a and ambra1b knockdown impairs skeletal mus-
cle development. PloS One 2014; 9:e99210; http://dx.doi.org/
10.1371/journal.pone.0099210.

1448. Mizushima N. Methods for monitoring autophagy using GFP-LC3
transgenic mice. Methods Enzymol 2009; 452:13-23; http://dx.doi.
org/10.1016/S0076-6879(08)03602-1.

1449. Henault J, Martinez J, Riggs JM, Tian J, Mehta P, Clarke L, Sasai M,
Latz E, Brinkmann MM, Iwasaki A, et al. Noncanonical autophagy
is required for type I interferon secretion in response to DNA-
immune complexes. Immunity 2012; 37:986-97; http://dx.doi.org/
10.1016/j.immuni.2012.09.014.

1450. Varma H, Gangadhar NM, Letso RR, Wolpaw AJ, Sriramaratnam
R, Stockwell BR. Identification of a small molecule that induces
ATG5-and-cathepsin-l-dependent cell death and modulates poly-
glutamine toxicity. Exp Cell Res 2013; 319:1759-73; http://dx.doi.
org/10.1016/j.yexcr.2013.03.019.

1451. Kong-Hap MA, Mouammine A, Daher W, Berry L, Lebrun M,
Dubremetz JF, Besteiro S. Regulation of ATG8 membrane associa-
tion by ATG4 in the parasitic protist Toxoplasma gondii. Auto-
phagy 2013; 9:1334-48; http://dx.doi.org/10.4161/auto.25189.

1452. Jayabalasingham B, Voss C, Ehrenman K, Romano JD, Smith ME,
Fidock DA, Bosch J, Coppens I. Characterization of the ATG8-con-
jugation system in 2 Plasmodium species with special focus on the

liver stage: possible linkage between the apicoplastic and autophagic
systems? Autophagy 2014; 10:269-84; http://dx.doi.org/10.4161/
auto.27166.

1453. Tomlins AM, Ben-Rached F, Williams RA, Proto WR, Coppens I,
Ruch U, Gilberger TW, Coombs GH, Mottram JC, Muller S, et al.
Plasmodium falciparum ATG8 implicated in both autophagy and
apicoplast formation. Autophagy 2013; 9:1540-52; http://dx.doi.
org/10.4161/auto.25832.

1454. Mizushima N, Sahani MH. ATG8 localization in apicomplexan par-
asites: apicoplast and more? Autophagy 2014; 10:1487-94; http://dx.
doi.org/10.4161/auto.32183.

1455. Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like
conjugation enzyme Atg3 promotes binding of IRG and Gbp pro-
teins to Chlamydia- and Toxoplasma-containing vacuoles and host
resistance. PloS One 2014; 9:e86684; http://dx.doi.org/10.1371/
journal.pone.0086684.

1456. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N,
Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S, et al. Role of
mouse and human autophagy proteins in IFN-gamma-induced
cell-autonomous responses against Toxoplasma gondii. J Immunol
2014; 192:3328-35; http://dx.doi.org/10.4049/jimmunol.1302822.

1457. Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the
Toxoplasma gondii parasitophorous vacuole by IFNgamma-induc-
ible immunity-related GTPases (IRG proteins) triggers necrotic cell
death. PLoS Pathog 2009; 5:e1000288; http://dx.doi.org/10.1371/
journal.ppat.1000288.

1458. Meunier E, Dick MS, Dreier RF, Schurmann N, Kenzelmann Broz
D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, Takeda
K, et al. Caspase-11 activation requires lysis of pathogen-containing
vacuoles by IFN-induced GTPases. Nature 2014; 509:366-70; http://
dx.doi.org/10.1038/nature13157.

1459. Taguchi Y, Imaoka K, Kataoka M, Uda A, Nakatsu D, Horii-Oka-
zaki S, Kunishige R, Kano F, Murata M. Yip1A, a novel host factor
for the activation of the IRE1 pathway of the unfolded protein
response during Brucella infection. PLoS Pathog 2015; 11:e1004747;
http://dx.doi.org/10.1371/journal.ppat.1004747.

1460. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C,
Virgin HW, Celli J. Selective subversion of autophagy complexes
facilitates completion of the Brucella intracellular cycle. Cell Host
Microbe 2012; 11:33-45; http://dx.doi.org/10.1016/j.chom.2011.
12.002.

1461. Ferguson TA, Green DR. Autophagy and phagocytosis converge for
better vision. Autophagy 2014; 10:165-7; http://dx.doi.org/10.4161/
auto.26735.

1462. Mehta P, Henault J, Kolbeck R, Sanjuan MA. Noncanonical auto-
phagy: one small step for LC3, one giant leap for immunity. Curr
Opin Immunol 2014; 26:69-75; http://dx.doi.org/10.1016/j.
coi.2013.10.012.

1463. Scarlatti F, Maffei R, Beau I, Ghidoni R, Codogno P. Non-canonical
autophagy: an exception or an underestimated form of autophagy?
Autophagy 2008; 4:1083-5; http://dx.doi.org/10.4161/auto.7068.

1464. Takeshita F, Kobiyama K, Miyawaki A, Jounai N, Okuda K. The
non-canonical role of Atg family members as suppressors of innate
antiviral immune signaling. Autophagy 2008; 4:67-9; http://dx.doi.
org/10.4161/auto.5055.

1465. Deretic V, Jiang S, Dupont N. Autophagy intersections with con-
ventional and unconventional secretion in tissue development,
remodeling and inflammation. Trends Cell Biol 2012; 22:397-406;
http://dx.doi.org/10.1016/j.tcb.2012.04.008.

1466. Cleyrat C, Darehshouri A, Steinkamp MP, Vilaine M, Boassa D,
Ellisman MH, Hermouet S, Wilson BS. Mpl traffics to the cell sur-
face through conventional and unconventional routes. Traffic 2014;
15:961-82; http://dx.doi.org/10.1111/tra.12185.

1467. Hughes T, Rusten TE. Origin and evolution of self-consumption:
autophagy. Adv Exp Med Biol 2007; 607:111-8; http://dx.doi.org/
10.1007/978-0-387-74021-8.

1468. Kiel JA. Autophagy in unicellular eukaryotes. Philos Trans R Soc B
2010; 365:819-30; http://dx.doi.org/10.1098/rstb.2009.0237.

1469. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of

164 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1038/jhg.2010.1
http://dx.doi.org/10.1093/hmg/ddq153
http://dx.doi.org/10.1016/j.ydbio.<?A3B2 re3j?>2006.11.030
http://dx.doi.org/10.1016/j.ydbio.<?A3B2 re3j?>2006.11.030
http://dx.doi.org/10.1038/ncomms5998
http://dx.doi.org/10.1371/journal.pone.0016828
http://dx.doi.org/10.1007/s00401-014-1344-5
http://dx.doi.org/10.1371/journal.ppat.1003588
http://dx.doi.org/10.1371/journal.ppat.1003588
http://dx.doi.org/10.1016/j.chom.2014.<?A3B2 re3j?>05.005
http://dx.doi.org/10.1016/j.chom.2014.<?A3B2 re3j?>05.005
http://dx.doi.org/10.1038/cdd.2013.175
http://dx.doi.org/10.4161/auto.23278
http://dx.doi.org/10.1371/journal.pone.0099210
http://dx.doi.org/10.1016/S0076-6879(08)03602-1
http://dx.doi.org/10.1016/j.immuni.2012.09.014
http://dx.doi.org/10.1016/j.yexcr.2013.03.019
http://dx.doi.org/10.4161/auto.25189
http://dx.doi.org/10.4161/auto.27166
http://dx.doi.org/10.4161/auto.27166
http://dx.doi.org/10.4161/auto.25832
http://dx.doi.org/10.4161/auto.32183
http://dx.doi.org/10.1371/journal.pone.0086684
http://dx.doi.org/10.1371/journal.pone.0086684
http://dx.doi.org/10.4049/jimmunol.1302822
http://dx.doi.org/10.1371/journal.ppat.1000288
http://dx.doi.org/10.1371/journal.ppat.1000288
http://dx.doi.org/10.1038/nature13157
http://dx.doi.org/10.1371/journal.ppat.1004747
http://dx.doi.org/10.1016/j.chom.2011.<?A3B2 re3j?>12.002
http://dx.doi.org/10.1016/j.chom.2011.<?A3B2 re3j?>12.002
http://dx.doi.org/10.4161/auto.26735
http://dx.doi.org/10.4161/auto.26735
http://dx.doi.org/10.1016/j.coi.2013.10.012
http://dx.doi.org/10.1016/j.coi.2013.10.012
http://dx.doi.org/10.4161/auto.7068
http://dx.doi.org/10.4161/auto.5055
http://dx.doi.org/10.1016/j.tcb.2012.04.008
http://dx.doi.org/10.1111/tra.12185
http://dx.doi.org/10.1007/978-0-387-74021-8
http://dx.doi.org/10.1098/rstb.2009.0237


protein database search programs. Nucleic Acids Res 1997; 25:3389-
402; http://dx.doi.org/10.1093/nar/25.17.3389.

1470. Pertsemlidis A, Fondon JW, III. Having a BLAST with bioinformat-
ics (and avoiding BLASTphemy). Genome Biol 2001; 2:
REVIEWS2002; http://dx.doi.org/10.1186/gb-2001-2-10-reviews2002.

1471. Rost B. Twilight zone of protein sequence alignments. Protein engi-
neering 1999; 12:85-94; http://dx.doi.org/10.1093/protein/12.2.85.

1472. Duszenko M, Ginger ML, Brennand A, Gualdron-Lopez M,
Colombo MI, Coombs GH, Coppens I, Jayabalasingham B, Langs-
ley G, de Castro SL, et al. Autophagy in protists. Autophagy 2011;
7:127-58; http://dx.doi.org/10.4161/auto.7.2.13310.

1473. Rigden DJ, Michels PA, Ginger ML. Autophagy in protists: Exam-
ples of secondary loss, lineage-specific innovations, and the conun-
drum of remodeling a single mitochondrion. Autophagy 2009;
5:784-94; http://dx.doi.org/10.4161/auto.8838.

1474. Katsani KR, Irimia M, Karapiperis C, Scouras ZG, Blencowe BJ,
Promponas VJ, Ouzounis CA. Functional genomics evidence
unearths new moonlighting roles of outer ring coat nucleopor-
ins. Sci Rep 2014; 4:4655; http://dx.doi.org/10.1038/srep04655.

1475. Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC. Intrinsically
disordered regions in autophagy proteins. Proteins 2014; 82:565-78;
http://dx.doi.org/10.1002/prot.24424.

1476. Promponas VJ, Ouzounis CA, Iliopoulos I. Experimental evidence
validating the computational inference of functional associations
from gene fusion events: a critical survey. Brief Bioinform 2014;
15:443-54; http://dx.doi.org/10.1093/bib/bbs072.

1477. Homma K, Suzuki K, Sugawara H. The Autophagy Database: an all-
inclusive information resource on autophagy that provides nourish-
ment for research. Nucleic Acids Res 2011; 39:D986-90; http://dx.
doi.org/10.1093/nar/gkq995.

1478. Turei D, Foldvari-Nagy L, Fazekas D, Modos D, Kubisch J, Kadlec-
sik T, Demeter A, Lenti K, Csermely P, Vellai T, et al. Autophagy
Regulatory Network - a systems-level bioinformatics resource for
studying the mechanism and regulation of autophagy. Autophagy
2015; 11:155-65; http://dx.doi.org/10.4161/15548627.2014.994346.

1479. Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for
selective autophagy. J Cell Sci 2013; 126:3237-47.

1480. Wild P, McEwan DG, Dikic I. The LC3 interactome at a glance. J
Cell Sci 2014; 127:3-9; http://dx.doi.org/10.1242/jcs.140426.

1481. Noda NN, Ohsumi Y, Inagaki F. Atg8-family interacting motif cru-
cial for selective autophagy. FEBS Lett 2010; 584:1379-85; http://dx.
doi.org/10.1016/j.febslet.2010.01.018.

1482. Kalvari I, Tsompanis S, Mulakkal NC, Osgood R, Johansen T, Nezis
IP, Promponas VJ. iLIR: A web resource for prediction of Atg8-
family interacting proteins. Autophagy 2014; 10:913-25; http://dx.
doi.org/10.4161/auto.28260.

1483. Dosztanyi Z, Meszaros B, Simon I. ANCHOR: web server for pre-
dicting protein binding regions in disordered proteins. Bioinformatics
2009; 25:2745-6; http://dx.doi.org/10.1093/bioinformatics/btp518.

1484. Dinkel H, Van Roey K, Michael S, Davey NE, Weatheritt RJ, Born
D, Speck T, Kruger D, Grebnev G, Kuban M, et al. The eukaryotic
linear motif resource ELM: 10 years and counting. Nucleic Acids
Res 2014; 42:D259-66; http://dx.doi.org/10.1093/nar/gkt1047.

1485. Wu D, Huang Y, Kang JJ, Li KN, Bi XM, Zhang T, Jin NN, Hu YF,
Tan PW, Zhang L, et al. ncRDeathDB: a comprehensive
bioinformatics resource for deciphering network organization of
the ncRNA-mediated cell death system. Autophagy 2015; 11:
1917-26.

1486. Li Y, Zhuang L, Wang Y, Hu Y, Wu Y, Wang D, Xu J. Connect the
dots: a systems level approach for analyzing the miRNA-mediated
cell death network. Autophagy 2013; 9:436-9; http://dx.doi.org/
10.4161/auto.23096.

1487. Xu J, Li YH. miRDeathDB: a database bridging microRNAs and the
programmed cell death. Cell Death Differ 2012; 19:1571; http://dx.
doi.org/10.1038/cdd.2012.87.

1488. Xu J, Wang Y, Tan X, Jing H. MicroRNAs in autophagy and their
emerging roles in crosstalk with apoptosis. Autophagy 2012; 8:873-
82; http://dx.doi.org/10.4161/auto.19629.

1489. Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT,
Tyson JJ. Dynamic Modeling of the Interaction Between Autophagy

and Apoptosis in Mammalian Cells. CPT Pharmacometrics Syst
Pharmacol 2015; 4:263-72; http://dx.doi.org/10.1002/psp4.29.

1490. Tavassoly I. Dynamics of Cell Fate Decision Mediated by the Inter-
play of Autophagy and Apoptosis in Cancer Cells: Mathematical
Modeling and Experimental Observations. Springer, 2015.

1491. Borlin CS, Lang V, Hamacher-Brady A, Brady NR. Agent-based
modeling of autophagy reveals emergent regulatory behavior of spa-
tio-temporal autophagy dynamics. Cell Commun Signal 2014;
12:56; http://dx.doi.org/10.1186/s12964-014-0056-8.

1492. Martin KR, Barua D, Kauffman AL, Westrate LM, Posner RG, Hla-
vacek WS, Mackeigan JP. Computational model for autophagic ves-
icle dynamics in single cells. Autophagy 2013; 9:74-92; http://dx.
doi.org/10.4161/auto.22532.

1493. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P,
Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, et al. A
comprehensive glossary of autophagy-related molecules and pro-
cesses (2nd) edition). Autophagy 2011; 7:1273-94; http://dx.doi.org/
10.4161/auto.7.11.17661.

1494. Klionsky DJ, Codogno P, Cuervo AM, Deretic V, Elazar Z, Fueyo-
Margareto J, Gewirtz DA, Kroemer G, Levine B, Mizushima N,
et al. A comprehensive glossary of autophagy-related molecules and
processes. Autophagy 2010; 6:438-48; http://dx.doi.org/10.4161/
auto.6.4.12244.

1495. Rosich L, Xargay-Torrent S, Lopez-Guerra M, Campo E, Colomer
D, Roue G. Counteracting autophagy overcomes resistance to ever-
olimus in mantle cell lymphoma. Clin Cancer Res 2012; 18:5278-
89; http://dx.doi.org/10.1158/1078-0432.CCR-12-0351.

1496. Anguiano J, Garner TP, Mahalingam M, Das BC, Gavathiotis E,
Cuervo AM. Chemical modulation of chaperone-mediated auto-
phagy by retinoic acid derivatives. Nat Chem Biol 2013; 9:374-82;
http://dx.doi.org/10.1038/nchembio.1230.

1497. De Mei C, Ercolani L, Parodi C, Veronesi M, Vecchio CL, Bottegoni
G, Torrente E, Scarpelli R, Marotta R, Ruffili R, et al. Dual inhibi-
tion of REV-ERBbeta and autophagy as a novel pharmacological
approach to induce cytotoxicity in cancer cells. Oncogene 2015;
34:2597-608; http://dx.doi.org/10.1038/onc.2014.203.

1498. Fujita N, Hayashi-Nishino M, Fukumoto H, Omori H, Yamamoto
A, Noda T, Yoshimori T. An Atg4B mutant hampers the lipidation
of LC3 paralogues and causes defects in autophagosome closure.
Mol Biol Cell 2008; 19:4651-9; http://dx.doi.org/10.1091/mbc.E08-
03-0312.

1499. Vanrell MC, Cueto JA, Barclay JJ, Carrillo C, Colombo MI, Gottlieb
RA, Romano PS. Polyamine depletion inhibits the autophagic
response modulating Trypanosoma cruzi infectivity. Autophagy
2013; 9:1080-93; http://dx.doi.org/10.4161/auto.24709.

1500. Song W, Zukor H, Liberman A, Kaduri S, Arvanitakis Z, Bennett
DA, Schipper HM. Astroglial heme oxygenase-1 and the origin of
corpora amylacea in aging and degenerating neural tissues. Exp
Neurol 2014; 254:78-89; http://dx.doi.org/10.1016/j.expneurol.
2014.01.006.

1501. Song W, Zukor H, Lin SH, Liberman A, Tavitian A, Mui J, Vali H,
Fillebeen C, Pantopoulos K, Wu TD, et al. Unregulated brain iron
deposition in transgenic mice over-expressing HMOX1 in the astro-
cytic compartment. J Neurochem 2012; 123:325-36; http://dx.doi.
org/10.1111/j.1471-4159.2012.07914.x.

1502. Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C, Panto-
poulos K, Wu TD, Guerquin-Kern JL, Schipper HM. HO-1-medi-
ated macroautophagy: a mechanism for unregulated iron deposition
in aging and degenerating neural tissues. J Neurochem 2009; 109:776-
91; http://dx.doi.org/10.1111/j.1471-4159.2009.06007.x.

1503. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC,
Chresta CM, Alessi DR. Ku-0063794 is a specific inhibitor of the
mammalian target of rapamycin (mTOR). Biochem J 2009; 421:29-
42; http://dx.doi.org/10.1042/BJ20090489.

1504. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari
S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al. An inhibitor
of NEDD8-activating enzyme as a new approach to treat cancer.
Nature 2009; 458:732-6; http://dx.doi.org/10.1038/nature07884.

1505. Luo Z, Yu G, Lee HW, Li L, Wang L, Yang D, Pan Y, Ding C, Qian
J, Wu L, et al. The Nedd8-activating enzyme inhibitor MLN4924

AUTOPHAGY 165

http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1186/gb-2001-2-10-reviews2002
http://dx.doi.org/10.1093/protein/12.2.85
http://dx.doi.org/10.4161/auto.7.2.13310
http://dx.doi.org/10.4161/auto.8838
http://dx.doi.org/10.1038/srep04655
http://dx.doi.org/10.1002/prot.24424
http://dx.doi.org/10.1093/bib/bbs072
http://dx.doi.org/10.1093/nar/gkq995
http://dx.doi.org/10.4161/15548627.2014.994346
http://dx.doi.org/10.1242/jcs.140426
http://dx.doi.org/10.1016/j.febslet.2010.01.018
http://dx.doi.org/10.4161/auto.28260
http://dx.doi.org/10.1093/bioinformatics/btp518
http://dx.doi.org/10.1093/nar/gkt1047
http://dx.doi.org/10.4161/auto.23096
http://dx.doi.org/10.1038/cdd.2012.87
http://dx.doi.org/10.4161/auto.19629
http://dx.doi.org/10.1002/psp4.29
http://dx.doi.org/10.1186/s12964-014-0056-8
http://dx.doi.org/10.4161/auto.22532
http://dx.doi.org/10.4161/auto.7.11.17661
http://dx.doi.org/10.4161/auto.6.4.12244
http://dx.doi.org/10.4161/auto.6.4.12244
http://dx.doi.org/10.1158/1078-0432.CCR-12-0351
http://dx.doi.org/10.1038/nchembio.1230
http://dx.doi.org/10.1038/onc.2014.203
http://dx.doi.org/10.1091/mbc.E08-03-0312
http://dx.doi.org/10.1091/mbc.E08-03-0312
http://dx.doi.org/10.4161/auto.24709
http://dx.doi.org/10.1016/j.expneurol.<?A3B2 re3j?>2014.01.006
http://dx.doi.org/10.1016/j.expneurol.<?A3B2 re3j?>2014.01.006
http://dx.doi.org/10.1111/j.1471-4159.2012.07914.x
http://dx.doi.org/10.1111/j.1471-4159.2009.06007.x
http://dx.doi.org/10.1042/BJ20090489
http://dx.doi.org/10.1038/nature07884


induces autophagy and apoptosis to suppress liver cancer cell
growth. Cancer Res 2012; 72:3360-71; http://dx.doi.org/10.1158/
0008-5472.CAN-12-0388.

1506. Yang D, Zhao Y, Liu J, Sun Y, Jia L. Protective autophagy induced
by RBX1/ROC1 knockdown or CRL inactivation via modulating
the DEPTOR-MTOR axis. Autophagy 2012; 8:1856-8; http://dx.doi.
org/10.4161/auto.22024.

1507. Zhao Y, Xiong X, Jia L, Sun Y. Targeting Cullin-RING ligases by
MLN4924 induces autophagy via modulating the HIF1-REDD1-
TSC1-mTORC1-DEPTOR axis. Cell Death Dis 2012; 3:e386; http://
dx.doi.org/10.1038/cddis.2012.125.

1508. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman
M, Botero ML, Llonch E, Atzori F, Di Cosimo S, et al. NVP-
BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and
inhibits the growth of cancer cells with activating PI3K mutations.
Cancer Res 2008; 68:8022-30; http://dx.doi.org/10.1158/0008-5472.
CAN-08-1385.

1509. Liu TJ, Koul D, LaFortune T, Tiao N, Shen RJ, Maira SM, Garcia-
Echevrria C, Yung WK. NVP-BEZ235, a novel dual phosphatidyli-
nositol 3-kinase/mammalian target of rapamycin inhibitor, elicits
multifaceted antitumor activities in human gliomas. Mol Cancer
Ther 2009; 8:2204-10; http://dx.doi.org/10.1158/1535-7163.MCT-
09-0160.

1510. Pirola L, Frojdo S. Resveratrol: one molecule, many targets. IUBMB
Life 2008; 60:323-32; http://dx.doi.org/10.1002/iub.47.

1511. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE,
Janle EM, Lobo J, Ferruzzi MG, Davies P, et al. AMP-activated pro-
tein kinase signaling activation by resveratrol modulates amyloid-
beta peptide metabolism. J Biol Chem 2010; 285:9100-13; http://dx.
doi.org/10.1074/jbc.M109.060061.

1512. Puissant A, Auberger P. AMPK- and p62/SQSTM1-dependent
autophagy mediate Resveratrol-induced cell death in chronic mye-
logenous leukemia. Autophagy 2010; 6:655-7; http://dx.doi.org/
10.4161/auto.6.5.12126.

1513. Vingtdeux V, Chandakkar P, Zhao H, d’Abramo C, Davies P, Mar-
ambaud P. Novel synthetic small-molecule activators of AMPK as
enhancers of autophagy and amyloid-[b] peptide degradation. The
FASEB J 2011; 25:219-31; http://dx.doi.org/10.1096/fj.10-167361.

1514. Wong VK, Li T, Law BY, Ma ED, Yip NC, Michelangeli F, Law CK,
Zhang MM, Lam KY, Chan PL, et al. Saikosaponin-d, a novel
SERCA inhibitor, induces autophagic cell death in apoptosis-defec-
tive cells. Cell Death Dis 2013; 4:e720; http://dx.doi.org/10.1038/
cddis.2013.217.

1515. Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO. Dependence of
hepatocytic autophagy on intracellularly sequestered calcium. J Biol
Chem 1993; 268:26107-12.

1516. Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagoso-
mal-lysosomal fusion mechanism revealed by thapsigargin-induced
autophagy arrest. Mol Cell 2011; 42:731-43; http://dx.doi.org/
10.1016/j.molcel.2011.04.024.

1517. Zhang L, Dai F, Cui L, Jing H, Fan P, Tan X, Guo Y, Zhou G. Novel
role for TRPC4 in regulation of macroautophagy by a small mole-
cule in vascular endothelial cells. Biochim Biophys Acta 2015;
1853:377-87; http://dx.doi.org/10.1016/j.bbamcr.2014.10.030.

1518. Casarejos MJ, Solano RM, Gomez A, Perucho J, de Yebenes JG,
Mena MA. The accumulation of neurotoxic proteins, induced by
proteasome inhibition, is reverted by trehalose, an enhancer of
autophagy, in human neuroblastoma cells. Neurochem Int 2011;
58:512-20; http://dx.doi.org/10.1016/j.neuint.2011.01.008.

1519. Fernandez-Estevez MA, Casarejos MJ, Lopez Sendon J, Garcia Cal-
dentey J, Ruiz C, Gomez A, Perucho J, de Yebenes JG, Mena MA.
Trehalose reverses cell malfunction in fibroblasts from normal and
Huntington’s disease patients caused by proteosome inhibition.
PloS One 2014; 9:e90202; http://dx.doi.org/10.1371/journal.
pone.0090202.

1520. Carpenter JE, Jackson W, Benetti L, Grose C. Autophagosome for-
mation during varicella-zoster virus Infection following endoplas-
mic reticulum stress and the unfolded protein response. J Virol
2011; 85:9414-24; http://dx.doi.org/10.1128/JVI.00281-11.

1521. Lu Y, Dong S, Hao B, Li C, Zhu K, Guo W, Wang Q, Cheung KH,
Wong CW, WuWT, et al. Vacuolin-1 potently and reversibly inhib-
its autophagosome-lysosome fusion by activating RAB5A. Autophagy
2014; 10:1895-905; http://dx.doi.org/10.4161/auto.32200.

1522. Kijanska M, Dohnal I, Reiter W, Kaspar S, Stoffel I, Ammerer G,
Kraft C, Peter M. Activation of Atg1 kinase in autophagy by regu-
lated phosphorylation. Autophagy 2010; 6:1168-78; http://dx.doi.
org/10.4161/auto.6.8.13849.

1523. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yone-
zawa K, Ohsumi Y. Tor directly controls the Atg1 kinase complex
to regulate autophagy. Mol Cell Biol 2010; 30:1049-58; http://dx.
doi.org/10.1128/MCB.01344-09.

1524. Stephan JS, Yeh YY, Ramachandran V, Deminoff SJ, Herman PK.
The Tor and PKA signaling pathways independently target the
Atg1/Atg13 protein kinase complex to control autophagy. Proc
Natl Acad Sci USA 2009; 106:17049-54; http://dx.doi.org/10.1073/
pnas.0903316106.

1525. Wei Y, An Z, Zou Z, Sumpter R, Su M, Zang X, Sinha S, Gaestel M,
Levine B. The stress-responsive kinases MAPKAPK2/MAPKAPK3
activate starvation-induced autophagy through Beclin 1 phosphory-
lation. eLife 2015; 4.

1526. Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, Liu R, Zhong
Q, Guan KL. Differential regulation of distinct Vps34 complexes by
AMPK in nutrient stress and autophagy. Cell 2013; 152:290-303;
http://dx.doi.org/10.1016/j.cell.2012.12.016.

1527. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR.
Mammalian target of rapamycin is a direct target for protein
kinase B: identification of a convergence point for opposing
effects of insulin and amino-acid deficiency on protein transla-
tion. Biochem J 1999; 344 Pt 2:427-31; http://dx.doi.org/
10.1042/bj3440427.

1528. Peterson RT, Beal PA, Comb MJ, Schreiber SL. FKBP12-rapamycin-
associated protein (FRAP) autophosphorylates at serine 2481 under
translationally repressive conditions. J Biol Chem 2000; 275:7416-
23; http://dx.doi.org/10.1074/jbc.275.10.7416.

1529. Nicot AS, Lo Verso F, Ratti F, Pilot-Storck F, Streichenberger N,
Sandri M, Schaeffer L, Goillot E. Phosphorylation of NBR1 by
GSK3 modulates protein aggregation. Autophagy 2014; 10:1036-53;
http://dx.doi.org/10.4161/auto.28479.

1530. Rosner M, Fuchs C, Siegel N, Valli A, Hengstschlager M. Functional
interaction of mammalian target of rapamycin complexes in regu-
lating mammalian cell size and cell cycle. Hum Mol Genet 2009;
18:3298-310; http://dx.doi.org/10.1093/hmg/ddp271.

1531. Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO. Glycogen synthase
kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase
(p70S6K) activity and cell proliferation. Proc Natl Acad Sci USA
2011; 108:E1204-13; http://dx.doi.org/10.1073/pnas.1110195108.

1532. Ro SH, Semple IA, Park H, Park H, Park HW, Kim M, Kim JS, Lee
JH. Sestrin2 promotes Unc-51-like kinase 1 mediated phosphoryla-
tion of p62/sequestosome-1. FEBS J 2014; 281:3816-27.

1533. Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J-L,
Mizushima N. FIP200, a ULK-interacting protein, is required for
autophagosome formation in mammalian cells. J Cell Biol 2008;
181:497-510; http://dx.doi.org/10.1083/jcb.200712064.

1534. Xue L, Fletcher GC, Tolkovsky AM. Autophagy is activated by apo-
ptotic signalling in sympathetic neurons: an alternative mechanism
of death execution. Mol Cell Neurosci 1999; 14:180-98; http://dx.
doi.org/10.1006/mcne.1999.0780.

1535. Zhang N, Chen Y, Jiang R, Li E, Chen X, Xi Z, Guo Y, Liu X, Zhou
Y, Che Y, et al. PARP and RIP 1 are required for autophagy induced
by 11’-deoxyverticillin A, which precedes caspase-dependent apo-
ptosis. Autophagy 2011; 7:598-612; http://dx.doi.org/10.4161/
auto.7.6.15103.

1536. Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C,
Debnath J. ATG12 conjugation to ATG3 regulates mitochondrial
homeostasis and cell death. Cell 2010; 142:590-600; http://dx.doi.
org/10.1016/j.cell.2010.07.018.

1537. Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N,
Hickman JA, Geneste O, Kroemer G. BH3-only proteins and BH3

166 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1158/0008-5472.CAN-12-0388
http://dx.doi.org/10.1158/0008-5472.CAN-12-0388
http://dx.doi.org/10.4161/auto.22024
http://dx.doi.org/10.1038/cddis.2012.125
http://dx.doi.org/10.1158/0008-5472.CAN-08-1385
http://dx.doi.org/10.1158/0008-5472.CAN-08-1385
http://dx.doi.org/10.1158/1535-7163.MCT-09-0160
http://dx.doi.org/10.1158/1535-7163.MCT-09-0160
http://dx.doi.org/10.1002/iub.47
http://dx.doi.org/10.1074/jbc.M109.060061
http://dx.doi.org/10.4161/auto.6.5.12126
http://dx.doi.org/10.1096/fj.10-167361
http://dx.doi.org/10.1038/cddis.2013.217
http://dx.doi.org/10.1038/cddis.2013.217
http://dx.doi.org/10.1016/j.molcel.2011.04.024
http://dx.doi.org/10.1016/j.bbamcr.2014.10.030
http://dx.doi.org/10.1016/j.neuint.2011.01.008
http://dx.doi.org/10.1371/journal.pone.0090202
http://dx.doi.org/10.1371/journal.pone.0090202
http://dx.doi.org/10.1128/JVI.00281-11
http://dx.doi.org/10.4161/auto.32200
http://dx.doi.org/10.4161/auto.6.8.13849
http://dx.doi.org/10.1128/MCB.01344-09
http://dx.doi.org/10.1073/pnas.0903316106
http://dx.doi.org/10.1073/pnas.0903316106
http://dx.doi.org/10.1016/j.cell.2012.12.016
http://dx.doi.org/10.1042/bj3440427
http://dx.doi.org/10.1074/jbc.275.10.7416
http://dx.doi.org/10.4161/auto.28479
http://dx.doi.org/10.1093/hmg/ddp271
http://dx.doi.org/10.1073/pnas.1110195108
http://dx.doi.org/10.1083/jcb.200712064
http://dx.doi.org/10.1006/mcne.1999.0780
http://dx.doi.org/10.4161/auto.7.6.15103
http://dx.doi.org/10.4161/auto.7.6.15103
http://dx.doi.org/10.1016/j.cell.2010.07.018


mimetics induce autophagy by competitively disrupting the interac-
tion between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 2007; 3:374-
6; http://dx.doi.org/10.4161/auto.4237.

1538. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri
DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, et al.
An inhibitor of Bcl-2 family proteins induces regression of solid
tumours. Nature 2005; 435:677-81; http://dx.doi.org/10.1038/
nature03579.

1539. Nazarko TY. Atg37 regulates the assembly of the pexophagic recep-
tor protein complex. Autophagy 2014; 10:1348-9; http://dx.doi.org/
10.4161/auto.29073.

1540. Eisenberg T, Schroeder S, Andryushkova A, Pendl T, Kuttner V,
Bhukel A, Marino G, Pietrocola F, Harger A, Zimmermann A, et al.
Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme
a stimulates autophagy and prolongs lifespan. Cell Metab 2014;
19:431-44; http://dx.doi.org/10.1016/j.cmet.2014.02.010.

1541. Marino G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryush-
kova A, Schroeder S, Pendl T, Harger A, Niso-Santano M, et al.
Regulation of autophagy by cytosolic acetyl-coenzyme a. Mol Cell
2014; 53:710-25; http://dx.doi.org/10.1016/j.molcel.2014.01.016.

1542. Nandi N, Tyra LK, Stenesen D, Kramer H. Acinus integrates AKT1
and subapoptotic caspase activities to regulate basal autophagy.
J Cell Biol 2014; 207:253-68; http://dx.doi.org/10.1083/
jcb.201404028.

1543. Haberman AS, Akbar MA, Ray S, Kramer H. Drosophila acinus enc-
odes a novel regulator of endocytic and autophagic trafficking.
Development 2010; 137:2157-66.

1544. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim
M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, et al. Listeria
monocytogenes ActA-mediated escape from autophagic recogni-
tion. Nat Cell Biol 2009; 11:1233-40; http://dx.doi.org/10.1038/
ncb1967.

1545. Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P,
Franke A. Autophagy receptor CALCOCO2/NDP52 takes center
stage in Crohn disease. Autophagy 2013; 9:1256-7; http://dx.doi.
org/10.4161/auto.25483.

1546. Eby KG, Rosenbluth JM, Mays DJ, Marshall CB, Barton CE, Sinha
S, Johnson KN, Tang L, Pietenpol JA. ISG20L1 is a p53 family target
gene that modulates genotoxic stress-induced autophagy. Mol Can-
cer 2010; 9:95; http://dx.doi.org/10.1186/1476-4598-9-95.

1547. Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ, 3rd.
The Receptor for Advanced Glycation End-products (RAGE) pro-
tects pancreatic tumor cells against oxidative injury. Antioxid
Redox Sign 2011; 15:2175-84; http://dx.doi.org/10.1089/ars.2010.
3378.

1548. Kang R, Tang D, Livesey KM, Schapiro NE, Lotze MT, Zeh HJ. The
receptor for advanced glycation end-products (RAGE) protects
pancreatic tumor cells against oxidative injury. Antioxid Redox
Sign 2011; 15:2175-84.

1549. Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C.
BAG3 mediates chaperone-based aggresome-targeting and selective
autophagy of misfolded proteins. EMBO Rep 2011; 12:149-56;
http://dx.doi.org/10.1038/embor.2010.203.

1550. Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response
to misfolded proteins. J Cell Biol 1998; 143:1883-98; http://dx.doi.
org/10.1083/jcb.143.7.1883.

1551. Viana R, Aguado C, Esteban I, Moreno D, Viollet B, Knecht E, Sanz
P. Role of AMP-activated protein kinase in autophagy and protea-
some function. Biochem Biophys Res Commun 2008; 369:964-8;
http://dx.doi.org/10.1016/j.bbrc.2008.02.126.

1552. Hadano S, Otomo A, Kunita R, Suzuki-Utsunomiya K, Akatsuka A,
Koike M, Aoki M, Uchiyama Y, Itoyama Y, Ikeda JE. Loss of ALS2/
Alsin exacerbates motor dysfunction in a SOD1-expressing mouse
ALS model by disturbing endolysosomal trafficking. PloS One
2010; 5:e9805; http://dx.doi.org/10.1371/journal.pone.0009805.

1553. Otomo A, Kunita R, Suzuki-Utsunomiya K, Ikeda JE, Hadano S.
Defective relocalization of ALS2/alsin missense mutants to Rac1-
induced macropinosomes accounts for loss of their cellular function
and leads to disturbed amphisome formation. FEBS Lett 2011;
585:730-6; http://dx.doi.org/10.1016/j.febslet.2011.01.045.

1554. Antonioli M, Albiero F, Nazio F, Vescovo T, Perdomo AB, Coraz-
zari M, Marsella C, Piselli P, Gretzmeier C, Dengjel J, et al.
AMBRA1 interplay with cullin E3 ubiquitin ligases regulates auto-
phagy dynamics. Dev Cell 2014; 31:734-46; http://dx.doi.org/
10.1016/j.devcel.2014.11.013.

1555. Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F,
Gherardini PF, De Zio D, Nazio F, Antonioli M, D’Orazio M, et al.
AMBRA1 links autophagy to cell proliferation and tumorigenesis
by promoting c-Myc dephosphorylation and degradation. Nat Cell
Biol 2015; 17:20-30; http://dx.doi.org/10.1038/ncb3072.

1556. Fu M, St-Pierre P, Shankar J, Wang PT, Joshi B, Nabi IR. Regulation
of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell 2013;
24:1153-62; http://dx.doi.org/10.1091/mbc.E12-08-0607.

1557. Lan SH, Wu SY, Zuchini R, Lin XZ, Su IJ, Tsai TF, Lin YJ, Wu CT,
Liu HS. Autophagy suppresses tumorigenesis of hepatitis B virus-
associated hepatocellular carcinoma through degradation of micro-
RNA-224. Hepatology 2014; 59:505-17; http://dx.doi.org/10.1002/
hep.26659.

1558. Lee KY, Oh S, Choi YJ, Oh SH, Yang YS, Yang MJ, Lee K, Lee BH.
Activation of autophagy rescues amiodarone-induced apoptosis of
lung epithelial cells and pulmonary toxicity in rats. Toxicol Sci
2013; 136:193-204; http://dx.doi.org/10.1093/toxsci/kft168.

1559. Seglen PO, Berg TO, Blankson H, Fengsrud M, Holen I, Stromhaug
PE. Structural aspects of autophagy. Adv Exp Med Biol 1996;
389:103-11; http://dx.doi.org/10.1007/978-1-4613-0335-0.

1560. Meijer AJ, Codogno P. AMP-activated protein kinase and auto-
phagy. Autophagy 2007; 3:238-40; http://dx.doi.org/10.4161/
auto.3710.

1561. Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT,
Schwechheimer C, Isono E. The Arabidopsis deubiquitinating
enzyme AMSH3 interacts with ESCRT-III subunits and regulates
their localization. Plant Cell 2011; 23:3026-40; http://dx.doi.org/
10.1105/tpc.111.087254.

1562. Katsiarimpa A, Kalinowska K, Anzenberger F, Weis C, Ostertag M,
Tsutsumi C, Schwechheimer C, Brunner F, Huckelhoven R, Isono
E. The deubiquitinating enzyme AMSH1 and the ESCRT-III sub-
unit VPS2.1 are required for autophagic degradation in Arabidop-
sis. Plant Cell 2013; 25:2236-52; http://dx.doi.org/10.1105/
tpc.113.113399.

1563. Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR. Acti-
vated protein C modulates cardiac metabolism and augments auto-
phagy in the ischemic heart. J Thromb Haemost 2012; 10:1736-44;
http://dx.doi.org/10.1111/j.1538-7836.2012.04833.x.

1564. Yuga M, Gomi K, Klionsky DJ, Shintani T. Aspartyl aminopepti-
dase is imported from the cytoplasm to the vacuole by selective
autophagy in Saccharomyces cerevisiae. J Biol Chem 2011;
286:13704-13; http://dx.doi.org/10.1074/jbc.M110.173906.

1565. Deretic V, Levine B. Autophagy, immunity, and microbial adapta-
tions. Cell Host Microbe 2009; 5:527-49; http://dx.doi.org/10.1016/
j.chom.2009.05.016.

1566. Wang P, Xu TY, Wei K, Guan YF, Wang X, Xu H, Su DF, Pei G,
Miao CY. ARRB1/beta-arrestin-1 mediates neuroprotection
through coordination of BECN1-dependent autophagy in cerebral
ischemia. Autophagy 2014; 10:1535-48; http://dx.doi.org/10.4161/
auto.29203.

1567. Keller KE, Yang YF, Sun YY, Sykes R, Acott TS, Wirtz MK.
Ankyrin repeat and suppressor of cytokine signaling box con-
taining protein-10 is associated with ubiquitin-mediated degra-
dation pathways in trabecular meshwork cells. Mol Vis 2013;
19:1639-55.

1568. Rzymski T, Milani M, Pike L, Buffa F, Mellor HR, Winchester L,
Pires I, Hammond E, Ragoussis I, Harris AL. Regulation of auto-
phagy by ATF4 in response to severe hypoxia. Oncogene 2010;
29:4424-35; http://dx.doi.org/10.1038/onc.2010.191.

1569. Sheng Z, Ma L, Sun JE, Zhu LJ, Green MR. BCR-ABL suppresses
autophagy through ATF5-mediated regulation of mTOR transcrip-
tion. Blood 2011; 118:2840-8; http://dx.doi.org/10.1182/blood-
2010-12-322537.

1570. Klionsky DJ, Cregg JM, Dunn WA, Jr., Emr SD, Sakai Y, Sandoval
IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, et al. A

AUTOPHAGY 167

http://dx.doi.org/10.4161/auto.4237
http://dx.doi.org/10.1038/nature03579
http://dx.doi.org/10.1038/nature03579
http://dx.doi.org/10.4161/auto.29073
http://dx.doi.org/10.1016/j.cmet.2014.02.010
http://dx.doi.org/10.1016/j.molcel.2014.01.016
http://dx.doi.org/10.1083/jcb.201404028
http://dx.doi.org/10.1083/jcb.201404028
http://dx.doi.org/10.1038/ncb1967
http://dx.doi.org/10.1038/ncb1967
http://dx.doi.org/10.4161/auto.25483
http://dx.doi.org/10.1186/1476-4598-9-95
http://dx.doi.org/10.1089/ars.2010.<?A3B2 re3j?>3378
http://dx.doi.org/10.1089/ars.2010.<?A3B2 re3j?>3378
http://dx.doi.org/10.1038/embor.2010.203
http://dx.doi.org/10.1083/jcb.143.7.1883
http://dx.doi.org/10.1016/j.bbrc.2008.02.126
http://dx.doi.org/10.1371/journal.pone.0009805
http://dx.doi.org/10.1016/j.febslet.2011.01.045
http://dx.doi.org/10.1016/j.devcel.2014.11.013
http://dx.doi.org/10.1038/ncb3072
http://dx.doi.org/10.1091/mbc.E12-08-0607
http://dx.doi.org/10.1002/hep.26659
http://dx.doi.org/10.1002/hep.26659
http://dx.doi.org/10.1093/toxsci/kft168
http://dx.doi.org/10.1007/978-1-4613-0335-0
http://dx.doi.org/10.4161/auto.3710
http://dx.doi.org/10.4161/auto.3710
http://dx.doi.org/10.1105/tpc.111.087254
http://dx.doi.org/10.1105/tpc.113.113399
http://dx.doi.org/10.1105/tpc.113.113399
http://dx.doi.org/10.1111/j.1538-7836.2012.04833.x
http://dx.doi.org/10.1074/jbc.M110.173906
http://dx.doi.org/10.1016/j.chom.2009.05.016
http://dx.doi.org/10.1016/j.chom.2009.05.016
http://dx.doi.org/10.4161/auto.29203
http://dx.doi.org/10.4161/auto.29203
http://dx.doi.org/10.1038/onc.2010.191
http://dx.doi.org/10.1182/blood-2010-12-322537
http://dx.doi.org/10.1182/blood-2010-12-322537


unified nomenclature for yeast autophagy-related genes. Dev Cell
2003; 5:539-45; http://dx.doi.org/10.1016/S1534-5807(03)00296-X.

1571. Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel pro-
tein kinase required for the autophagic process in Saccharomyces
cerevisiae. Gene 1997; 192:245-50; http://dx.doi.org/10.1016/S0378-
1119(97)00084-X.

1572. Shintani T, Suzuki K, Kamada Y, Noda T, Ohsumi Y. Apg2p func-
tions in autophagosome formation on the perivacuolar structure. J
Biol Chem 2001; 276:30452-60; http://dx.doi.org/10.1074/jbc.
M102346200.

1573. Wang C-W, Kim J, Huang W-P, Abeliovich H, Stromhaug PE,
Dunn WA, Jr., Klionsky DJ. Apg2 is a novel protein required for
the cytoplasm to vacuole targeting, autophagy, and pexophagy
pathways. J Biol Chem 2001; 276:30442-51; http://dx.doi.org/
10.1074/jbc.M102342200.

1574. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara
N, Mizushima N, Tanida I, Kominami E, Ohsumi M, et al. A ubiq-
uitin-like system mediates protein lipidation. Nature 2000; 408:488-
92; http://dx.doi.org/10.1038/35044114.

1575. Schlumpberger M, Schaeffeler E, Straub M, Bredschneider M, Wolf
DH, Thumm M. AUT1, a gene essential for autophagocytosis in the
yeast Saccharomyces cerevisiae. J Bacteriol 1997; 179:1068-76.

1576. Tanida I, Sou YS, Minematsu-Ikeguchi N, Ueno T, Kominami E.
Atg8L/Apg8L is the fourth mammalian modifier of mammalian
Atg8 conjugation mediated by human Atg4B, Atg7 and Atg3. FEBS
J 2006; 273:2553-62; http://dx.doi.org/10.1111/j.1742-4658.2006.
05260.x.

1577. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George
MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation
system essential for autophagy. Nature 1998; 395:395-8; http://dx.
doi.org/10.1038/26506.

1578. Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. Apg7p/
Cvt2p is required for the cytoplasm-to-vacuole targeting,
macroautophagy, and peroxisome degradation pathways. Mol Biol
Cell 1999; 10:1337-51; http://dx.doi.org/10.1091/mbc.10.5.1337.

1579. Tanida I, Mizushima N, Kiyooka M, Ohsumi M, Ueno T, Ohsumi
Y, Kominami E. Apg7p/Cvt2p: A novel protein-activating enzyme
essential for autophagy. Mol Biol Cell 1999; 10:1367-79; http://dx.
doi.org/10.1091/mbc.10.5.1367.

1580. Noda T, Kim J, Huang W-P, Baba M, Tokunaga C, Ohsumi Y,
Klionsky DJ. Apg9p/Cvt7p is an integral membrane protein
required for transport vesicle formation in the Cvt and autophagy
pathways. J Cell Biol 2000; 148:465-80; http://dx.doi.org/10.1083/
jcb.148.3.465.

1581. Yamada T, Carson AR, Caniggia I, Umebayashi K, Yoshimori T,
Nakabayashi K, Scherer SW. Endothelial nitric-oxide synthase anti-
sense (NOS3AS) gene encodes an autophagy-related protein
(APG9-like2) highly expressed in trophoblast. J Biol Chem 2005;
280:18283-90; http://dx.doi.org/10.1074/jbc.M413957200.

1582. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi
Y. Apg10p, a novel protein-conjugating enzyme essential for auto-
phagy in yeast. EMBO J 1999; 18:5234-41; http://dx.doi.org/
10.1093/emboj/18.19.5234.

1583. Kim J, Kamada Y, Stromhaug PE, Guan J, Hefner-Gravink A, Baba
M, Scott SV, Ohsumi Y, Dunn WA, Jr., Klionsky DJ. Cvt9/Gsa9
functions in sequestering selective cytosolic cargo destined for the
vacuole. J Cell Biol 2001; 153:381-96; http://dx.doi.org/10.1083/
jcb.153.2.381.

1584. Kamber RA, Shoemaker CJ, Denic V. receptor-bound targets of
selective autophagy use a scaffold protein to activate the Atg1
kinase. Mol Cell 2015; 59:372-81; http://dx.doi.org/10.1016/j.
molcel.2015.06.009.

1585. Lin L, Yang P, Huang X, Zhang H, Lu Q, Zhang H. The scaffold
protein EPG-7 links cargo-receptor complexes with the autophagic
assembly machinery. J Cell Biol 2013; 201:113-29; http://dx.doi.org/
10.1083/jcb.201209098.

1586. Li F, Chung T, Vierstra RD. AUTOPHAGY-RELATED11 plays a
critical role in general autophagy- and senescence-induced mitoph-
agy in Arabidopsis. 2014.

1587. Funakoshi T, Matsuura A, Noda T, Ohsumi Y. Analyses of APG13
gene involved in autophagy in yeast, Saccharomyces cerevisiae.
Gene 1997; 192:207-13; http://dx.doi.org/10.1016/S0378-1119(97)
00031-0.

1588. Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/
Vps30p form a protein complex essential for autophagy in the yeast,
Saccharomyces cerevisiae. J Biol Chem 1998; 273:22284-91; http://
dx.doi.org/10.1074/jbc.273.35.22284.

1589. Epple UD, Suriapranata I, Eskelinen E-L, Thumm M. Aut5/Cvt17p,
a putative lipase essential for disintegration of autophagic bodies
inside the vacuole. J Bacteriol 2001; 183:5942-55; http://dx.doi.org/
10.1128/JB.183.20.5942-5955.2001.

1590. Teter SA, Eggerton KP, Scott SV, Kim J, Fischer AM, Klionsky DJ.
Degradation of lipid vesicles in the yeast vacuole requires function
of Cvt17, a putative lipase. J Biol Chem 2001; 276:2083-7; http://dx.
doi.org/10.1074/jbc.C000739200.

1591. van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF,
Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD. Lipid drop-
let autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell
2014; 25:290-301; http://dx.doi.org/10.1091/mbc.E13-08-0448.

1592. Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the func-
tion of the Apg12p-Apg5p conjugate in the yeast autophagy path-
way. EMBO J 1999; 18:3888-96; http://dx.doi.org/10.1093/emboj/
18.14.3888.

1593. Massey DC, Parkes M. Genome-wide association scanning high-
lights two autophagy genes, ATG16L1 and IRGM, as being signifi-
cantly associated with Crohn’s disease. Autophagy 2007; 3:649-51;
http://dx.doi.org/10.4161/auto.5075.

1594. Yang SK, Hong M, Zhao W, Jung Y, Baek J, Tayebi N, Kim KM, Ye
BD, Kim KJ, Park SH, et al. Genome-wide association study of
Crohn’s disease in Koreans revealed three new susceptibility loci and
common attributes of genetic susceptibility across ethnic populations.
Gut 2014; 63:80-7; http://dx.doi.org/10.1136/gutjnl-2013-305193.

1595. Chew LH, Setiaputra D, Klionsky DJ, Yip CK. Structural characteri-
zation of the Saccharomyces cerevisiae autophagy regulatory com-
plex Atg17-Atg31-Atg29. Autophagy 2013; 9:1467-74; http://dx.doi.
org/10.4161/auto.25687.

1596. Mao K, Chew LH, Inoue-Aono Y, Cheong H, Nair U, Popelka H,
Yip CK, Klionsky DJ. Atg29 phosphorylation regulates coordination
of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during
autophagy initiation. Proc Natl Acad Sci USA 2013; 110:E2875-84;
http://dx.doi.org/10.1073/pnas.1300064110.

1597. Mao K, Chew LH, Yip CK, Klionsky DJ. The role of Atg29 phos-
phorylation in PAS assembly. Autophagy 2013; 9:2178-9; http://dx.
doi.org/10.4161/auto.26740.

1598. Leber R, Silles E, Sandoval IV, Mazon MJ. Yol082p, a novel CVT
protein involved in the selective targeting of aminopeptidase I to
the yeast vacuole. J Biol Chem 2001; 276:29210-7; http://dx.doi.org/
10.1074/jbc.M101438200.

1599. Scott SV, Guan J, Hutchins MU, Kim J, Klionsky DJ. Cvt19 is a
receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell
2001; 7:1131-41; http://dx.doi.org/10.1016/S1097-2765(01)00263-5.

1600. Nice DC, Sato TK, Stromhaug PE, Emr SD, Klionsky DJ. Coopera-
tive binding of the cytoplasm to vacuole targeting pathway proteins,
Cvt13 and Cvt20, to phosphatidylinositol 3-phosphate at the pre-
autophagosomal structure is required for selective autophagy. J Biol
Chem 2002; 277:30198-207; http://dx.doi.org/10.1074/jbc.
M204736200.

1601. Deng YZ, Qu Z, He Y, Naqvi NI. Sorting nexin Snx41 is essential
for conidiation and mediates glutathione-based antioxidant defense
during invasive growth in Magnaporthe oryzae. Autophagy 2012;
8:1058-70; http://dx.doi.org/10.4161/auto.20217.

1602. Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovar-
asteanu K, Thumm M. The breakdown of autophagic vesicles inside
the vacuole depends on Aut4p. J Cell Sci 2000; 113:4025-33.

1603. Yang Z, Huang J, Geng J, Nair U, Klionsky DJ. Atg22 recycles
amino acids to link the degradative and recycling functions of auto-
phagy. Mol Biol Cell 2006; 17:5094-104; http://dx.doi.org/10.1091/
mbc.E06-06-0479.

168 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1016/S1534-5807(03)00296-X
http://dx.doi.org/10.1016/S0378-1119(97)00084-X
http://dx.doi.org/10.1016/S0378-1119(97)00084-X
http://dx.doi.org/10.1074/jbc.M102346200
http://dx.doi.org/10.1074/jbc.M102346200
http://dx.doi.org/10.1074/jbc.M102342200
http://dx.doi.org/10.1038/35044114
http://dx.doi.org/10.1111/j.1742-4658.2006.<?A3B2 re3j?>05260.x
http://dx.doi.org/10.1111/j.1742-4658.2006.<?A3B2 re3j?>05260.x
http://dx.doi.org/10.1038/26506
http://dx.doi.org/10.1091/mbc.10.5.1337
http://dx.doi.org/10.1091/mbc.10.5.1367
http://dx.doi.org/10.1083/jcb.148.3.465
http://dx.doi.org/10.1083/jcb.148.3.465
http://dx.doi.org/10.1074/jbc.M413957200
http://dx.doi.org/10.1093/emboj/18.19.5234
http://dx.doi.org/10.1083/jcb.153.2.381
http://dx.doi.org/10.1083/jcb.153.2.381
http://dx.doi.org/10.1016/j.molcel.2015.06.009
http://dx.doi.org/10.1016/j.molcel.2015.06.009
http://dx.doi.org/10.1083/jcb.201209098
http://dx.doi.org/10.1016/S0378-1119(97)00031-0
http://dx.doi.org/10.1016/S0378-1119(97)00031-0
http://dx.doi.org/10.1074/jbc.273.35.22284
http://dx.doi.org/10.1128/JB.183.20.5942-5955.2001
http://dx.doi.org/10.1074/jbc.C000739200
http://dx.doi.org/10.1091/mbc.E13-08-0448
http://dx.doi.org/10.1093/emboj/18.14.3888
http://dx.doi.org/10.1093/emboj/18.14.3888
http://dx.doi.org/10.4161/auto.5075
http://dx.doi.org/10.1136/gutjnl-2013-305193
http://dx.doi.org/10.4161/auto.25687
http://dx.doi.org/10.1073/pnas.1300064110
http://dx.doi.org/10.4161/auto.26740
http://dx.doi.org/10.1074/jbc.M101438200
http://dx.doi.org/10.1016/S1097-2765(01)00263-5
http://dx.doi.org/10.1074/jbc.M204736200
http://dx.doi.org/10.1074/jbc.M204736200
http://dx.doi.org/10.4161/auto.20217
http://dx.doi.org/10.1091/mbc.E06-06-0479
http://dx.doi.org/10.1091/mbc.E06-06-0479


1604. Legakis JE, Yen W-L, Klionsky DJ. A cycling protein complex
required for selective autophagy. Autophagy 2007; 3:422-32; http://
dx.doi.org/10.4161/auto.4129.

1605. Tucker KA, Reggiori F, Dunn WA, Jr., Klionsky DJ. Atg23 is essen-
tial for the cytoplasm to vacuole targeting pathway and efficient
autophagy but not pexophagy. J Biol Chem 2003; 278:48445-52;
http://dx.doi.org/10.1074/jbc.M309238200.

1606. Monastyrska I, Kiel JAKW, Krikken AM, Komduur JA, Veenhuis
M, van der Klei IJ. The Hansenula polymorpha ATG25 gene enco-
des a novel coiled-coil protein that is required for macropexophagy.
Autophagy 2005; 1:92-100; http://dx.doi.org/10.4161/auto.1.2.1832.

1607. Cao Y, Klionsky DJ. Atg26 is not involved in autophagy-related
pathways in Saccharomyces cerevisiae. Autophagy 2007; 3:17-20;
http://dx.doi.org/10.4161/auto.3371.

1608. Yamashita S, Oku M, Wasada Y, Ano Y, Sakai Y. PI4P-signaling
pathway for the synthesis of a nascent membrane structure in selec-
tive autophagy. J Cell Biol 2006; 173:709-17; http://dx.doi.org/
10.1083/jcb.200512142.

1609. Yen W-L, Legakis JE, Nair U, Klionsky DJ. Atg27 is required for
autophagy-dependent cycling of Atg9. Mol Biol Cell 2007; 18:581-
93; http://dx.doi.org/10.1091/mbc.E06-07-0612.

1610. Stasyk OV, Stasyk OG, Mathewson RD, Farre JC, Nazarko VY, Kra-
sovska OS, Subramani S, Cregg JM, Sibirny AA. Atg28, a novel
coiled-coil protein involved in autophagic degradation of peroxi-
somes in the methylotrophic yeast Pichia pastoris. Autophagy 2006;
2:30-8; http://dx.doi.org/10.4161/auto.2226.

1611. Kawamata T, Kamada Y, Suzuki K, Kuboshima N, Akimatsu H, Ota
S, Ohsumi M, Ohsumi Y. Characterization of a novel autophagy-
specific gene, ATG29. Biochem Biophys Res Commun 2005;
338:1884-9; http://dx.doi.org/10.1016/j.bbrc.2005.10.163.

1612. Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y. Cis1/Atg31 is
required for autophagosome formation in Saccharomyces cerevi-
siae. Biochem Biophys Res Commun 2007; 356:405-10; http://dx.
doi.org/10.1016/j.bbrc.2007.02.150.

1613. Watanabe Y, Noda NN, Kumeta H, Suzuki K, Ohsumi Y, Inagaki F.
Selective transport of alpha-mannosidase by autophagic pathways:
structural basis for cargo recognition by Atg19 and Atg34. J
Biol Chem 2010; 285:30026-33; http://dx.doi.org/10.1074/jbc.
M110.143545.

1614. Meijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW. ATG genes
involved in non-selective autophagy are conserved from yeast to
man, but the selective Cvt and pexophagy pathways also require
organism-specific genes. Autophagy 2007; 3:106-16.

1615. Nazarko VY, Nazarko TY, Farre JC, Stasyk OV, Warnecke D, Ulas-
zewski S, Cregg JM, Sibirny AA, Subramani S. Atg35, a micropex-
ophagy-specific protein that regulates micropexophagic apparatus
formation in Pichia pastoris. Autophagy 2011; 7:375-85; http://dx.
doi.org/10.4161/auto.7.4.14369.

1616. Motley AM, Nuttall JM, Hettema EH. Pex3-anchored Atg36 tags
peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J
2012; 31:2852-68; http://dx.doi.org/10.1038/emboj.2012.151.

1617. Araki Y, Ku WC, Akioka M, May AI, Hayashi Y, Arisaka F, Ishi-
hama Y, Ohsumi Y. Atg38 is required for autophagy-specific phos-
phatidylinositol 3-kinase complex integrity. J Cell Biol 2013;
203:299-313; http://dx.doi.org/10.1083/jcb.201304123.

1618. Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima
N. Atg101, a novel mammalian autophagy protein interacting with
Atg13. Autophagy 2009; 5:973-9; http://dx.doi.org/10.4161/
auto.5.7.9296.

1619. Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 bind-
ing protein, Atg101, interacts with ULK1 and is essential for
macroautophagy. Autophagy 2009; 5:649-62; http://dx.doi.org/
10.4161/auto.5.5.8249.

1620. Honig A, Avin-Wittenberg T, Ufaz S, Galili G. A new type of com-
partment, defined by plant-specific Atg8-interacting proteins, is
induced upon exposure of Arabidopsis plants to carbon starvation.
Plant Cell 2012; 24:288-303; http://dx.doi.org/10.1105/tpc.111.
093112.

1621. Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH,
Doudnikoff E, Vital A, Vila M, Klein C, Bezard E. Loss of P-type

ATPase ATP13A2/PARK9 function induces general lysosomal defi-
ciency and leads to Parkinson disease neurodegeneration. Proc Natl
Acad Sci USA 2012; 109:9611-6; http://dx.doi.org/10.1073/
pnas.1112368109.

1622. Gusdon AM, Zhu J, Van Houten B, Chu CT. ATP13A2 regulates
mitochondrial bioenergetics through macroautophagy. Neuobiol
Dis 2012; 45:962-72; http://dx.doi.org/10.1016/j.nbd.2011.12.015.

1623. Niu H, Rikihisa Y. Ats-1: a novel bacterial molecule that links auto-
phagy to bacterial nutrition. Autophagy 2013; 9:787-8; http://dx.
doi.org/10.4161/auto.23693.

1624. Niu H, Xiong Q, Yamamoto A, Hayashi-Nishino M, Rikihisa Y.
Autophagosomes induced by a bacterial Beclin 1 binding pro-
tein facilitate obligatory intracellular infection. Proc Natl
Acad Sci USA 2012; 109:20800-7; http://dx.doi.org/10.1073/
pnas.1218674109.

1625. Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes
to therapy-induced degradation of the PML/RARA oncoprotein.
Blood 2010; 116:2324-31; http://dx.doi.org/10.1182/blood-2010-01-
261040.

1626. Orfali N, McKenna SL, Cahill MR, Gudas LJ, Mongan NP. Retinoid
receptor signaling and autophagy in acute promyelocytic leukemia.
Exp Cell Res 2014; 324:1-12; http://dx.doi.org/10.1016/j.
yexcr.2014.03.018.

1627. Vanhee C, Zapotoczny G, Masquelier D, Ghislain M, Batoko H. The
Arabidopsis multistress regulator TSPO is a heme binding mem-
brane protein and a potential scavenger of porphyrins via an auto-
phagy-dependent degradation mechanism. Plant Cell 2011; 23:785-
805; http://dx.doi.org/10.1105/tpc.110.081570.

1628. Papp D, Kovacs T, Billes V, Varga M, Tarnoci A, Hackler L Jr, et al.
AUTEN-67, an autophagy-enhancing drug candidate with potent
antiaging and neuroprotective effects. Autophagy 2015; 11:in press.

1629. Dunn WA, Jr. Studies on the mechanisms of autophagy: formation
of the autophagic vacuole. J Cell Biol 1990; 110:1923-33; http://dx.
doi.org/10.1083/jcb.110.6.1923.

1630. Schulze RJ, Weller SG, Schroeder B, Krueger EW, Chi S, Casey CA,
McNiven MA. Lipid droplet breakdown requires dynamin 2 for
vesiculation of autolysosomal tubules in hepatocytes. J Cell Biol
2013; 203:315-26; http://dx.doi.org/10.1083/jcb.201306140.

1631. Gundara JS, Robinson BG, Sidhu SB. Evolution of the “autophaga-
miR”. Autophagy 2011; 7:1553-4; http://dx.doi.org/10.4161/
auto.7.12.17762.

1632. Mijaljica D, Nazarko TY, Brumell JH, Huang WP, Komatsu M, Pre-
scott M, Simonsen A, Yamamoto A, Zhang H, Klionsky DJ, et al.
Receptor protein complexes are in control of autophagy. Autophagy
2012; 8:1701-5; http://dx.doi.org/10.4161/auto.21332.

1633. Shpilka T, Welter E, Borovsky N, Amar N, Mari M, Reggiori F, Ela-
zar Z. Lipid droplets and their component triglycerides and steryl
esters regulate autophagosome biogenesis. EMBO J 2015; 34:2117-
31; http://dx.doi.org/10.15252/embj.201490315.

1634. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl
C. Protein quality control during aging involves recruitment of the
macroautophagy pathway by BAG3. EMBO J 2009; 28:889-901;
http://dx.doi.org/10.1038/emboj.2009.29.

1635. Sebti S, Prebois C, Perez-Gracia E, Bauvy C, Desmots F, Pirot N,
Gongora C, Bach AS, Hubberstey AV, Palissot V, et al. BAT3 mod-
ulates p300-dependent acetylation of p53 and autophagy-related
protein 7 (ATG7) during autophagy. Proc Natl Acad Sci USA 2014;
111:4115-20; http://dx.doi.org/10.1073/pnas.1313618111.

1636. Noda NN, Kobayashi T, Adachi W, Fujioka Y, Ohsumi Y, Inagaki
F. Structure of the novel C-terminal domain of vacuolar protein
sorting 30/autophagy-related protein 6 and its specific role in auto-
phagy. J Biol Chem 2012; 287:16256-66; http://dx.doi.org/10.1074/
jbc.M112.348250.

1637. Lindqvist LM, Heinlein M, Huang DC, Vaux DL. Prosurvival Bcl-2
family members affect autophagy only indirectly, by inhibiting Bax
and Bak. Proc Natl Acad Sci USA 2014; 111:8512-7; http://dx.doi.
org/10.1073/pnas.1406425111.

1638. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T,
Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, et al. Bcl-2-like
protein 13 is a mammalian Atg32 homologue that mediates

AUTOPHAGY 169

http://dx.doi.org/10.4161/auto.4129
http://dx.doi.org/10.1074/jbc.M309238200
http://dx.doi.org/10.4161/auto.1.2.1832
http://dx.doi.org/10.4161/auto.3371
http://dx.doi.org/10.1083/jcb.200512142
http://dx.doi.org/10.1091/mbc.E06-07-0612
http://dx.doi.org/10.4161/auto.2226
http://dx.doi.org/10.1016/j.bbrc.2005.10.163
http://dx.doi.org/10.1016/j.bbrc.2007.02.150
http://dx.doi.org/10.1074/jbc.M110.143545
http://dx.doi.org/10.1074/jbc.M110.143545
http://dx.doi.org/10.4161/auto.7.4.14369
http://dx.doi.org/10.1038/emboj.2012.151
http://dx.doi.org/10.1083/jcb.201304123
http://dx.doi.org/10.4161/auto.5.7.9296
http://dx.doi.org/10.4161/auto.5.7.9296
http://dx.doi.org/10.4161/auto.5.5.8249
http://dx.doi.org/10.1105/tpc.111.<?A3B2 re3j?>093112
http://dx.doi.org/10.1105/tpc.111.<?A3B2 re3j?>093112
http://dx.doi.org/10.1073/pnas.1112368109
http://dx.doi.org/10.1073/pnas.1112368109
http://dx.doi.org/10.1016/j.nbd.2011.12.015
http://dx.doi.org/10.4161/auto.23693
http://dx.doi.org/10.1073/pnas.1218674109
http://dx.doi.org/10.1073/pnas.1218674109
http://dx.doi.org/10.1182/blood-2010-01-261040
http://dx.doi.org/10.1182/blood-2010-01-261040
http://dx.doi.org/10.1016/j.yexcr.2014.03.018
http://dx.doi.org/10.1016/j.yexcr.2014.03.018
http://dx.doi.org/10.1105/tpc.110.081570
http://dx.doi.org/10.1083/jcb.110.6.1923
http://dx.doi.org/10.1083/jcb.201306140
http://dx.doi.org/10.4161/auto.7.12.17762
http://dx.doi.org/10.4161/auto.7.12.17762
http://dx.doi.org/10.4161/auto.21332
http://dx.doi.org/10.15252/embj.201490315
http://dx.doi.org/10.1038/emboj.2009.29
http://dx.doi.org/10.1073/pnas.1313618111
http://dx.doi.org/10.1074/jbc.M112.348250
http://dx.doi.org/10.1074/jbc.M112.348250
http://dx.doi.org/10.1073/pnas.1406425111


mitophagy and mitochondrial fragmentation. Nat Commun 2015;
6:7527; http://dx.doi.org/10.1038/ncomms8527.

1639. Paul S, Kashyap AK, Jia W, He YW, Schaefer BC. Selective auto-
phagy of the adaptor protein Bcl10 modulates T cell receptor activa-
tion of NF-kappaB. Immunity 2012; 36:947-58; http://dx.doi.org/
10.1016/j.immuni.2012.04.008.

1640. Liang X, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H,
Levine B. Induction of autophagy and inhibition of tumorigenesis
by beclin 1. Nature 1999; 402:672-6; http://dx.doi.org/10.1038/45257.

1641. Hurley JH, Schulman BA. Atomistic autophagy: the structures of
cellular self-digestion. Cell 2014; 157:300-11; http://dx.doi.org/
10.1016/j.cell.2014.01.070.

1642. Cheng B, Xu A, Qiao M, Wu Q, Wang W, Mei Y, Wu M. BECN1s, a
short splice variant of BECN1, functions in mitophagy. Autophagy
2015; in press.

1643. He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch LN, Khan S,
Sinha S, et al. Beclin 2 functions in autophagy, degradation of G
protein-coupled receptors, and metabolism. Cell 2013; 154:1085-99;
http://dx.doi.org/10.1016/j.cell.2013.07.035.

1644. Yang LJ, Chen Y, He J, Yi S, Wen L, Zhao J, Zhang BP, Cui GH.
Betulinic acid inhibits autophagic flux and induces apoptosis in
human multiple myeloma cells in vitro. Acta Pharmacol Sin 2012;
33:1542-8; http://dx.doi.org/10.1038/aps.2012.102.

1645. Minoia M, Boncoraglio A, Vinet J, Morelli FF, Brunsting JF, Poletti
A, Krom S, Reits E, Kampinga HH, Carra S. BAG3 induces the
sequestration of proteasomal clients into cytoplasmic puncta: Impli-
cations for a proteasome-to-autophagy switch. Autophagy 2014; 10.

1646. Boyd JM, Malstrom S, Subramanian T, Venkatesh LK, Schaeper U,
Elangovan B, D’Sa-Eipper C, Chinnadurai G. Adenovirus E1B
19 kDa and Bcl-2 proteins interact with a common set of cellular
proteins. Cell 1994; 79:341-51; http://dx.doi.org/10.1016/0092-8674
(94)90202-X.

1647. Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson
AB. Microtubule-associated protein 1 light chain 3 (LC3) interacts
with Bnip3 protein to selectively remove endoplasmic reticulum
and mitochondria via autophagy. J Biol Chem 2012; 287:19094-104;
http://dx.doi.org/10.1074/jbc.M111.322933.

1648. Chourasia AH, Boland ML, Macleod KF. Mitophagy and cancer.
Cancer Metab 2015; 3:4; http://dx.doi.org/10.1186/s40170-015-
0130-8.

1649. Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P,
Arnaune-Pelloquin L. The BH3-only Bnip3 binds to the dynamin
Opa1 to promote mitochondrial fragmentation and apoptosis by
distinct mechanisms. EMBO Rep 2010; 11:459-65; http://dx.doi.
org/10.1038/embor.2010.50.

1650. Kasper LH, Boussouar F, Boyd K, Xu W, Biesen M, Rehg J, Baudino
TA, Cleveland JL, Brindle PK. Two transactivation mechanisms
cooperate for the bulk of HIF-1-responsive gene expression. EMBO
J 2005; 24:3846-58; http://dx.doi.org/10.1038/sj.emboj.7600846.

1651. Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod
KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced
autophagy. Mol Cell Biol 2007; 27:6229-42; http://dx.doi.org/
10.1128/MCB.02246-06.

1652. Feng X, Liu X, Zhang W, Xiao W. p53 directly suppresses BNIP3
expression to protect against hypoxia-induced cell death. EMBO J
2011; 30:3397-415; http://dx.doi.org/10.1038/emboj.2011.248.

1653. Shaw J, Yurkova N, Zhang T, Gang H, Aguilar F, Weidman D,
Scramstad C, Weisman H, Kirshenbaum LA. Antagonism of E2F-1
regulated Bnip3 transcription by NF-kappaB is essential for basal
cell survival. Proc Natl Acad Sci USA 2008; 105:20734-9; http://dx.
doi.org/10.1073/pnas.0807735105.

1654. Diwan A, Krenz M, Syed FM, Wansapura J, Ren X, Koesters AG, Li
H, Kirshenbaum LA, Hahn HS, Robbins J, et al. Inhibition of ische-
mic cardiomyocyte apoptosis through targeted ablation of Bnip3
restrains postinfarction remodeling in mice. J Clin Invest 2007;
117:2825-33; http://dx.doi.org/10.1172/JCI32490.

1655. Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC,
Hart J, Dorn GW, 2nd, Brady MJ, Macleod KF. BNip3 regulates
mitochondrial function and lipid metabolism in the liver. Mol Cell
Biol 2012; 32:2570-84; http://dx.doi.org/10.1128/MCB.00167-12.

1656. Melser S, Chatelain EH, Lavie J, Mahfouf W, Jose C, Obre E, Goor-
den S, Priault M, Elgersma Y, Rezvani HR, et al. Rheb regulates
mitophagy induced by mitochondrial energetic status. Cell Metab
2013; 17:719-30; http://dx.doi.org/10.1016/j.cmet.2013.03.014.

1657. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA,
Levina V, Halloran MA, Gleeson PA, Blair IP, Soo KY, et al.
C9ORF72, implicated in amytrophic lateral sclerosis and fronto-
temporal dementia, regulates endosomal trafficking. Hum Mol
Genet 2014; 23:3579-95; http://dx.doi.org/10.1093/hmg/ddu068.

1658. O’Farrell F, Wang S, Katheder N, Rusten TE, Samakovlis C. Two-
tiered control of epithelial growth and autophagy by the insulin recep-
tor and the ret-like receptor, stitcher. PLoS Biol 2013; 11:e1001612.

1659. Ikeda H, Hideshima T, Fulciniti M, Perrone G, Mimura N, Yasui H,
Okawa Y, Kiziltepe T, Santo L, Vallet S, et al. PI3K/p110{delta} is a
novel therapeutic target in multiple myeloma. Blood 2010;
116:1460-8; http://dx.doi.org/10.1182/blood-2009-06-222943.

1660. Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D,
Yuan J. Control of basal autophagy by calpain1 mediated cleavage
of ATG5. Autophagy 2010; 6:61-6; http://dx.doi.org/10.4161/
auto.6.1.10326.

1661. Zitvogel L, Kepp O, Senovilla L, Menger L, Chaput N, Kroemer G.
Immunogenic tumor cell death for optimal anticancer therapy: the
calreticulin exposure pathway. Clin Cancer Res 2010; 16:3100-4;
http://dx.doi.org/10.1158/1078-0432.CCR-09-2891.

1662. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfet-
tini JL, Castedo M, Mignot G, Panaretakis T, Casares N, et al. Calre-
ticulin exposure dictates the immunogenicity of cancer cell death.
Nat Med 2007; 13:54-61; http://dx.doi.org/10.1038/nm1523.

1663. Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell
death in photodynamic therapy-induced anti-cancer immune
responses. Photoch Photobio Sci 2014; 13:474-87; http://dx.doi.org/
10.1039/c3pp50333j.

1664. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Wit-
ters LA. The Ca2C/calmodulin-dependent protein kinase kinases
are AMP-activated protein kinase kinases. J Biol Chem 2005;
280:29060-6; http://dx.doi.org/10.1074/jbc.M503824200.

1665. Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen
E-L, Schneider C. Calpain is required for macroautophagy in mam-
malian cells. J Cell Biol 2006; 175:595-605; http://dx.doi.org/
10.1083/jcb.200601024.

1666. Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen
Q. Beclin 1 cleavage by caspase-3 inactivates autophagy and pro-
motes apoptosis. Protein Cell 2010; 1:468-77; http://dx.doi.org/
10.1007/s13238-010-0048-4.

1667. Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW, Stolz DB, Yu
J, Zhang L. Following cytochrome c release, autophagy is inhibited
during chemotherapy-induced apoptosis by caspase 8-mediated
cleavage of Beclin 1. Cancer Res 2011; 71:3625-34; http://dx.doi.
org/10.1158/0008-5472.CAN-10-4475.

1668. Garcia-Marcos M, Ear J, Farquhar MG, Ghosh P. A GDI (AGS3)
and a GEF (GIV) regulate autophagy by balancing G protein activ-
ity and growth factor signals. Mol Biol Cell 2011; 22:673-86; http://
dx.doi.org/10.1091/mbc.E10-08-0738.

1669. Latterich M, Frohlich KU, Schekman R. Membrane fusion and the
cell cycle: Cdc48p participates in the fusion of ER membranes. Cell
1995; 82:885-93; http://dx.doi.org/10.1016/0092-8674(95)90268-6.

1670. Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskeli-
nen E-L, Thumm M. Cdc48/p97 and Shp1/p47 regulate auto-
phagosome biogenesis in concert with ubiquitin-like Atg8.
J Cell Biol 2010; 190:965-73; http://dx.doi.org/10.1083/
jcb.201002075.

1671. Joubert PE, Meiffren G, Gregoire IP, Pontini G, Richetta C, Flacher
M, Azocar O, Vidalain PO, Vidal M, Lotteau V, et al. Autophagy
induction by the pathogen receptor CD46. Cell Host Microbe 2009;
6:354-66; http://dx.doi.org/10.1016/j.chom.2009.09.006.

1672. Orlotti NI, Cimino-Reale G, Borghini E, Pennati M, Sissi C, Perrone
F, Palumbo M, Daidone MG, Folini M, Zaffaroni N. Autophagy acts
as a safeguard mechanism against G-quadruplex ligand-mediated
DNA damage. Autophagy 2012; 8:1185-96; http://dx.doi.org/
10.4161/auto.20519.

170 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1038/ncomms8527
http://dx.doi.org/10.1016/j.immuni.2012.04.008
http://dx.doi.org/10.1038/45257
http://dx.doi.org/10.1016/j.cell.2014.01.070
http://dx.doi.org/10.1016/j.cell.2013.07.035
http://dx.doi.org/10.1038/aps.2012.102
http://dx.doi.org/10.1016/0092-8674(94)90202-X
http://dx.doi.org/10.1016/0092-8674(94)90202-X
http://dx.doi.org/10.1074/jbc.M111.322933
http://dx.doi.org/10.1186/s40170-015-0130-8
http://dx.doi.org/10.1186/s40170-015-0130-8
http://dx.doi.org/10.1038/embor.2010.50
http://dx.doi.org/10.1038/sj.emboj.7600846
http://dx.doi.org/10.1128/MCB.02246-06
http://dx.doi.org/10.1038/emboj.2011.248
http://dx.doi.org/10.1073/pnas.0807735105
http://dx.doi.org/10.1172/JCI32490
http://dx.doi.org/10.1128/MCB.00167-12
http://dx.doi.org/10.1016/j.cmet.2013.03.014
http://dx.doi.org/10.1093/hmg/ddu068
http://dx.doi.org/10.1182/blood-2009-06-222943
http://dx.doi.org/10.4161/auto.6.1.10326
http://dx.doi.org/10.4161/auto.6.1.10326
http://dx.doi.org/10.1158/1078-0432.CCR-09-2891
http://dx.doi.org/10.1038/nm1523
http://dx.doi.org/10.1039/c3pp50333j
http://dx.doi.org/10.1074/jbc.M503824200
http://dx.doi.org/10.1083/jcb.200601024
http://dx.doi.org/10.1007/s13238-010-0048-4
http://dx.doi.org/10.1158/0008-5472.CAN-10-4475
http://dx.doi.org/10.1091/mbc.E10-08-0738
http://dx.doi.org/10.1016/0092-8674(95)90268-6
http://dx.doi.org/10.1083/jcb.201002075
http://dx.doi.org/10.1083/jcb.201002075
http://dx.doi.org/10.1016/j.chom.2009.09.006
http://dx.doi.org/10.4161/auto.20519


1673. Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S,
Dumont DJ, Gutterman JU, Walker CL, et al. The energy sensing
LKB1-AMPK pathway regulates p27(kip1) phosphorylation medi-
ating the decision to enter autophagy or apoptosis. Nat Cell Biol
2007; 9:218-24; http://dx.doi.org/10.1038/ncb1537.

1674. Budina-Kolomets A, Hontz RD, Pimkina J, Murphy ME. A con-
served domain in exon 2 coding for the human and murine ARF
tumor suppressor protein is required for autophagy induction.
Autophagy 2013; 9:1553-65; http://dx.doi.org/10.4161/auto.25831.

1675. Cuervo AM. Chaperone-mediated autophagy: selectivity pays off.
Trends Endocrinol Metab 2010; 21:142-50; http://dx.doi.org/
10.1016/j.tem.2009.10.003.

1676. Dice J. Chaperone-mediated autophagy. Autophagy 2007; 3:295-9;
http://dx.doi.org/10.4161/auto.4144.

1677. Agarraberes F, Terlecky S, Dice J. An intralysosomal hsp70 is
required for a selective pathway of lysosomal protein degradation.
J Cell Biol 1997; 137:825-34; http://dx.doi.org/10.1083/jcb.137.
4.825.

1678. Cuervo A, Dice J. A receptor for the selective uptake and degrada-
tion of proteins by lysosomes. Science 1996; 273:501-3; http://dx.
doi.org/10.1126/science.273.5274.501.

1679. Mitsuhashi S, Hatakeyama H, Karahashi M, Koumura T, Nonaka I,
Hayashi YK, Noguchi S, Sher RB, Nakagawa Y, Manfredi G, et al.
Muscle choline kinase beta defect causes mitochondrial dysfunction
and increased mitophagy. Hum Mol Genet 2011; 20:3841-51;
http://dx.doi.org/10.1093/hmg/ddr305.

1680. Fedorko M. Effect of chloroquine on morphology of cytoplasmic
granules in maturing human leukocytes–an ultrastructural study. J
Clin Invest 1967; 46:1932-42; http://dx.doi.org/10.1172/JCI105683.

1681. Chang NC, Nguyen M, Germain M, Shore GC. Antagonism of
Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticu-
lum requires NAF-1. EMBO J 2010; 29:606-18; http://dx.doi.org/
10.1038/emboj.2009.369.

1682. Chen YF, Kao CH, Chen YT, Wang CH, Wu CY, Tsai CY, Liu FC,
Yang CW, Wei YH, Hsu MT, et al. Cisd2 deficiency drives premature
aging and causes mitochondria-mediated defects in mice. Genes Dev
2009; 23:1183-94; http://dx.doi.org/10.1101/gad.1779509.

1683. Yang Z, Geng J, Yen W-L, Wang K, Klionsky DJ. Positive or nega-
tive regulatory roles of different cyclin-dependent kinase Pho85-
cyclin complexes orchestrate induction of autophagy in Saccharo-
myces cerevisiae Mol Cell 2010; 38:250-64; http://dx.doi.org/
10.1016/j.molcel.2010.02.033.

1684. Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald
ME, Cotman SL. Autophagy is disrupted in a knock-in mouse
model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006;
281:20483-93; http://dx.doi.org/10.1074/jbc.M602180200.

1685. Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A,
Klein M, Oh H, Wolf P, Zhao WN, Norton S, et al. Unbiased Cell-
based Screening in a Neuronal Cell Model of Batten Disease High-
lights an Interaction between Ca2C Homeostasis, Autophagy, and
CLN3 Protein Function. J Biol Chem 2015; 290:14361-80; http://dx.
doi.org/10.1074/jbc.M114.621706.

1686. Cortese A, Tucci A, Piccolo G, Galimberti CA, Fratta P, Marchioni
E, Grampa G, Cereda C, Grieco G, Ricca I, et al. Novel CLN3 muta-
tion causing autophagic vacuolar myopathy. Neurology 2014;
82:2072-6; http://dx.doi.org/10.1212/WNL.0000000000000490.

1687. Wang F, Wang H, Tuan HF, Nguyen DH, Sun V, Keser V, Bowne
SJ, Sullivan LS, Luo H, Zhao L, et al. Next generation sequencing-
based molecular diagnosis of retinitis pigmentosa: identification of
a novel genotype-phenotype correlation and clinical refinements.
Hum Genet 2014; 133:331-45; http://dx.doi.org/10.1007/s00439-
013-1381-5.

1688. Yen W-L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hugh-
son FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi
complex is involved in double-membrane vesicle formation during
autophagy. J Cell Biol 2010; 188:101-14; http://dx.doi.org/10.1083/
jcb.200904075.

1689. Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM,
Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, et al. Car-
bon monoxide improves cardiac function and mitochondrial

population quality in a mouse model of metabolic syndrome. PloS
One 2012; 7:e41836; http://dx.doi.org/10.1371/journal.pone.0041836.

1690. Chen LL, Song JX, Lu JH, Yuan ZW, Liu LF, Durairajan SS, Li M.
Corynoxine, a Natural Autophagy Enhancer, Promotes the Clear-
ance of Alpha-Synuclein via Akt/mTOR Pathway. J Neuroimmune
Pharm 2014:380-7; http://dx.doi.org/10.1007/s11481-014-9528-2.

1691. Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L, Shen HM,
Chan HY, Li M. Isorhynchophylline, a natural alkaloid, promotes
the degradation of alpha-synuclein in neuronal cells via inducing
autophagy. Autophagy 2012; 8:98-108 (see also the erratum in
Autophagy 2012; 8:864-6); 10.4161/auto.8.1.18313.

1692. Smith RE, Farquhar MG. Lysosome function in the regulation of the
secretory process in cells of the anterior pituitary gland. J Cell Biol
1966; 31:319-47; http://dx.doi.org/10.1083/jcb.31.2.319.

1693. Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao
Z, Virgin HWI, Kyei GB, Johansen T, Vergne I, et al. Delivery of
cytosolic components by autophagic adaptor protein p62 endows
autophagosomes with unique antimicrobial properties. Immunity
2010; 32:329-41; http://dx.doi.org/10.1016/j.immuni.2010.02.009.

1694. Song H, Pu J, Wang L, Wu L, Xiao J, Liu Q, Chen J, Zhang M, Liu Y,
Ni M, et al. ATG16L1 phosphorylation is oppositely regulated by
CSNK2/casein kinase 2 and PPP1/protein phosphatase 1 which
determines the fate of cardiomyocytes during hypoxia/reoxygena-
tion. Autophagy 2015:0.

1695. Sun LL, Li M, Suo F, Liu XM, Shen EZ, Yang B, Dong MQ, He WZ,
Du LL. Global analysis of fission yeast mating genes reveals new
autophagy factors. PLoS Genet 2013; 9:e1003715; http://dx.doi.org/
10.1371/journal.pgen.1003715.

1696. Campbell EM, Fares H. Roles of CUP-5, the Caenorhabditis elegans
orthologue of human TRPML1, in lysosome and gut granule bio-
genesis. BMC Cell Biol 2010; 11:40; http://dx.doi.org/10.1186/1471-
2121-11-40.

1697. Fares H, Greenwald I. Regulation of endocytosis by CUP-5, the
Caenorhabditis elegans mucolipin-1 homolog. Nat Genet 2001;
28:64-8.

1698. Hersh BM, Hartwieg E, Horvitz HR. The Caenorhabditis elegans
mucolipin-like gene cup-5 is essential for viability and regulates
lysosomes in multiple cell types. Proc Natl Acad Sci USA 2002;
99:4355-60; http://dx.doi.org/10.1073/pnas.062065399.

1699. Sun T, Wang X, Lu Q, Ren H, Zhang H. CUP-5, the C. elegans
ortholog of the mammalian lysosomal channel protein MLN1/
TRPML1, is required for proteolytic degradation in autolysosomes.
Autophagy 2011; 7:1308-15; http://dx.doi.org/10.4161/auto.7.11.17759.

1700. Bruns C, McCaffery JM, Curwin AJ, Duran JM, Malhotra V. Bio-
genesis of a novel compartment for autophagosome-mediated
unconventional protein secretion. J Cell Biol 2011; 195:979-92;
http://dx.doi.org/10.1083/jcb.201106098.

1701. Wang M, Tan W, Zhou J, Leow J, Go M, Lee HS, Casey PJ. A small
molecule inhibitor of isoprenylcysteine carboxymethyltransferase
induces autophagic cell death in PC3 prostate cancer cells. J Biol
Chem 2008; 283:18678-84; http://dx.doi.org/10.1074/jbc.M801855200.

1702. Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and
characterization of yeast mutants in the cytoplasm to vacuole pro-
tein targeting pathway. J Cell Biol 1995; 131:591-602; http://dx.doi.
org/10.1083/jcb.131.3.591.

1703. Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C.
A role for autophagy in the extension of lifespan by dietary restric-
tion in C. elegans. PLoS Genet 2008; 4:e24; http://dx.doi.org/
10.1371/journal.pgen.0040024.

1704. Lapierre LR, Gelino S, Melendez A, Hansen M. Autophagy and lipid
metabolism coordinately modulate life span in germline-less C. ele-
gans. Curr Biol 2011; 21:1507-14; http://dx.doi.org/10.1016/j.
cub.2011.07.042.

1705. Netea-Maier RT, Plantinga TS, Van De Veerdonk FL, Smit JW,
Netea MG. Modulation of inflammation by autophagy: consequen-
ces for human disease. Autophagy 2015:0; http://dx.doi.org/
10.1080/15548627.2015.1071759.

1706. Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR,
negatively regulates autophagy. Curr Biol 2010; 20:1093-8; http://
dx.doi.org/10.1016/j.cub.2010.04.041.

AUTOPHAGY 171

http://dx.doi.org/10.1038/ncb1537
http://dx.doi.org/10.4161/auto.25831
http://dx.doi.org/10.1016/j.tem.2009.10.003
http://dx.doi.org/10.4161/auto.4144
http://dx.doi.org/10.1083/jcb.137.<?A3B2 re3j?>4.825
http://dx.doi.org/10.1083/jcb.137.<?A3B2 re3j?>4.825
http://dx.doi.org/10.1126/science.273.5274.501
http://dx.doi.org/10.1093/hmg/ddr305
http://dx.doi.org/10.1172/JCI105683
http://dx.doi.org/10.1038/emboj.2009.369
http://dx.doi.org/10.1101/gad.1779509
http://dx.doi.org/10.1016/j.molcel.2010.02.033
http://dx.doi.org/10.1074/jbc.M602180200
http://dx.doi.org/10.1074/jbc.M114.621706
http://dx.doi.org/10.1212/WNL.0000000000000490
http://dx.doi.org/10.1007/s00439-013-1381-5
http://dx.doi.org/10.1007/s00439-013-1381-5
http://dx.doi.org/10.1083/jcb.200904075
http://dx.doi.org/10.1083/jcb.200904075
http://dx.doi.org/10.1371/journal.pone.0041836
http://dx.doi.org/10.1007/s11481-014-9528-2
http://dx.doi.org/10.4161/auto.8.1.18313
http://dx.doi.org/10.1083/jcb.31.2.319
http://dx.doi.org/10.1016/j.immuni.2010.02.009
http://dx.doi.org/10.1371/journal.pgen.1003715
http://dx.doi.org/10.1186/1471-2121-11-40
http://dx.doi.org/10.1186/1471-2121-11-40
http://dx.doi.org/10.1073/pnas.062065399
http://dx.doi.org/10.4161/auto.7.11.17759
http://dx.doi.org/10.1083/jcb.201106098
http://dx.doi.org/10.1074/jbc.M801855200
http://dx.doi.org/10.1083/jcb.131.3.591
http://dx.doi.org/10.1371/journal.pgen.0040024
http://dx.doi.org/10.1016/j.cub.2011.07.042
http://dx.doi.org/10.1016/j.cub.2011.07.042
http://dx.doi.org/10.1080/15548627.2015.1071759
http://dx.doi.org/10.1016/j.cub.2010.04.041


1707. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A. DAP kinase and
DRP-1 mediate membrane blebbing and the formation of autopha-
gic vesicles during programmed cell death. J Cell Biol 2002;
157:455-68; http://dx.doi.org/10.1083/jcb.200109094.

1708. Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT,
Schaefer L, Torres A, Iozzo RV. Decorin causes autophagy in endo-
thelial cells via Peg3. Proc Natl Acad Sci USA 2013; 110:E2582-91;
http://dx.doi.org/10.1073/pnas.1305732110.

1709. DeVorkin L, Go NE, Hou Y-CC, Moradian A, Morin GB, Gorski
SM. The Drosophila effector caspase Dcp-1 regulates mitochondrial
dynamics and autophagic flux via SesB. J Cell Biol 2014; 205:477-
92; http://dx.doi.org/10.1083/jcb.201303144.

1710. Hu G, McQuiston T, Bernard A, Park YD, Qiu J, Vural A, Zhang N,
Waterman SR, Blewett NH, Myers TG, et al. A conserved mecha-
nism of TOR-dependent RCK-mediated mRNA degradation regu-
lates autophagy. Nat Cell Biol 2015; 17:930-42; http://dx.doi.org/
10.1038/ncb3189.

1711. Molitoris JK, McColl KS, Swerdlow S, Matsuyama M, Lam M, Fin-
kel TH, Matsuyama S, Distelhorst CW. Glucocorticoid elevation of
dexamethasone-induced gene 2 (Dig2/RTP801/REDD1) protein
mediates autophagy in lymphocytes. J Biol Chem 2011; 286:30181-
9; http://dx.doi.org/10.1074/jbc.M111.245423.

1712. Slavov N, Botstein D. Decoupling nutrient signaling from growth
rate causes aerobic glycolysis and deregulation of cell size and gene
expression. Mol Biol Cell 2013; 24:157-68; http://dx.doi.org/
10.1091/mbc.E12-09-0670.

1713. Kohler K, Brunner E, Guan XL, Boucke K, Greber UF, Mohanty S,
Barth JM, Wenk MR, Hafen E. A combined proteomic and genetic
analysis identifies a role for the lipid desaturase Desat1 in starva-
tion-induced autophagy in Drosophila. Autophagy 2009; 5:980-90;
http://dx.doi.org/10.4161/auto.5.7.9325.

1714. Shahnazari S, Yen W-L, Birmingham CL, Shiu J, Namolovan A,
Zheng YT, Nakayama K, Klionsky DJ, Brumell JH. A diacylgly-
cerol-dependent signaling pathway contributes to regulation of
antibacterial autophagy. Cell Host Microbe 2010; 8:137-46; http://
dx.doi.org/10.1016/j.chom.2010.07.002.

1715. Lu Z, Baquero MT, Yang H, Yang M, Reger AS, Kim C, Levine DA,
Clarke CH, Liao WS, Bast RC, Jr. DIRAS3 regulates the autophago-
some initiation complex in dormant ovarian cancer cells. Auto-
phagy 2014; 10:1071-92; http://dx.doi.org/10.4161/auto.28577.

1716. Mao K, Liu X, Feng Y, Klionsky DJ. The progression of peroxi-
somal degradation through autophagy requires peroxisomal
division. Autophagy 2014; 10:652-61; http://dx.doi.org/10.4161/
auto.27852.

1717. Dagda RK, Gusdon AM, Pien I, Strack S, Green S, Li C, Van Houten
B, Cherra SJ, 3rd, Chu CT. Mitochondrially localized PKA reverses
mitochondrial pathology and dysfunction in a cellular model of
Parkinson’s disease. Cell Death Differ 2011; 18:1914-23; http://dx.
doi.org/10.1038/cdd.2011.74.

1718. Kwon MH, Callaway H, Zhong J, Yedvobnick B. A targeted genetic
modifier screen links the SWI2/SNF2 protein domino to growth
and autophagy genes in Drosophila melanogaster. G3 (Bethesda)
2013; 3:815-25; http://dx.doi.org/10.1534/g3.112.005496.

1719. Gomez-Santos C, Ferrer I, Santidrian AF, Barrachina M, Gil J,
Ambrosio S. Dopamine induces autophagic cell death and alpha-
synuclein increase in human neuroblastoma SH-SY5Y cells. J Neu-
rosci Res 2003; 73:341-50; http://dx.doi.org/10.1002/jnr.10663.

1720. McPhee CK, Logan MA, Freeman MR, Baehrecke EH. Activation of
autophagy during cell death requires the engulfment receptor
Draper. Nature 2010; 465:1093-6; http://dx.doi.org/10.1038/
nature09127.

1721. Ragusa MJ, Stanley RE, Hurley JH. Architecture of the Atg17 com-
plex as a scaffold for autophagosome biogenesis. Cell 2012;
151:1501-12; http://dx.doi.org/10.1016/j.cell.2012.11.028.

1722. Jia K, Levine B. Autophagy is required for dietary restriction-medi-
ated life span extension in C. elegans. Autophagy 2007; 3:597-9;
http://dx.doi.org/10.4161/auto.4989.

1723. Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K,
Orosz L, Kovacs AL, Csikos G, Sass M, et al. Longevity pathways
converge on autophagy genes to regulate life span in Caenorhabditis

elegans. Autophagy 2008; 4:330-8; http://dx.doi.org/10.4161/
auto.5618.

1724. Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM.
Identification of regulators of chaperone-mediated autophagy.
Mol Cell 2010; 39:535-47; http://dx.doi.org/10.1016/j.molcel.2010.
08.004.

1725. Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C. The
TOR and EGO protein complexes orchestrate microautophagy in
yeast. Mol Cell 2005; 19:15-26; http://dx.doi.org/10.1016/j.
molcel.2005.05.020.

1726. Talloczy Z, Jiang W, Virgin HWT, Leib DA, Scheuner D, Kaufman
RJ, Eskelinen EL, Levine B. Regulation of starvation- and virus-
induced autophagy by the eIF2alpha kinase signaling pathway. Proc
Natl Acad Sci USA 2002; 99:190-5; http://dx.doi.org/10.1073/
pnas.012485299.

1727. Zhao X, Fang Y, Yang Y, Qin Y, Wu P, Wang T, Lai H, Meng L,
Wang D, Zheng Z, et al. Elaiophylin, a novel autophagy inhibitor,
exerts antitumor activity as a single agent in ovarian cancer cells.
Autophagy 2015:0.

1728. Kim S, Naylor SA, DiAntonio A. Drosophila Golgi membrane pro-
tein Ema promotes autophagosomal growth and function. Proc
Natl Acad Sci USA 2012; 109:E1072-81; http://dx.doi.org/10.1073/
pnas.1120320109.

1729. Berge T, Leikfoss IS, Harbo HF. From Identification to Characteri-
zation of the Multiple Sclerosis Susceptibility Gene CLEC16A.
Int J Mol Sci 2013; 14:4476-97; http://dx.doi.org/10.3390/
ijms14034476.

1730. Soleimanpour SA, Gupta A, Bakay M, Ferrari AM, Groff DN,
Fadista J, Spruce LA, Kushner JA, Groop L, Seeholzer SH, et al. The
diabetes susceptibility gene Clec16a regulates mitophagy. Cell 2014;
157:1577-90; http://dx.doi.org/10.1016/j.cell.2014.05.016.

1731. Li Y, Zhao Y, Hu J, Xiao J, Qu L, Wang Z, Ma D, Chen Y. A novel
ER-localized transmembrane protein, EMC6, interacts with RAB5A
and regulates cell autophagy. Autophagy 2013; 9:150-63; http://dx.
doi.org/10.4161/auto.22742.

1732. Poluzzi C, Casulli J, Goyal A, Mercer TJ, Neill T, Iozzo RV. Endore-
pellin evokes autophagy in endothelial cells. J Biol Chem 2014;
289:16114-28; http://dx.doi.org/10.1074/jbc.M114.556530.

1733. Tian E, Wang F, Han J, Zhang H. epg-1 functions in autophagy-reg-
ulated processes and may encode a highly divergent Atg13 homolog
in C. elegans. Autophagy 2009; 5:608-15; http://dx.doi.org/10.4161/
auto.5.5.8624.

1734. Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z,
Simpson MA, Yau S, Bertini E, McClelland V, et al. Recessive muta-
tions in EPG5 cause Vici syndrome, a multisystem disorder with
defective autophagy. Nat Genet 2013; 45:83-7; http://dx.doi.org/
10.1038/ng.2497.

1735. Li S, Yang P, Tian E, Zhang H. Arginine methylation modulates
autophagic degradation of PGL granules in C. elegans. Mol Cell
2013; 52:421-33; http://dx.doi.org/10.1016/j.molcel.2013.09.014.

1736. Aguado C, Sarkar S, Korolchuk VI, Criado O, Vernia S, Boya P,
Sanz P, de Cordoba SR, Knecht E, Rubinsztein DC. Laforin, the
most common protein mutated in Lafora disease, regulates auto-
phagy. Hum Mol Genet 2010; 19:2867-76; http://dx.doi.org/
10.1093/hmg/ddq190.

1737. Bockler S, Westermann B. Mitochondrial ER contacts are crucial for
mitophagy in yeast. Dev Cell 2014; 28:450-8; http://dx.doi.org/
10.1016/j.devcel.2014.01.012.

1738. Sinha S, Roy S, Reddy BS, Pal K, Sudhakar G, Iyer S, Dutta S, Wang
E, Vohra PK, Roy KR, et al. A lipid-modified estrogen derivative
that treats breast cancer independent of estrogen receptor expres-
sion through simultaneous induction of autophagy and apoptosis.
Mol Cancer Res 2011; 9:364-74; http://dx.doi.org/10.1158/1541-
7786.MCR-10-0526.

1739. Wang L, Yu C, Lu Y, He P, Guo J, Zhang C, Song Q, Ma D, Shi T,
Chen Y. TMEM166, a novel transmembrane protein, regulates cell
autophagy and apoptosis. Apoptosis 2007; 12:1489-502; http://dx.
doi.org/10.1007/s10495-007-0073-9.

1740. Yu C, Wang L, Lv B, Lu Y, Zeng L, Chen Y, Ma D, Shi T. TMEM74,
a lysosome and autophagosome protein, regulates autophagy.

172 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1083/jcb.200109094
http://dx.doi.org/10.1073/pnas.1305732110
http://dx.doi.org/10.1083/jcb.201303144
http://dx.doi.org/10.1038/ncb3189
http://dx.doi.org/10.1074/jbc.M111.245423
http://dx.doi.org/10.1091/mbc.E12-09-0670
http://dx.doi.org/10.4161/auto.5.7.9325
http://dx.doi.org/10.1016/j.chom.2010.07.002
http://dx.doi.org/10.4161/auto.28577
http://dx.doi.org/10.4161/auto.27852
http://dx.doi.org/10.4161/auto.27852
http://dx.doi.org/10.1038/cdd.2011.74
http://dx.doi.org/10.1534/g3.112.005496
http://dx.doi.org/10.1002/jnr.10663
http://dx.doi.org/10.1038/nature09127
http://dx.doi.org/10.1038/nature09127
http://dx.doi.org/10.1016/j.cell.2012.11.028
http://dx.doi.org/10.4161/auto.4989
http://dx.doi.org/10.4161/auto.5618
http://dx.doi.org/10.4161/auto.5618
http://dx.doi.org/10.1016/j.molcel.2010.<?A3B2 re3j?>08.004
http://dx.doi.org/10.1016/j.molcel.2010.<?A3B2 re3j?>08.004
http://dx.doi.org/10.1016/j.molcel.2005.05.020
http://dx.doi.org/10.1016/j.molcel.2005.05.020
http://dx.doi.org/10.1073/pnas.012485299
http://dx.doi.org/10.1073/pnas.012485299
http://dx.doi.org/10.1073/pnas.1120320109
http://dx.doi.org/10.1073/pnas.1120320109
http://dx.doi.org/10.3390/ijms14034476
http://dx.doi.org/10.3390/ijms14034476
http://dx.doi.org/10.1016/j.cell.2014.05.016
http://dx.doi.org/10.4161/auto.22742
http://dx.doi.org/10.1074/jbc.M114.556530
http://dx.doi.org/10.4161/auto.5.5.8624
http://dx.doi.org/10.4161/auto.5.5.8624
http://dx.doi.org/10.1038/ng.2497
http://dx.doi.org/10.1016/j.molcel.2013.09.014
http://dx.doi.org/10.1093/hmg/ddq190
http://dx.doi.org/10.1016/j.devcel.2014.01.012
http://dx.doi.org/10.1158/1541-7786.MCR-10-0526
http://dx.doi.org/10.1158/1541-7786.MCR-10-0526
http://dx.doi.org/10.1007/s10495-007-0073-9


Biochem Biophys Res Commun 2008; 369:622-9; http://dx.doi.org/
10.1016/j.bbrc.2008.02.055.

1741. Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou YH, For-
mstecher E, Maiti M, Hazelett CC, Wauson EM, Balakireva M, et al.
RalB and the exocyst mediate the cellular starvation response by
direct activation of autophagosome assembly. Cell 2011; 144:253-
67; http://dx.doi.org/10.1016/j.cell.2010.12.018.

1742. Abrahamsen H, Stenmark H. Protein secretion: unconventional exit
by exophagy. Curr Biol 2010; 20:R415-8; http://dx.doi.org/10.1016/
j.cub.2010.03.011.

1743. Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V. Uncon-
ventional secretion of Acb1 is mediated by autophagosomes. J Cell
Biol 2010; 188:527-36; http://dx.doi.org/10.1083/jcb.200911154.

1744. Manjithaya R, Anjard C, Loomis WF, Subramani S. Unconven-
tional secretion of Pichia pastoris Acb1 is dependent on GRASP
protein, peroxisomal functions, and autophagosome formation. J Cell
Biol 2010; 188:537-46; http://dx.doi.org/10.1083/jcb.200911149.

1745. Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero
R, Murino L, Tagliaferri R, Brunetti-Pierri N, Isacchi A, et al. Dis-
covery of drug mode of action and drug repositioning from tran-
scriptional responses. Proc Natl Acad Sci USA 2010; 107:14621-6;
http://dx.doi.org/10.1073/pnas.1000138107.

1746. Lisa-Santamaria P, Jimenez A, Revuelta JL. The protein factor-
arrest 11 (Far11) is essential for the toxicity of human caspase-10 in
yeast and participates in the regulation of autophagy and the DNA
damage signaling. J Biol Chem 2012; 287:29636-47; http://dx.doi.
org/10.1074/jbc.M112.344192.

1747. McKnight NC, Jefferies HB, Alemu EA, Saunders RE, Howell M,
Johansen T, Tooze SA. Genome-wide siRNA screen reveals amino
acid starvation-induced autophagy requires SCOC and WAC.
EMBO J 2012; 31:1931-46; http://dx.doi.org/10.1038/emboj.
2012.36.

1748. Vaccari I, Carbone A, Previtali SC, Mironova YA, Alberizzi V,
Noseda R, Rivellini C, Bianchi F, Del Carro U, D’Antonio M, et al.
Loss of Fig4 in both Schwann cells and motor neurons contributes
to CMT4J neuropathy. Hum Mol Genet 2015; 24:383-96; http://dx.
doi.org/10.1093/hmg/ddu451.

1749. Romano S, D’Angelillo A, Pacelli R, Staibano S, De Luna E, Bisogni
R, Eskelinen EL, Mascolo M, Cali G, Arra C, et al. Role of FK506-
binding protein 51 in the control of apoptosis of irradiated mela-
noma cells. Cell Death Differ 2010; 17:145-57; http://dx.doi.org/
10.1038/cdd.2009.115.

1750. Gassen NC, Hartmann J, Zschocke J, Stepan J, Hafner K, Zellner A,
Kirmeier T, Kollmannsberger L, Wagner KV, Dedic N, et al. Associ-
ation of FKBP51 with priming of autophagy pathways and media-
tion of antidepressant treatment response: evidence in cells, mice,
and humans. PLoS Med 2014; 11:e1001755; http://dx.doi.org/
10.1371/journal.pmed.1001755.

1751. Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G,
Turner ML, Duray P, Merino M, Choyke P, Pavlovich CP, et al.
Mutations in a novel gene lead to kidney tumors, lung wall defects,
and benign tumors of the hair follicle in patients with the Birt-
Hogg-Dube syndrome. Cancer Cell 2002; 2:157-64; http://dx.doi.
org/10.1016/S1535-6108(02)00104-6.

1752. Dunlop EA, Seifan S, Claessens T, Behrends C, Kamps MA,
Rozycka E, Kemp AJ, Nookala RK, Blenis J, Coull BJ, et al. FLCN, a
novel autophagy component, interacts with GABARAP and is regu-
lated by ULK1 phosphorylation. Autophagy 2014; 10:1749-60;
http://dx.doi.org/10.4161/auto.29640.

1753. Petit CS, Roczniak-Ferguson A, Ferguson SM. Recruitment of folli-
culin to lysosomes supports the amino acid-dependent activation of
Rag GTPases. J Cell Biol 2013; 202:1107-22; http://dx.doi.org/
10.1083/jcb.201307084.

1754. Tsun ZY, Bar-Peled L, Chantranupong L, Zoncu R, Wang T, Kim C,
Spooner E, Sabatini DM. The folliculin tumor suppressor is a GAP
for the RagC/D GTPases that signal amino acid levels to mTORC1.
Mol Cell 2013; 52:495-505; http://dx.doi.org/10.1016/j.molcel.2013.
09.016.

1755. Huett A, Ng A, Cao Z, Kuballa P, Komatsu M, Daly MJ, Podolsky
DK, Xavier RJ. A novel hybrid yeast-human network analysis

reveals an essential role for FNBP1L in antibacterial autophagy. J
Immunol 2009; 182:4917-30; http://dx.doi.org/10.4049/jimmunol.
0803050.

1756. Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J,
Yu L, Zhu WG. Cytosolic FoxO1 is essential for the induction of
autophagy and tumour suppressor activity. Nat Cell Biol 2010;
12:665-75; http://dx.doi.org/10.1038/ncb2069.

1757. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima
J. Deacetylation of FoxO by Sirt1 plays an essential role in mediat-
ing starvation-induced autophagy in cardiac myocytes. Circulation
Research 2010; 107:1470-82; http://dx.doi.org/10.1161/CIRCRESAHA.
110.227371.

1758. Attaix D, Bechet D. FoxO3 controls dangerous proteolytic liaisons.
Cell Metab 2007; 6:425-7; http://dx.doi.org/10.1016/j.cmet.2007.
11.005.

1759. Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C,
Wang R, Qi W, et al. Mitochondrial outer-membrane protein
FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells.
Nat Cell Biol 2012; 14:177-85; http://dx.doi.org/10.1038/ncb2422.

1760. Ryu HH, Jun MH, Min KJ, Jang DJ, Lee YS, Kim HK, Lee JA. Auto-
phagy regulates amyotrophic lateral sclerosis-linked fused in sar-
coma-positive stress granules in neurons. Neurobiol Aging 2014;
35:2822-31; http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.026.

1761. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, {O}vervatn A,
Bjorkoy G, Johansen T. FYCO1 is a Rab7 effector that binds to LC3
and PI3P to mediate microtubule plus end-directed vesicle trans-
port. J Cell Biol 2010; 188:253-69; http://dx.doi.org/10.1083/
jcb.200907015.

1762. Lakhani R, Vogel KR, Till A, Liu J, Burnett SF, Gibson KM, Subra-
mani S. Defects in GABA metabolism affect selective autophagy
pathways and are alleviated by mTOR inhibition. EMBO Mol Med
2014; 6:551-66; http://dx.doi.org/10.1002/emmm.201303356.

1763. Ogier-Denis E, Couvineau A, Maoret JJ, Houri JJ, Bauvy C, De Ste-
fanis D, Isidoro C, Laburthe M, Codogno P. A heterotrimeric Gi3-
protein controls autophagic sequestration in the human colon can-
cer cell line HT-29. J Biol Chem 1995; 270:13-6; http://dx.doi.org/
10.1074/jbc.270.1.13.

1764. Ogier-Denis E, Houri JJ, Bauvy C, Codogno P. Guanine nucleotide
exchange on heterotrimeric Gi3 protein controls autophagic seques-
tration in HT-29 cells. J Biol Chem 1996; 271:28593-600; http://dx.
doi.org/10.1074/jbc.271.45.28593.

1765. Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human
homolog of Saccharomyces cerevisiae Apg7p is a Protein-activating
enzyme for multiple substrates including human Apg12p, GATE-
16, GABARAP, and MAP-LC3. J Biol Chem 2001; 276:1701-6;
http://dx.doi.org/10.1074/jbc.C000752200.

1766. Mata IF, Samii A, Schneer SH, Roberts JW, Griffith A, Leis BC,
Schellenberg GD, Sidransky E, Bird TD, Leverenz JB, et al. Gluco-
cerebrosidase gene mutations: a risk factor for Lewy body disorders.
Arch Neurol 2008; 65:379-82; http://dx.doi.org/10.1001/
archneurol.2007.68.

1767. Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J,
Fukuda Y, Date H, Iwata A, Yamamoto M, et al. Mutations for
Gaucher disease confer high susceptibility to Parkinson disease.
Arch Neurol 2009; 66:571-6; http://dx.doi.org/10.1001/archneurol.
2009.72.

1768. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Bar-
bosa ER, Bar-Shira A, Berg D, Bras J, Brice A, et al. Multicenter
analysis of glucocerebrosidase mutations in Parkinson’s disease.
New Engl J Med 2009; 361:1651-61; http://dx.doi.org/10.1056/
NEJMoa0901281.

1769. Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt
A, Brandner S, Waddington SN, Schapira AH, Duchen MR. Mito-
chondria and quality control defects in a mouse model of Gaucher
disease–links to Parkinson’s disease. Cell Metab 2013; 17:941-53;
http://dx.doi.org/10.1016/j.cmet.2013.04.014.

1770. Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, Malide D,
Chen Y, Samsel L, Connelly PS, et al. Restricted mitochondrial pro-
tein acetylation initiates mitochondrial autophagy. J Cell Sci 2013;
126:4843-9; http://dx.doi.org/10.1242/jcs.131300.

AUTOPHAGY 173

http://dx.doi.org/10.1016/j.bbrc.2008.02.055
http://dx.doi.org/10.1016/j.cell.2010.12.018
http://dx.doi.org/10.1016/j.cub.2010.03.011
http://dx.doi.org/10.1016/j.cub.2010.03.011
http://dx.doi.org/10.1083/jcb.200911154
http://dx.doi.org/10.1083/jcb.200911149
http://dx.doi.org/10.1073/pnas.1000138107
http://dx.doi.org/10.1074/jbc.M112.344192
http://dx.doi.org/10.1038/emboj.<?A3B2 re3j?>2012.36
http://dx.doi.org/10.1038/emboj.<?A3B2 re3j?>2012.36
http://dx.doi.org/10.1093/hmg/ddu451
http://dx.doi.org/10.1038/cdd.2009.115
http://dx.doi.org/10.1371/journal.pmed.1001755
http://dx.doi.org/10.1016/S1535-6108(02)00104-6
http://dx.doi.org/10.4161/auto.29640
http://dx.doi.org/10.1083/jcb.201307084
http://dx.doi.org/10.1016/j.molcel.2013.<?A3B2 re3j?>09.016
http://dx.doi.org/10.1016/j.molcel.2013.<?A3B2 re3j?>09.016
http://dx.doi.org/10.4049/jimmunol.<?A3B2 re3j?>0803050
http://dx.doi.org/10.4049/jimmunol.<?A3B2 re3j?>0803050
http://dx.doi.org/10.1038/ncb2069
http://dx.doi.org/10.1161/CIRCRESAHA.<?A3B2 re3j?>110.227371
http://dx.doi.org/10.1161/CIRCRESAHA.<?A3B2 re3j?>110.227371
http://dx.doi.org/10.1016/j.cmet.2007.<?A3B2 re3j?>11.005
http://dx.doi.org/10.1016/j.cmet.2007.<?A3B2 re3j?>11.005
http://dx.doi.org/10.1038/ncb2422
http://dx.doi.org/10.1016/j.neurobiolaging.2014.07.026
http://dx.doi.org/10.1083/jcb.200907015
http://dx.doi.org/10.1083/jcb.200907015
http://dx.doi.org/10.1002/emmm.201303356
http://dx.doi.org/10.1074/jbc.270.1.13
http://dx.doi.org/10.1074/jbc.271.45.28593
http://dx.doi.org/10.1074/jbc.C000752200
http://dx.doi.org/10.1001/archneurol.2007.68
http://dx.doi.org/10.1001/archneurol.2007.68
http://dx.doi.org/10.1001/archneurol.<?A3B2 re3j?>2009.72
http://dx.doi.org/10.1001/archneurol.<?A3B2 re3j?>2009.72
http://dx.doi.org/10.1056/NEJMoa0901281
http://dx.doi.org/10.1056/NEJMoa0901281
http://dx.doi.org/10.1016/j.cmet.2013.04.014
http://dx.doi.org/10.1242/jcs.131300


1771. Moreau K, Rubinsztein DC. The plasma membrane as a control
center for autophagy. Autophagy 2012; 8:861-3; http://dx.doi.org/
10.4161/auto.20060.

1772. Todd LR, Damin MN, Gomathinayagam R, Horn SR, Means AR,
Sankar U. Growth factor erv1-like modulates Drp1 to preserve
mitochondrial dynamics and function in mouse embryonic stem
cells. Mol Biol Cell 2010; 21:1225-36; http://dx.doi.org/10.1091/
mbc.E09-11-0937.

1773. Kalamidas SA, Kotoulas OB. Glycogen autophagy in newborn rat
hepatocytes. Histol Histopathol 2000; 15:1011-8.

1774. Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA. Myocardial
autophagic energy stress responses–macroautophagy, mitophagy,
and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308:H1194-
204; http://dx.doi.org/10.1152/ajpheart.00002.2015.

1775. Mellor KM, Varma U, Stapleton DI, Delbridge LM. Cardiomyocyte
glycophagy is regulated by insulin and exposure to high extracellu-
lar glucose. Am J Physiol Heart Circ Physiol 2014; 306:H1240-5;
http://dx.doi.org/10.1152/ajpheart.00059.2014.

1776. Li B, Castano AP, Hudson TE, Nowlin BT, Lin S-L, Bonventre JV,
Swanson KD, Duffield JS. The melanoma-associated transmem-
brane glycoprotein Gpnmb controls trafficking of cellular debris for
degradation and is essential for tissue repair. FASEB J 2010;
24:4767-81; http://dx.doi.org/10.1096/fj.10-154757.

1777. Buchan JR, Kolaitis RM, Taylor JP, Parker R. Eukaryotic stress
granules are cleared by autophagy and Cdc48/VCP function. Cell
2013; 153:1461-74; http://dx.doi.org/10.1016/j.cell.2013.05.037.

1778. Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu
Q, Ruan K, et al. GSK3-TIP60-ULK1 signaling pathway links
growth factor deprivation to autophagy. Science 2012; 336:477-81;
http://dx.doi.org/10.1126/science.1217032.

1779. Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey
UB, Kaushik S, Tresse E, Lu J, et al. HDAC6 controls autophago-
some maturation essential for ubiquitin-selective quality-control
autophagy. EMBO J 2010; 29:969-80; http://dx.doi.org/10.1038/
emboj.2009.405.

1780. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP.
The deacetylase HDAC6 regulates aggresome formation and cell
viability in response to misfolded protein stress. Cell 2003; 115:727-
38; http://dx.doi.org/10.1016/S0092-8674(03)00939-5.

1781. Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS, Sri-
nivas V. HIF-1 regulation of chondrocyte apoptosis: induction of
the autophagic pathway. Autophagy 2007; 3:207-14; http://dx.doi.
org/10.4161/auto.3708.

1782. Mellor HR, Harris AL. The role of the hypoxia-inducible BH3-only
proteins BNIP3 and BNIP3L in cancer. Cancer Metastasis Rev
2007; 26:553-66; http://dx.doi.org/10.1007/s10555-007-9080-0.

1783. Mimouna S, Bazin M, Mograbi B, Darfeuille-Michaud A, Brest P,
Hofman P, Vouret-Craviari V. HIF1A regulates xenophagic degra-
dation of adherent and invasive Escherichia coli (AIEC). Autophagy
2014; 10:2333-45; http://dx.doi.org/10.4161/15548627.2014.984275.

1784. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabo-
lism and cellular protection: Akting on mitochondria and TORCing
to autophagy. Cell Death Differ 2015; 22:248-57; http://dx.doi.org/
10.1038/cdd.2014.173.

1785. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE,
Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, et al. HMGB1
release and redox regulates autophagy and apoptosis in cancer cells.
Oncogene 2010; 29:5299-310; http://dx.doi.org/10.1038/onc.2010.261.

1786. Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn
A. Autophagy regulates selective HMGB1 release in tumor cells that
are destined to die. Cell Death Differ 2009; 16:175-83; http://dx.doi.
org/10.1038/cdd.2008.143.

1787. Mao K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling
pathways are required for mitophagy in Saccharomyces cerevi-
siae. J Cell Biol 2011; 193:755-67; http://dx.doi.org/10.1083/
jcb.201102092.

1788. Pfaffenwimmer T, Reiter W, Brach T, Nogellova V, Papinski D,
Schuschnig M, Abert C, Ammerer G, Martens S, Kraft C. Hrr25
kinase promotes selective autophagy by phosphorylating the cargo

receptor Atg19. EMBO Rep 2014; 15:862-70; http://dx.doi.org/
10.15252/embr.201438932.

1789. Tanaka C, Tan LJ, Mochida K, Kirisako H, Koizumi M, Asai E,
Sakoh-Nakatogawa M, Ohsumi Y, Nakatogawa H. Hrr25 triggers
selective autophagy-related pathways by phosphorylating receptor
proteins. J Cell Biol 2014; 207:91-105; http://dx.doi.org/10.1083/
jcb.201402128.

1790. Leu JI, Pimkina J, Frank A, Murphy ME, George DL. A small mole-
cule inhibitor of inducible heat shock protein 70. Mol Cell 2009;
36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023.

1791. Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded pro-
tein response regulator GRP78/BiP is required for endoplasmic
reticulum integrity and stress-induced autophagy in mammalian
cells. Cell Death Differ 2008; 15:1460-71; http://dx.doi.org/10.1038/
cdd.2008.81.

1792. Chiang HL, Terlecky SR, Plant CP, Dice JF. A role for a 70-kilodal-
ton heat shock protein in lysosomal degradation of intracellular
proteins. Science 1989; 246:382-5; http://dx.doi.org/10.1126/science.
2799391.

1793. Kaushik S, Massey AC, Cuervo AM. Lysosome membrane lipid
microdomains: novel regulators of chaperone-mediated autophagy.
EMBO J 2006; 25:3921-33; http://dx.doi.org/10.1038/sj.
emboj.7601283.

1794. Garcia-Mata R, Gao YS, Sztul E. Hassles with taking out the gar-
bage: aggravating aggresomes. Traffic 2002; 3:388-96; http://dx.doi.
org/10.1034/j.1600-0854.2002.30602.x.

1795. Xu C, Liu J, Hsu LC, Luo Y, Xiang R, Chuang TH. Functional inter-
action of heat shock protein 90 and Beclin 1 modulates Toll-like
receptor-mediated autophagy. FASEB J 2011; 25:2700-10; http://dx.
doi.org/10.1096/fj.10-167676.

1796. Bandhyopadhyay U, Kaushik S, Vartikovsky L, Cuervo AM.
Dynamic organization of the receptor for chaperone-mediated
autophagy at the lysosomal membrane. Mol Cell Biol 2008;
28:5747-63; http://dx.doi.org/10.1128/MCB.02070-07.

1797. Li B, Hu Q, Wang H, Man N, Ren H, Wen L, Nukina N, Fei E,
Wang G. Omi/HtrA2 is a positive regulator of autophagy that facili-
tates the degradation of mutant proteins involved in neurodegener-
ative diseases. Cell Death Differ 2010; 17:1773-84; http://dx.doi.org/
10.1038/cdd.2010.55.

1798. Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos
AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of
mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy.
Biochim Biophys Acta 2014; 1843:1295-307; http://dx.doi.org/
10.1016/j.bbamcr.2014.03.027.

1799. Kang S, Fernandes-Alnemri T, Alnemri ES. A novel role for the
mitochondrial HTRA2/OMI protease in aging. Autophagy 2013;
9:420-1; http://dx.doi.org/10.4161/auto.22920.

1800. Kang S, Louboutin JP, Datta P, Landel CP, Martinez D, Zervos AS,
Strayer DS, Fernandes-Alnemri T, Alnemri ES. Loss of HtrA2/Omi
activity in non-neuronal tissues of adult mice causes premature
aging. Cell Death Differ 2013; 20:259-69; http://dx.doi.org/10.1038/
cdd.2012.117.

1801. Coll NS, Smidler A, Puigvert M, Popa C, Valls M, Dangl JL. The
plant metacaspase AtMC1 in pathogen-triggered programmed cell
death and aging: functional linkage with autophagy. Cell Death Dif-
fer 2014; 21:1399-408; http://dx.doi.org/10.1038/cdd.2014.50.

1802. Kim J, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM,
Oh SH, Jin SM, Kim JH, et al. Amyloidogenic peptide oligomer
accumulation in autophagy-deficient beta cells induces diabetes. J
Clin Invest 2014; 124:3311-24; http://dx.doi.org/10.1172/JCI69625.

1803. Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy
defends pancreatic beta cells from human islet amyloid polypep-
tide-induced toxicity. J Clin Invest 2014; 124:3489-500; http://dx.
doi.org/10.1172/JCI71981.

1804. Shigihara N, Fukunaka A, Hara A, Komiya K, Honda A, Uchida T,
Abe H, Toyofuku Y, Tamaki M, Ogihara T, et al. Human IAPP-
induced pancreatic beta cell toxicity and its regulation by auto-
phagy. J Clin Invest 2014; 124:3634-44; http://dx.doi.org/10.1172/
JCI69866.

174 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4161/auto.20060
http://dx.doi.org/10.1091/mbc.E09-11-0937
http://dx.doi.org/10.1091/mbc.E09-11-0937
http://dx.doi.org/10.1152/ajpheart.00002.2015
http://dx.doi.org/10.1152/ajpheart.00059.2014
http://dx.doi.org/10.1096/fj.10-154757
http://dx.doi.org/10.1016/j.cell.2013.05.037
http://dx.doi.org/10.1126/science.1217032
http://dx.doi.org/10.1038/emboj.2009.405
http://dx.doi.org/10.1038/emboj.2009.405
http://dx.doi.org/10.1016/S0092-8674(03)00939-5
http://dx.doi.org/10.4161/auto.3708
http://dx.doi.org/10.1007/s10555-007-9080-0
http://dx.doi.org/10.4161/15548627.2014.984275
http://dx.doi.org/10.1038/cdd.2014.173
http://dx.doi.org/10.1038/onc.2010.261
http://dx.doi.org/10.1038/cdd.2008.143
http://dx.doi.org/10.1083/jcb.201102092
http://dx.doi.org/10.1083/jcb.201102092
http://dx.doi.org/10.15252/embr.201438932
http://dx.doi.org/10.1083/jcb.201402128
http://dx.doi.org/10.1083/jcb.201402128
http://dx.doi.org/10.1016/j.molcel.2009.09.023
http://dx.doi.org/10.1038/cdd.2008.81
http://dx.doi.org/10.1038/cdd.2008.81
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>2799391
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>2799391
http://dx.doi.org/10.1038/sj.emboj.7601283
http://dx.doi.org/10.1038/sj.emboj.7601283
http://dx.doi.org/10.1034/j.1600-0854.2002.30602.x
http://dx.doi.org/10.1096/fj.10-167676
http://dx.doi.org/10.1128/MCB.02070-07
http://dx.doi.org/10.1038/cdd.2010.55
http://dx.doi.org/10.1016/j.bbamcr.2014.03.027
http://dx.doi.org/10.4161/auto.22920
http://dx.doi.org/10.1038/cdd.2012.117
http://dx.doi.org/10.1038/cdd.2012.117
http://dx.doi.org/10.1038/cdd.2014.50
http://dx.doi.org/10.1172/JCI69625
http://dx.doi.org/10.1172/JCI71981
http://dx.doi.org/10.1172/JCI69866
http://dx.doi.org/10.1172/JCI69866


1805. Lotze MT, Buchser WJ, Liang X. Blocking the interleukin 2 (IL2)-
induced systemic autophagic syndrome promotes profound antitu-
mor effects and limits toxicity. Autophagy 2012; 8:1264-6; http://dx.
doi.org/10.4161/auto.20752.

1806. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS,
Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, et al. Intrinsically
disordered protein. J Mol Graph Model 2001; 19:26-59; http://dx.
doi.org/10.1016/S1093-3263(00)00138-8.

1807. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci
2002; 27:527-33; http://dx.doi.org/10.1016/S0968-0004(02)02169-2.

1808. Uversky VN, Gillespie JR, Fink AL. Why are “natively unfolded”
proteins unstructured under physiologic conditions? Proteins 2000;
41:415-27; http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::
AID-PROT130>3.0.CO;2-7.

1809. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assess-
ing the protein structure-function paradigm. J Mol Biol 1999;
293:321-31; http://dx.doi.org/10.1006/jmbi.1999.3110.

1810. Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky
VN, Kurgan L. Exceptionally abundant exceptions: comprehensive
characterization of intrinsic disorder in all domains of life. Cell Mol
Life Sci 2015; 72:137-51; http://dx.doi.org/10.1007/s00018-014-
1661-9.

1811. De Guzman RN, Wojciak JM, Martinez-Yamout MA, Dyson HJ,
Wright PE. CBP/p300 TAZ1 domain forms a structured scaffold
for ligand binding. Biochemistry 2005; 44:490-7; http://dx.doi.org/
10.1021/bi048161t.

1812. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z.
Intrinsic disorder and protein function. Biochemistry 2002;
41:6573-82; http://dx.doi.org/10.1021/bi012159+.

1813. Dunker AK, Silman I, Uversky VN, Sussman JL. Function and
structure of inherently disordered proteins. Curr Opin Struct Biol
2008; 18:756-64; http://dx.doi.org/10.1016/j.sbi.2008.10.002.

1814. Tompa P. The interplay between structure and function in intrinsi-
cally unstructured proteins. FEBS Lett 2005; 579:3346-54; http://dx.
doi.org/10.1016/j.febslet.2005.03.072.

1815. Peng Z, Xue B, Kurgan L, Uversky VN. Resilience of death: intrinsic
disorder in proteins involved in the programmed cell death. Cell
Death Differ 2013; 20:1257-67; http://dx.doi.org/10.1038/
cdd.2013.65.

1816. Popelka H, Uversky VN, Klionsky DJ. Identification of Atg3 as an
intrinsically disordered polypeptide yields insights into the molecu-
lar dynamics of autophagy-related proteins in yeast. Autophagy
2014; 10:1093-104; http://dx.doi.org/10.4161/auto.28616.

1817. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW,
Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Clas-
sification of intrinsically disordered regions and proteins. Chem
Rev 2014; 114:6589-631; http://dx.doi.org/10.1021/cr400525m.

1818. Uversky VN. Intrinsic disorder-based protein interactions and their
modulators. Curr Pharm Des 2013; 19:4191-213; http://dx.doi.org/
10.2174/1381612811319230005.

1819. Pejaver V, Hsu WL, Xin F, Dunker AK, Uversky VN, Radivojac P.
The structural and functional signatures of proteins that undergo
multiple events of post-translational modification. Protein Sci 2014;
23:1077-93; http://dx.doi.org/10.1002/pro.2494.

1820. Chiang HS, Maric M. Lysosomal thiol reductase negatively regulates
autophagy by altering glutathione synthesis and oxidation. Free
Radical Bio Med 2011; 51:688-99; http://dx.doi.org/10.1016/j.
freeradbiomed.2011.05.015.

1821. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I,
Kepp O, Tasdemir E, Galluzzi L, Shen S, et al. The IKK complex
contributes to the induction of autophagy. EMBO J 2010; 29:619-
31; http://dx.doi.org/10.1038/emboj.2009.364.

1822. Wu X, Tu BP. Selective regulation of autophagy by the Iml1-Npr2-
Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell
2011; 22:4124-33; http://dx.doi.org/10.1091/mbc.E11-06-0525.

1823. Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder
R, Garcia E, Dinkins C, Leuba F, Wu L, et al. Human immunodefi-
ciency virus-1 inhibition of immunoamphisomes in dendritic cells
impairs early innate and adaptive immune responses. Immunity 2010;
32:654-69; http://dx.doi.org/10.1016/j.immuni.2010.04.011.

1824. Deretic V. Autophagy in innate and adaptive immunity. Trends
Immunol 2005; 26:523-8; http://dx.doi.org/10.1016/j.it.2005.08.003.

1825. Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA,
Wiemer EA, Dussurget O, Cossart P. Recruitment of the major
vault protein by InlK: a Listeria monocytogenes strategy to avoid
autophagy. PLoS Pathog 2011; 7:e1002168.

1826. Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces
autophagy to eliminate intracellular mycobacteria. Science 2006;
313:1438-41; http://dx.doi.org/10.1126/science.1129577.

1827. Bugnicourt A, Mari M, Reggiori F, Haguenauer-Tsapis R, Galan JM.
Irs4p and Tax4p: two redundant EH domain proteins involved in
autophagy. Traffic 2008; 9:755-69; http://dx.doi.org/10.1111/j.1600-
0854.2008.00715.x.

1828. Namkoong S, Lee KI, Lee JI, Park R, Lee EJ, Jang IS, Park J. The
integral membrane protein ITM2A, a transcriptional target of
PKA-CREB, regulates autophagic flux via interaction with the vacu-
olar ATPase. Autophagy 2015; 11:756-68; http://dx.doi.org/
10.1080/15548627.2015.1034412.

1829. Yogev O, Goldberg R, Anzi S, Yogev O, Shaulian E. Jun proteins are
starvation-regulated inhibitors of autophagy. Cancer Res 2010;
70:2318-27; http://dx.doi.org/10.1158/0008-5472.CAN-09-3408.

1830. Taylor R, Jr., Chen PH, Chou CC, Patel J, Jin SV. KCS1 deletion in
Saccharomyces cerevisiae leads to a defect in translocation of auto-
phagic proteins and reduces autophagosome formation. Autophagy
2012; 8:1300-11; http://dx.doi.org/10.4161/auto.20681.

1831. Lee DF, Kuo HP, Liu M, Chou CK, Xia W, Du Y, Shen J, Chen CT,
Huo L, Hsu MC, et al. KEAP1 E3 ligase-mediated downregulation
of NF-kappaB signaling by targeting IKKbeta. Mol Cell 2009;
36:131-40; http://dx.doi.org/10.1016/j.molcel.2009.07.025.

1832. Stepkowski TM, Kruszewski MK. Molecular cross-talk between the
NRF2/KEAP1 signaling pathway, autophagy, and apoptosis. Free
Radical Bio Med 2011; 50:1186-95; http://dx.doi.org/10.1016/j.
freeradbiomed.2011.01.033.

1833. Puustinen P, Rytter A, Mortensen M, Kohonen P, Moreira JM, Jaat-
tela M. CIP2A oncoprotein controls cell growth and autophagy
through mTORC1 activation. J Cell Biol 2014; 204:713-27; http://
dx.doi.org/10.1083/jcb.201304012.

1834. Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N,
Bhayana D, Hutnik CM. Cytoprotective effect of lacritin on human
corneal epithelial cells exposed to benzalkonium chloride in vitro.
Curr Eye Res 2014; 39:604-10; http://dx.doi.org/10.3109/
02713683.2013.859275.

1835. Ma P, Beck SL, Raab RW, McKown RL, Coffman GL, Utani A,
Chirico WJ, Rapraeger AC, Laurie GW. Heparanase deglycanation
of syndecan-1 is required for binding of the epithelial-restricted
prosecretory mitogen lacritin. J Cell Biol 2006; 174:1097-106; http://
dx.doi.org/10.1083/jcb.200511134.

1836. Wang N, Zimmerman K, Raab RW, McKown RL, Hutnik CM,
Talla V, Tyler MFT, Lee JK, Laurie GW. Lacritin rescues stressed
epithelia via rapid forkhead box O3 (FOXO3)-associated autophagy
that restores metabolism. J Biol Chem 2013; 288:18146-61; http://
dx.doi.org/10.1074/jbc.M112.436584.

1837. Eskelinen E-L, Illert A, Tanaka Y, Schwarzmann G, Blanz J, Von
Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and
autophagy. Mol Biol Cell 2002; 13:3355-68; http://dx.doi.org/
10.1091/mbc.E02-02-0114.

1838. Eskelinen E-L, Schmidt C, Neu S, Willenborg M, Fuertes G, Salva-
dor N, Tanaka Y, Lullmann-Rauch R, Hartmann D, Heeren J, et al.
Disturbed cholesterol traffic but normal proteolytic function in
LAMP-1/LAMP-2 double-deficient fibroblasts. Mol Biol Cell 2004;
15:3132-45; http://dx.doi.org/10.1091/mbc.E04-02-0103.

1839. Tanaka Y, Guhde G, Suter A, Eskelinen E-L, Hartmann D, Lull-
mann-Rauch R, Janssen P, Blanz J, von Figura K, Saftig P. Accumu-
lation of autophagic vacuoles and cardiomyopathy in Lamp-2-
deficient mice. Nature 2000; 406:902-6; http://dx.doi.org/10.1038/
35022595.

1840. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M,
Riggs JE, Oh SJ, Koga Y, et al. Primary LAMP-2 deficiency causes
X-linked vacuolar cardiomyopathy and myopathy (Danon disease).
Nature 2000; 406:906-10; http://dx.doi.org/10.1038/35022604.

AUTOPHAGY 175

http://dx.doi.org/10.4161/auto.20752
http://dx.doi.org/10.1016/S1093-3263(00)00138-8
http://dx.doi.org/10.1016/S0968-0004(02)02169-2
http://dx.doi.org/10.1002/1097-0134(20001115)41:3&lt;415::AID-PROT130&gt;3.0.CO;2-7
http://dx.doi.org/10.1002/1097-0134(20001115)41:3&lt;415::AID-PROT130&gt;3.0.CO;2-7
http://dx.doi.org/10.1002/1097-0134(20001115)41:3&lt;415::AID-PROT130&gt;3.0.CO;2-7
http://dx.doi.org/10.1002/1097-0134(20001115)41:3&lt;415::AID-PROT130&gt;3.0.CO;2-7
http://dx.doi.org/10.1006/jmbi.1999.3110
http://dx.doi.org/10.1007/s00018-014-1661-9
http://dx.doi.org/10.1007/s00018-014-1661-9
http://dx.doi.org/10.1021/bi048161t
http://dx.doi.org/10.1021/bi012159+
http://dx.doi.org/10.1016/j.sbi.2008.10.002
http://dx.doi.org/10.1016/j.febslet.2005.03.072
http://dx.doi.org/10.1038/cdd.2013.65
http://dx.doi.org/10.1038/cdd.2013.65
http://dx.doi.org/10.4161/auto.28616
http://dx.doi.org/10.1021/cr400525m
http://dx.doi.org/10.2174/1381612811319230005
http://dx.doi.org/10.1002/pro.2494
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.015
http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.015
http://dx.doi.org/10.1038/emboj.2009.364
http://dx.doi.org/10.1091/mbc.E11-06-0525
http://dx.doi.org/10.1016/j.immuni.2010.04.011
http://dx.doi.org/10.1016/j.it.2005.08.003
http://dx.doi.org/10.1126/science.1129577
http://dx.doi.org/10.1111/j.1600-0854.2008.00715.x
http://dx.doi.org/10.1111/j.1600-0854.2008.00715.x
http://dx.doi.org/10.1080/15548627.2015.1034412
http://dx.doi.org/10.1158/0008-5472.CAN-09-3408
http://dx.doi.org/10.4161/auto.20681
http://dx.doi.org/10.1016/j.molcel.2009.07.025
http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.033
http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.033
http://dx.doi.org/10.1083/jcb.201304012
http://dx.doi.org/10.3109/02713683.2013.859275
http://dx.doi.org/10.3109/02713683.2013.859275
http://dx.doi.org/10.1083/jcb.200511134
http://dx.doi.org/10.1074/jbc.M112.436584
http://dx.doi.org/10.1091/mbc.E02-02-0114
http://dx.doi.org/10.1091/mbc.E04-02-0103
http://dx.doi.org/10.1038/35022595
http://dx.doi.org/10.1038/35022595
http://dx.doi.org/10.1038/35022604


1841. Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-
Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, et al. LITAF,
a BCL6 target gene, regulates autophagy in mature B-cell lymphomas.
Br J Haematol 2013; 162:621-30; http://dx.doi.org/10.1111/bjh.12440.

1842. Boya P. Lysosomal function and dysfunction: mechanism and dis-
ease. Antioxid Redox Sign 2012; 17:766-74; http://dx.doi.org/
10.1089/ars.2011.4405.

1843. Gabande-Rodriguez E, Boya P, Labrador V, Dotti CG, Ledesma
MD. High sphingomyelin levels induce lysosomal damage and
autophagy dysfunction in Niemann Pick disease type A. Cell Death
Differ 2014; 21:864-75; http://dx.doi.org/10.1038/cdd.2014.4.

1844. Rodriguez-Muela N, Hernandez-Pinto AM, Serrano-Puebla A, Gar-
cia-Ledo L, Latorre SH, de la Rosa EJ, Boya P. Lysosomal membrane
permeabilization and autophagy blockade contribute to photore-
ceptor cell death in a mouse model of retinitis pigmentosa. Cell
Death Differ 2014.

1845. Farmer LM, Rinaldi MA, Young PG, Danan CH, Burkhart SE, Bar-
tel B. Disrupting autophagy restores peroxisome function to an
Arabidopsis lon2 mutant and reveals a role for the LON2 protease
in peroxisomal matrix protein degradation. Plant Cell 2013;
25:4085-100; http://dx.doi.org/10.1105/tpc.113.113407.

1846. Carew JS, Espitia CM, Esquivel JA, II, Mahalingam D, Kelly KR,
Reddy G, Giles FJ, Nawrocki ST. Lucanthone is a novel inhibitor of
autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem
2011; 286:6602-13; http://dx.doi.org/10.1074/jbc.M110.151324.

1847. Zou J, Yue F, Jiang X, Li W, Yi J, Liu L. Mitochondrion-associated
protein LRPPRC suppresses the initiation of basal levels of auto-
phagy via enhancing Bcl-2 stability. Biochem J 2013; 454:447-57;
http://dx.doi.org/10.1042/BJ20130306.

1848. Zou J, Yue F, Li W, Song K, Jiang X, Yi J, Liu L. Autophagy inhibitor
LRPPRC suppresses mitophagy through interaction with mitoph-
agy initiator Parkin. PloS One 2014; 9:e94903; http://dx.doi.org/
10.1371/journal.pone.0094903.

1849. Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda
LL, Ansorge O, Wade-Martins R. LRRK2 regulates autophagic
activity and localizes to specific membrane microdomains in a novel
human genomic reporter cellular model. Hum Mol Genet 2009;
18:4022-34; http://dx.doi.org/10.1093/hmg/ddp346.

1850. Ng ACY, Eisenberg JM, Heath RJW, Huett A, Robinson CM, Nau
GJ, Xavier RJ. Human leucine-rich repeat proteins: a genome-wide
bioinformatic categorization and functional analysis in innate
immunity. Proc Natl Acad Sci USA 2011; 108:4631-8; http://dx.doi.
org/10.1073/pnas.1000093107.

1851. Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H,
Meijer AJ. The phosphatidylinositol 3-kinase inhibitors wortman-
nin and LY294002 inhibit autophagy in isolated rat hepatocytes.
Eur J Biochem 1997; 243:240-6; http://dx.doi.org/10.1111/j.1432-
1033.1997.0240a.x.

1852. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, Lynch JP,
Uehara T, Sepulveda AR, Davis LE, et al. Autophagy inhibitor Lys05
has single-agent antitumor activity and reproduces the phenotype
of a genetic autophagy deficiency. Proc Natl Acad Sci USA 2012;
109:8253-8; http://dx.doi.org/10.1073/pnas.1118193109.

1853. Amaravadi RK, Winkler JD. Lys05: a new lysosomal autophagy
inhibitor. Autophagy 2012; 8:1383-4; http://dx.doi.org/10.4161/
auto.20958.

1854. Pineda CT, Ramanathan S, Fon Tacer K, Weon JL, Potts MB, Ou
YH, White MA, Potts PR. Degradation of AMPK by a Cancer-Spe-
cific Ubiquitin Ligase. Cell 2015; 160:715-28; http://dx.doi.org/
10.1016/j.cell.2015.01.034.

1855. Mann SS, Hammarback JA. Molecular characterization of light
chain 3. A microtubule binding subunit of MAP1A and MAP1B. J
Biol Chem 1994; 269:11492-7.

1856. Xie R, Nguyen S, McKeehan K, Wang F, McKeehan WL, Liu L.
Microtubule-associated protein 1S (MAP1S) bridges autophagic
components with microtubules and mitochondria to affect auto-
phagosomal biogenesis and degradation. J Biol Chem 2011;
286:10367-77; http://dx.doi.org/10.1074/jbc.M110.206532.

1857. Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola
C, Farkas T, Lopez-Rivas A, Jaattela M. TAK1 activates AMPK-

dependent cytoprotective autophagy in TRAIL-treated epithelial
cells. EMBO J 2009; 28:677-85; http://dx.doi.org/10.1038/
emboj.2009.8.

1858. Ogier-Denis E, Pattingre S, El Benna J, Codogno P. Erk1/2-depen-
dent phosphorylation of Galpha-interacting protein stimulates its
GTPase accelerating activity and autophagy in human colon cancer
cells. J Biol Chem 2000; 275:39090-5; http://dx.doi.org/10.1074/jbc.
M006198200.

1859. Fu MM, Nirschl JJ, Holzbaur EL. LC3 binding to the scaffolding
protein JIP1 regulates processive dynein-driven transport of auto-
phagosomes. Dev Cell 2014; 29:577-90; http://dx.doi.org/10.1016/j.
devcel.2014.04.015.

1860. Raciti M, Lotti LV, Valia S, Pulcinelli FM, Di Renzo L. JNK2 is acti-
vated during ER stress and promotes cell survival. Cell Death Dis
2012; 3:e429; http://dx.doi.org/10.1038/cddis.2012.167.

1861. Keil E, Hocker R, Schuster M, Essmann F, Ueffing N, Hoffman B,
Liebermann DA, Pfeffer K, Schulze-Osthoff K, Schmitz I. Phos-
phorylation of Atg5 by the Gadd45beta-MEKK4-p38 pathway
inhibits autophagy. Cell Death Differ 2013; 20:321-32; http://dx.doi.
org/10.1038/cdd.2012.129.

1862. Menon MB, Dhamija S, Kotlyarov A, Gaestel M. The problem of
pyridinyl imidazole class inhibitors of MAPK14/p38alpha and
MAPK11/p38beta in autophagy research. Autophagy 2015;
11:1425-7; http://dx.doi.org/10.1080/15548627.2015.1059562.

1863. Menon MB, Kotlyarov A, Gaestel M. SB202190-induced cell type-
specific vacuole formation and defective autophagy do not depend
on p38 MAP kinase inhibition. PloS One 2011; 6:e23054; http://dx.
doi.org/10.1371/journal.pone.0023054.

1864. Colecchia D, Strambi A, Sanzone S, Iavarone C, Rossi M, Dall’Armi
C, Piccioni F, Verrotti Di Pianella A, Chiariello M. MAPK15/ERK8
stimulates autophagy by interacting with LC3 and GABARAP pro-
teins. Autophagy 2012; 8:1724-40; http://dx.doi.org/10.4161/
auto.21857.

1865. Wang Z, Zhang J, Wang Y, Xing R, Yi C, Zhu H, Chen X, Guo J,
Guo W, Li W, et al. Matrine, a novel autophagy inhibitor, blocks
trafficking and the proteolytic activation of lysosomal proteases.
Carcinogenesis 2013; 34:128-38; http://dx.doi.org/10.1093/carcin/
bgs295.

1866. Liang Q, Seo GJ, Choi YJ, Kwak MJ, Ge J, Rodgers MA, Shi M,
Leslie BJ, Hopfner KP, Ha T, et al. Crosstalk between the cGAS
DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Anti-
microbial Immune Responses. Cell Host Microbe 2014; 15:228-38;
http://dx.doi.org/10.1016/j.chom.2014.01.009.

1867. Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S,
Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M,
Campos-Martin Y, et al. Stimulation of ALK by the growth factor
midkine renders glioma cells resistant to autophagy-mediated cell
death. Autophagy 2011; 7:1071-3; http://dx.doi.org/10.4161/
auto.7.9.15866.

1868. Lorente M, Torres S, Salazar M, Carracedo A, Hernandez-Tiedra S,
Rodriguez-Fornes F, Garcia-Taboada E, Melendez B, Mollejo M,
Campos-Martin Y, et al. Stimulation of the midkine/ALK axis ren-
ders glioma cells resistant to cannabinoid antitumoral action. Cell
Death Differ 2011; 18:959-73; http://dx.doi.org/10.1038/
cdd.2010.170.

1869. Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T,
Deretic V. TRIM-mediated precision autophagy targets cytoplasmic
regulators of innate immunity. J Cell Biol 2015; in press.

1870. Bagniewska-Zadworna A, Byczyk J, Eissenstat DM, Oleksyn J, Zad-
worny M. Avoiding transport bottlenecks in an expanding root sys-
tem: xylem vessel development in fibrous and pioneer roots under
field conditions. Am J Bot 2012; 99:1417-26; http://dx.doi.org/
10.3732/ajb.1100552.

1871. van Doorn WG, Woltering EJ. Many ways to exit? Cell death cate-
gories in plants. Trends Plant Sci 2005; 10:117-22; http://dx.doi.org/
10.1016/j.tplants.2005.01.006.

1872. Eastwood MD, Cheung SW, Lee KY, Moffat J, Meneghini MD.
Developmentally programmed nuclear destruction during yeast
gametogenesis. Dev Cell 2012; 23:35-44; http://dx.doi.org/10.1016/j.
devcel.2012.05.005.

176 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1111/bjh.12440
http://dx.doi.org/10.1089/ars.2011.4405
http://dx.doi.org/10.1038/cdd.2014.4
http://dx.doi.org/10.1105/tpc.113.113407
http://dx.doi.org/10.1074/jbc.M110.151324
http://dx.doi.org/10.1042/BJ20130306
http://dx.doi.org/10.1371/journal.pone.0094903
http://dx.doi.org/10.1093/hmg/ddp346
http://dx.doi.org/10.1073/pnas.1000093107
http://dx.doi.org/10.1111/j.1432-1033.1997.0240a.x
http://dx.doi.org/10.1111/j.1432-1033.1997.0240a.x
http://dx.doi.org/10.1073/pnas.1118193109
http://dx.doi.org/10.4161/auto.20958
http://dx.doi.org/10.4161/auto.20958
http://dx.doi.org/10.1016/j.cell.2015.01.034
http://dx.doi.org/10.1074/jbc.M110.206532
http://dx.doi.org/10.1038/emboj.2009.8
http://dx.doi.org/10.1038/emboj.2009.8
http://dx.doi.org/10.1074/jbc.M006198200
http://dx.doi.org/10.1074/jbc.M006198200
http://dx.doi.org/10.1016/j.devcel.2014.04.015
http://dx.doi.org/10.1016/j.devcel.2014.04.015
http://dx.doi.org/10.1038/cddis.2012.167
http://dx.doi.org/10.1038/cdd.2012.129
http://dx.doi.org/10.1080/15548627.2015.1059562
http://dx.doi.org/10.1371/journal.pone.0023054
http://dx.doi.org/10.4161/auto.21857
http://dx.doi.org/10.4161/auto.21857
http://dx.doi.org/10.1093/carcin/bgs295
http://dx.doi.org/10.1093/carcin/bgs295
http://dx.doi.org/10.1016/j.chom.2014.01.009
http://dx.doi.org/10.4161/auto.7.9.15866
http://dx.doi.org/10.4161/auto.7.9.15866
http://dx.doi.org/10.1038/cdd.2010.170
http://dx.doi.org/10.1038/cdd.2010.170
http://dx.doi.org/10.3732/ajb.1100552
http://dx.doi.org/10.1016/j.tplants.2005.01.006
http://dx.doi.org/10.1016/j.devcel.2012.05.005
http://dx.doi.org/10.1016/j.devcel.2012.05.005


1873. Wang P, Lazarus BD, Forsythe ME, Love DC, Krause MW, Hano-
ver JA. O-GlcNAc cycling mutants modulate proteotoxicity in Cae-
norhabditis elegans models of human neurodegenerative diseases.
Proc Natl Acad Sci USA 2012; 109:17669-74; http://dx.doi.org/
10.1073/pnas.1205748109.

1874. Oku M, Warnecke D, Noda T, Muller F, Heinz E, Mukaiyama H,
Kato N, Sakai Y. Peroxisome degradation requires catalytically
active sterol glucosyltransferase with a GRAM domain. EMBO J
2003; 22:3231-41; http://dx.doi.org/10.1093/emboj/cdg331.

1875. Ding WX, Guo F, Ni HM, Bockus A, Manley S, Stolz DB, Eskelinen
EL, Jaeschke H, Yin XM. Parkin and mitofusins reciprocally regu-
late mitophagy and mitochondrial spheroid formation. J Biol Chem
2012; 287:42379-88; http://dx.doi.org/10.1074/jbc.M112.413682.

1876. Ding WX, Li M, Biazik JM, Morgan DG, Guo F, Ni HM, Goheen M,
Eskelinen EL, Yin XM. Electron microscopic analysis of a spherical
mitochondrial structure. J Biol Chem 2012; 287:42373-8; http://dx.
doi.org/10.1074/jbc.M112.413674.

1877. Seca H, Lima RT, Lopes-Rodrigues V, Guimaraes JE, Almeida GM,
Vasconcelos MH. Targeting miR-21 induces autophagy and chemo-
sensitivity of leukemia cells. Curr Drug Targets 2013; 14:1135-43;
http://dx.doi.org/10.2174/13894501113149990185.

1878. Pennati M, Lopergolo A, Profumo V, De Cesare M, Sbarra S, Val-
dagni R, Zaffaroni N, Gandellini P, Folini M. miR-205 impairs the
autophagic flux and enhances cisplatin cytotoxicity in castration-
resistant prostate cancer cells. Biochem Pharmacol 2014; 87:579-97;
http://dx.doi.org/10.1016/j.bcp.2013.12.009.

1879. Martina JA, Diab HI, Lishu L, Jeong AL, Patange S, Raben N, Puer-
tollano R. The nutrient-responsive transcription factor TFE3 pro-
motes autophagy, lysosomal biogenesis, and clearance of cellular
debris. Sci Signal 2014; 7:ra9.

1880. Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a
targeted defense against oxidative stress, mitochondrial dysfunc-
tion, and aging. Rejuvenation Res 2005; 8:3-5; http://dx.doi.org/
10.1089/rej.2005.8.3.

1881. Choi YJ, Hwang KC, Park JY, Park KK, Kim JH, Park SB, Hwang S,
Park H, Park C, Kim JH. Identification and characterization of a
novel mouse and human MOPT gene containing MORN-motif
protein in testis. Theriogenology 2010; 73:273-81; http://dx.doi.org/
10.1016/j.theriogenology.2009.09.010.

1882. Frost LS, Lopes VS, Bragin A, Reyes-Reveles J, Brancato J, Cohen A,
Mitchell CH, Williams DS, Boesze-Battaglia K. The Contribution of
Melanoregulin to Microtubule-Associated Protein 1 Light Chain 3
(LC3) Associated Phagocytosis in Retinal Pigment Epithelium. Mol
Neurobiol 2014.

1883. Frost LS, Mitchell CH, Boesze-Battaglia K. Autophagy in the eye:
implications for ocular cell health. Exp Eye Res 2014; 124:56-66;
http://dx.doi.org/10.1016/j.exer.2014.04.010.

1884. Bhutia SK, Kegelman TP, Das SK, Azab B, Su ZZ, Lee SG, Sarkar D,
Fisher PB. Astrocyte elevated gene-1 induces protective autophagy.
Proc Natl Acad Sci USA 2010; 107:22243-8; http://dx.doi.org/
10.1073/pnas.1009479107.

1885. Wu Y, Cheng S, Zhao H, Zou W, Yoshina S, Mitani S, Zhang H,
Wang X. PI3P phosphatase activity is required for autophagosome
maturation and autolysosome formation. EMBO Rep 2014; 15:973-
81; http://dx.doi.org/10.15252/embr.201438618.

1886. Al-Qusairi L, Prokic I, Amoasii L, Kretz C, Messaddeq N, Mandel
JL, Laporte J. Lack of myotubularin (MTM1) leads to muscle hypo-
trophy through unbalanced regulation of the autophagy and ubiqui-
tin-proteasome pathways. FASEB J 2013; 27:3384-94; http://dx.doi.
org/10.1096/fj.12-220947.

1887. Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktista-
kis NT, Yoshimori T, Noda T. Modulation of local PtdIns3P levels
by the PI phosphatase MTMR3 regulates constitutive autophagy.
Traffic 2010; 11:468-78; http://dx.doi.org/10.1111/j.1600-
0854.2010.01034.x.

1888. Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-
Cezanne T, Laporte J, Deretic V. Control of autophagy initiation by
phosphoinositide 3-phosphatase Jumpy. EMBO J 2009; 28:2244-58;
http://dx.doi.org/10.1038/emboj.2009.159.

1889. Zou J, Zhang C, Marjanovic J, Kisseleva MV, Majerus PW, Wilson
MP. Myotubularin-related protein (MTMR) 9 determines the enzy-
matic activity, substrate specificity, and role in autophagy of
MTMR8. Proc Natl Acad Sci USA 2012; 109:9539-44; http://dx.doi.
org/10.1073/pnas.1207021109.

1890. Hnia K, Kretz C, Amoasii L, Bohm J, Liu X, Messaddeq N, Qu CK,
Laporte J. Primary T-tubule and autophagy defects in the phosphoi-
nositide phosphatase Jumpy/MTMR14 knockout mice muscle. Adv
Biol Reg 2012; 52:98-107; http://dx.doi.org/10.1016/j.
advenzreg.2011.09.007.

1891. Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacob-
sen C, Wendler F, Vincent JP, Brech A, Bilder D, et al. ESCRTs and
Fab1 regulate distinct steps of autophagy. Curr Biol 2007; 17:1817-
25; http://dx.doi.org/10.1016/j.cub.2007.09.032.

1892. Brandstaetter H, Kishi-Itakura C, Tumbarello DA, Manstein DJ,
Buss F. Loss of functional MYO1C/myosin 1c, a motor protein
involved in lipid raft trafficking, disrupts autophagosome-lysosome
fusion. Autophagy 2014; 10:2310-23; http://dx.doi.org/10.4161/
15548627.2014.984272.

1893. Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J,
Buss F. Autophagy receptors link myosin VI to autophagosomes to
mediate Tom1-dependent autophagosome maturation and fusion
with the lysosome. Nat Cell Biol 2012; 14:1024-35; http://dx.doi.
org/10.1038/ncb2589.

1894. Kuo HP, Lee DF, Chen CT, Liu M, Chou CK, Lee HJ, Du Y, Xie
X, Wei Y, Xia W, et al. ARD1 stabilization of TSC2 suppresses
tumorigenesis through the mTOR signaling pathway. Sci Signal
2010; 3:ra9; http://dx.doi.org/10.1126/scisignal.2000590.

1895. Zhang Y, Cheng Y, Ren X, Zhang L, Yap KL, Wu H, Patel R, Liu D,
Qin ZH, Shih IM, et al. NAC1 modulates sensitivity of ovarian can-
cer cells to cisplatin by altering the HMGB1-mediated autophagic
response. Oncogene 2012; 31:1055-64; http://dx.doi.org/10.1038/
onc.2011.290.

1896. Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. Induction of
autophagy contributes to the neuroprotection of nicotinamide
phosphoribosyltransferase in cerebral ischemia. Autophagy 2012;
8:77-87; http://dx.doi.org/10.4161/auto.8.1.18274.

1897. Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a mem-
brane trafficking protein alphaSNAP induces non-canonical auto-
phagy in human epithelia. Cell Cycle 2012; 11:4613-25; http://dx.
doi.org/10.4161/cc.22885.

1898. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ,
Yuan J. Identification of a molecular signaling network that regu-
lates a cellular necrotic cell death pathway. Cell 2008; 135:1311-23;
http://dx.doi.org/10.1016/j.cell.2008.10.044.

1899. Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli
FK, Schafer BW, Schrappe M, Stanulla M, Bourquin JP. Induction
of autophagy-dependent necroptosis is required for childhood acute
lymphoblastic leukemia cells to overcome glucocorticoid resistance.
J Clin Invest 2010; 120:1310-23; http://dx.doi.org/10.1172/
JCI39987.

1900. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C,
Codogno P. Regulation of autophagy by NF{kappa}B transcription
factor and reactives oxygen species. Autophagy 2007; 3:390-2;
http://dx.doi.org/10.4161/auto.4248.

1901. Criado O, Aguado C, Gayarre J, Duran-Trio L, Garcia-Cabrero AM,
Vernia S, San Millan B, Heredia M, Roma-Mateo C, Mouron S,
et al. Lafora bodies and neurological defects in malin-deficient mice
correlate with impaired autophagy. Hum Mol Genet 2012; 21:1521-
33; http://dx.doi.org/10.1093/hmg/ddr590.

1902. Cervia D, Perrotta C, Moscheni C, De Palma C, Clementi E. Nitric
oxide and sphingolipids control apoptosis and autophagy with a
significant impact on Alzheimer’s disease. J Biol Reg Homeos Ag
2013; 27:11-22.

1903. Rabkin SW. Nitric oxide-induced cell death in the heart: the role of
autophagy. Autophagy 2007; 3:347-9; http://dx.doi.org/10.4161/
auto.4054.

1904. Zang L, He H, Ye Y, Liu W, Fan S, Tashiro S, Onodera S, Ikejima T.
Nitric oxide augments oridonin-induced efferocytosis by human

AUTOPHAGY 177

http://dx.doi.org/10.1073/pnas.1205748109
http://dx.doi.org/10.1093/emboj/cdg331
http://dx.doi.org/10.1074/jbc.M112.413682
http://dx.doi.org/10.1074/jbc.M112.413674
http://dx.doi.org/10.2174/13894501113149990185
http://dx.doi.org/10.1016/j.bcp.2013.12.009
http://dx.doi.org/10.1089/rej.2005.8.3
http://dx.doi.org/10.1016/j.theriogenology.2009.09.010
http://dx.doi.org/10.1016/j.exer.2014.04.010
http://dx.doi.org/10.1073/pnas.1009479107
http://dx.doi.org/10.15252/embr.201438618
http://dx.doi.org/10.1096/fj.12-220947
http://dx.doi.org/10.1111/j.1600-0854.2010.01034.x
http://dx.doi.org/10.1111/j.1600-0854.2010.01034.x
http://dx.doi.org/10.1038/emboj.2009.159
http://dx.doi.org/10.1073/pnas.1207021109
http://dx.doi.org/10.1016/j.advenzreg.2011.09.007
http://dx.doi.org/10.1016/j.advenzreg.2011.09.007
http://dx.doi.org/10.1016/j.cub.2007.09.032
http://dx.doi.org/10.4161/15548627.2014.984272
http://dx.doi.org/10.4161/15548627.2014.984272
http://dx.doi.org/10.1038/ncb2589
http://dx.doi.org/10.1126/scisignal.2000590
http://dx.doi.org/10.1038/onc.2011.290
http://dx.doi.org/10.1038/onc.2011.290
http://dx.doi.org/10.4161/auto.8.1.18274
http://dx.doi.org/10.4161/cc.22885
http://dx.doi.org/10.1016/j.cell.2008.10.044
http://dx.doi.org/10.1172/JCI39987
http://dx.doi.org/10.1172/JCI39987
http://dx.doi.org/10.4161/auto.4248
http://dx.doi.org/10.1093/hmg/ddr590
http://dx.doi.org/10.4161/auto.4054
http://dx.doi.org/10.4161/auto.4054


histocytic lymphoma U937 cells via autophagy and the NF-kappaB-
COX-2-IL-1beta pathway. Free Rad Res 2012; 46:1207-19; http://
dx.doi.org/10.3109/10715762.2012.700515.

1905. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magal-
haes JG, Yuan L, Soares F, Chea E, Le Bourhis L, et al. Nod1 and
Nod2 direct autophagy by recruiting ATG16L1 to the plasma mem-
brane at the site of bacterial entry. Nat Immunol 2010; 11:55-62;
http://dx.doi.org/10.1038/ni.1823.

1906. Aveleira CA, Botelho M, Carmo-Silva S, Pascoal JF, Ferreira-Mar-
ques M, Nobrega C, Cortes L, Valero J, Sousa-Ferreira L, Alvaro
AR, et al. Neuropeptide Y stimulates autophagy in hypothalamic
neurons. Proc Natl Acad Sci USA 2015; 112:E1642-51; http://dx.
doi.org/10.1073/pnas.1416609112.

1907. Cao Y, Wang Y, Abi Saab WF, Yang F, Pessin JE, Backer JM.
NRBF2 regulates macroautophagy as a component of Vps34 Com-
plex I. Biochem J 2014; 461:315-22; http://dx.doi.org/10.1042/
BJ20140515.

1908. Lu J, He L, Behrends C, Araki M, Araki K, Jun Wang Q, Catanzaro
JM, Friedman SL, Zong WX, Fiel MI, et al. NRBF2 regulates auto-
phagy and prevents liver injury by modulating Atg14L-linked phos-
phatidylinositol-3 kinase III activity. Nat Commun 2014; 5:3920.

1909. Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-
Hourani M, Cayet N, Jacob Y, Prevost MC, Pierre P, et al. Species-
specific impact of the autophagy machinery on Chikungunya virus
infection. EMBO Rep 2013; 14:534-44; http://dx.doi.org/10.1038/
embor.2013.51.

1910. Kong DK, Georgescu SP, Cano C, Aronovitz MJ, Iovanna JL, Patten
RD, Kyriakis JM, Goruppi S. Deficiency of the transcriptional regu-
lator p8 results in increased autophagy and apoptosis, and causes
impaired heart function. Mol Biol Cell 2010; 21:1335-49; http://dx.
doi.org/10.1091/mbc.E09-09-0818.

1911. Chang KY, Tsai SY, Wu CM, Yen CJ, Chuang BF, Chang JY. Novel
phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226,
displays potent growth-inhibitory activity against human head and
neck cancer cells in vitro and in vivo. Clin Cancer Res 2011;
17:7116-26; http://dx.doi.org/10.1158/1078-0432.CCR-11-0796.

1912. Liu XM, Sun LL, Hu W, Ding YH, Dong MQ, Du LL. ESCRTs
cooperate with a selective autophagy receptor to mediate vacuolar
targeting of soluble cargos. Mol Cell 2015; 59:1035-42; http://dx.
doi.org/10.1016/j.molcel.2015.07.034.

1913. Gundara JS, Zhao J, Robinson BG, Sidhu SB. Oncophagy: harness-
ing regulation of autophagy in cancer therapy. Endocr Relat Cancer
2012; 19:R281-95; http://dx.doi.org/10.1530/ERC-12-0325.

1914. Mijaljica D. Autophagy in 2020 and beyond: eating our way into a
healthy future. Autophagy 2010; 6:194-6; http://dx.doi.org/10.4161/
auto.6.1.10992.

1915. Zhang CF, Gruber F, Ni C, Mildner M, Koenig U, Karner S, Barresi
C, Rossiter H, Narzt MS, Nagelreiter IM, et al. Suppression of auto-
phagy dysregulates the antioxidant response and causes premature
senescence of melanocytes. J Invest Dermatol 2015; 135:1348-57;
http://dx.doi.org/10.1038/jid.2014.439.

1916. Zhao Y, Zhang CF, Rossiter H, Eckhart L, Konig U, Karner S, Mild-
ner M, Bochkov VN, Tschachler E, Gruber F. Autophagy is induced
by UVA and promotes removal of oxidized phospholipids and pro-
tein aggregates in epidermal keratinocytes. J Invest Dermatol 2013;
133:1629-37; http://dx.doi.org/10.1038/jid.2013.26.

1917. Bertolin G, Ferrando-Miguel R, Jacoupy M, Traver S, Grenier K,
Greene AW, Dauphin A, Waharte F, Bayot A, Salamero J, et al.
Mitochondrial processing peptidase regulates PINK1 processing,
import and Parkin recruitment. Autophagy 2013; 9:1801-17; http://
dx.doi.org/10.4161/auto.25884.

1918. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque
ME, McBride HM, Park DS, Fon EA. Mitochondrial processing
peptidase regulates PINK1 processing, import and Parkin recruit-
ment. EMBO Rep 2012; 13:378-85; http://dx.doi.org/10.1038/
embor.2012.14.

1919. Jin SM, Youle RJ. The accumulation of misfolded proteins in the
mitochondrial matrix is sensed by PINK1 to induce PARK2/Par-
kin-mediated mitophagy of polarized mitochondria. Autophagy
2013; 9:1750-7; http://dx.doi.org/10.4161/auto.26122.

1920. Meissner C, Lorenz H, Hehn B, Lemberg MK. Intramembrane pro-
tease PARL defines a negative regulator of PINK1- and PARK2/Par-
kin-dependent mitophagy. Autophagy 2015:0.

1921. Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato
S, Hattori N. PINK1-mediated phosphorylation of the Parkin ubiq-
uitin-like domain primes mitochondrial translocation of Parkin
and regulates mitophagy. Sci Rep 2012; 2:1002; http://dx.doi.org/
10.1038/srep01002.

1922. Durcan TM, Tang MY, Perusse JR, Dashti EA, Aguileta MA,
McLelland GL, Gros P, Shaler TA, Faubert D, Coulombe B, et al.
USP8 regulates mitophagy by removing K6-linked ubiquitin conju-
gates from parkin. EMBO J 2014.

1923. Ren H, Fu K, Mu C, Li B, Wang D, Wang G. DJ-1, a cancer and
Parkinson’s disease associated protein, regulates autophagy through
JNK pathway in cancer cells. Cancer Lett 2010; 297:101-8; http://dx.
doi.org/10.1016/j.canlet.2010.05.001.

1924. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ.
Mitochondrial membrane potential regulates PINK1 import and
proteolytic destabilization by PARL. J Cell Biol 2010; 191:933-42;
http://dx.doi.org/10.1083/jcb.201008084.

1925. Meissner C, Lorenz H, Weihofen A, Selkoe DJ, Lemberg MK. The
mitochondrial intramembrane protease PARL cleaves human
Pink1 to regulate Pink1 trafficking. J Neurochem 2011; 117:856-67;
http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x.

1926. Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Far-
rer M, McQuibban GA, Bulman DE. Functional alteration of PARL
contributes to mitochondrial dysregulation in Parkinson’s disease.
Hum Mol Genet 2011; 20:1966-74; http://dx.doi.org/10.1093/hmg/
ddr077.

1927. Munoz-Gamez JA, Rodriguez-Vargas JM, Quiles-Perez R, Aguilar-
Quesada R, Martin-Oliva D, de Murcia G, Menissier de Murcia J,
Almendros A, Ruiz de Almodovar M, Oliver FJ. PARP-1 is involved
in autophagy induced by DNA damage. Autophagy 2009; 5:61-74;
http://dx.doi.org/10.4161/auto.5.1.7272.

1928. Huang Q, Shen HM. To die or to live: the dual role of poly(ADP-
ribose) polymerase-1 in autophagy and necrosis under oxidative
stress and DNA damage. Autophagy 2009; 5:273-6; http://dx.doi.
org/10.4161/auto.5.2.7640.

1929. Thayyullathil F, Rahman A, Pallichankandy S, Patel M, Galadari S.
ROS-dependent prostate apoptosis response-4 (Par-4) up-regula-
tion and ceramide generation are the prime signaling events associ-
ated with curcumin-induced autophagic cell death in human
malignant glioma. FEBS Open Bio 2014; 4:763-76; http://dx.doi.
org/10.1016/j.fob.2014.08.005.

1930. Wang LJ, Chen PR, Hsu LP, Hsu WL, Liu DW, Chang CH, Hsu YC,
Lee JW. Concomitant induction of apoptosis and autophagy by
prostate apoptosis response-4 in hypopharyngeal carcinoma cells.
Am J Pathol 2014; 184:418-30; http://dx.doi.org/10.1016/j.
ajpath.2013.10.012.

1931. Silvente-Poirot S, Poirot M. Cholesterol metabolism and cancer: the
good, the bad and the ugly. Current Opin Pharmacol 2012; 12:673-
6; http://dx.doi.org/10.1016/j.coph.2012.10.004.

1932. Bock BC, Tagscherer KE, Fassl A, Kramer A, Oehme I, Zentgraf
HW, Keith M, Roth W. The PEA-15 protein regulates autophagy
via activation of JNK. J Biol Chem 2010; 285:21644-54; http://dx.
doi.org/10.1074/jbc.M109.096628.

1933. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with
Alix to promote basal autophagic flux and late endosome function.
Nat Cell Biol 2015; 17:300-10; http://dx.doi.org/10.1038/ncb3112.

1934. Leu JI-J, Pimkina J, Frank A, Murphy ME, George DL. A small mol-
ecule inhibitor of inducible heat shock protein 70. Mol Cell 2009;
36:15-27; http://dx.doi.org/10.1016/j.molcel.2009.09.023.

1935. Shibata M, Oikawa K, Yoshimoto K, Kondo M, Mano S, Yamada K,
Hayashi M, Sakamoto W, Ohsumi Y, Nishimura M. Highly oxi-
dized peroxisomes are selectively degraded via autophagy in Arabi-
dopsis. Plant Cell 2013; 25:4967-83; http://dx.doi.org/10.1105/
tpc.113.116947.

1936. Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato
N, Sakai Y. A sorting nexin PpAtg24 regulates vacuolar membrane
dynamics during pexophagy via binding to phosphatidylinositol-3-

178 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.3109/10715762.2012.700515
http://dx.doi.org/10.1038/ni.1823
http://dx.doi.org/10.1073/pnas.1416609112
http://dx.doi.org/10.1042/BJ20140515
http://dx.doi.org/10.1042/BJ20140515
http://dx.doi.org/10.1038/embor.2013.51
http://dx.doi.org/10.1038/embor.2013.51
http://dx.doi.org/10.1091/mbc.E09-09-0818
http://dx.doi.org/10.1158/1078-0432.CCR-11-0796
http://dx.doi.org/10.1016/j.molcel.2015.07.034
http://dx.doi.org/10.1530/ERC-12-0325
http://dx.doi.org/10.4161/auto.6.1.10992
http://dx.doi.org/10.4161/auto.6.1.10992
http://dx.doi.org/10.1038/jid.2014.439
http://dx.doi.org/10.1038/jid.2013.26
http://dx.doi.org/10.4161/auto.25884
http://dx.doi.org/10.1038/embor.2012.14
http://dx.doi.org/10.1038/embor.2012.14
http://dx.doi.org/10.4161/auto.26122
http://dx.doi.org/10.1038/srep01002
http://dx.doi.org/10.1016/j.canlet.2010.05.001
http://dx.doi.org/10.1083/jcb.201008084
http://dx.doi.org/10.1111/j.1471-4159.2011.07253.x
http://dx.doi.org/10.1093/hmg/ddr077
http://dx.doi.org/10.1093/hmg/ddr077
http://dx.doi.org/10.4161/auto.5.1.7272
http://dx.doi.org/10.4161/auto.5.2.7640
http://dx.doi.org/10.1016/j.fob.2014.08.005
http://dx.doi.org/10.1016/j.ajpath.2013.10.012
http://dx.doi.org/10.1016/j.ajpath.2013.10.012
http://dx.doi.org/10.1016/j.coph.2012.10.004
http://dx.doi.org/10.1074/jbc.M109.096628
http://dx.doi.org/10.1038/ncb3112
http://dx.doi.org/10.1016/j.molcel.2009.09.023
http://dx.doi.org/10.1105/tpc.113.116947
http://dx.doi.org/10.1105/tpc.113.116947


phosphate. Mol Biol Cell 2005; 16:446-57; http://dx.doi.org/
10.1091/mbc.E04-09-0842.

1937. Yano T, Mita S, Ohmori H, Oshima Y, Fujimoto Y, Ueda R, Takada
H, Goldman WE, Fukase K, Silverman N, et al. Autophagic control
of listeria through intracellular innate immune recognition in dro-
sophila. Nat Immunol 2008; 9:908-16; http://dx.doi.org/10.1038/
ni.1634.

1938. Seglen PO, Gordon PB, Holen I. Non-selective autophagy. Semin
Cell Biol 1990; 1:441-8.

1939. He C, Klionsky DJ. Atg9 trafficking in autophagy-related pathways.
Autophagy 2007; 3:271-4; http://dx.doi.org/10.4161/auto.3912.

1940. Huang H, Kawamata T, Horie T, Tsugawa H, Nakayama Y, Ohsumi
Y, Fukusaki E. Bulk RNA degradation by nitrogen starvation-
induced autophagy in yeast. EMBO J 2015; 34:154-68; http://dx.doi.
org/10.15252/embj.201489083.

1941. Meijer AJ, Klionsky DJ. Vps34 is a phosphatidylinositol 3-kinase,
not a phosphoinositide 3-kinase. Autophagy 2011; 7:563-4; http://
dx.doi.org/10.4161/auto.7.6.14873.

1942. Devereaux K, Dall’Armi C, Alcazar-Roman A, Ogasawara Y, Zhou
X, Wang F, Yamamoto A, De Camilli P, Di Paolo G. Regulation of
mammalian autophagy by class II and III PI 3-kinases through
PI3P synthesis. PloS One 2013; 8:e76405.

1943. Byfield MP, Murray JT, Backer JM. hVps34 is a nutrient-regulated
lipid kinase required for activation of p70 S6 kinase. J Biol Chem
2005; 280:33076-82; http://dx.doi.org/10.1074/jbc.M507201200.

1944. Roppenser B, Grinstein S, Brumell JH. Modulation of host phos-
phoinositide metabolism during Salmonella invasion by the type III
secreted effector SopB. Methods Cell Biol 2012; 108:173-86; http://
dx.doi.org/10.1016/B978-0-12-386487-1.00009-2.

1945. Cuesta-Geijo MA, Galindo I, Hernaez B, Quetglas JI, Dalmau-Mena
I, Alonso C. Endosomal maturation, Rab7 GTPase and phosphoi-
nositides in African swine fever virus entry. PloS One 2012; 7:
e48853; http://dx.doi.org/10.1371/journal.pone.0048853.

1946. Jin N, Mao K, Jin Y, Tevzadze G, Kauffman EJ, Park S, Bridges D,
Loewith R, Saltiel AR, Klionsky DJ, et al. Roles for PI(3,5)P2 in
nutrient sensing through TORC1. Mol Biol Cell 2014; 25:1171-85.

1947. Wang H, Sun HQ, Zhu X, Zhang L, Albanesi J, Levine B, Yin H.
GABARAPs regulate PI4P-dependent autophagosome:lysosome
fusion. Proc Natl Acad Sci USA 2015; 112:7015-20; http://dx.doi.
org/10.1073/pnas.1507263112.

1948. Dou Z, Chattopadhyay M, Pan JA, Guerriero JL, Jiang YP, Ballou
LM, Yue Z, Lin RZ, Zong WX. The class IA phosphatidylinositol 3-
kinase p110-b subunit is a positive regulator of autophagy. J Cell
Biol 2010; 191:827-43; http://dx.doi.org/10.1083/jcb.201006056.

1949. Lindmo K, Brech A, Finley KD, Gaumer S, Contamine D, Rusten
TE, Stenmark H. The PI 3-kinase regulator Vps15 is required for
autophagic clearance of protein aggregates. Autophagy 2008; 4:500-
6; http://dx.doi.org/10.4161/auto.5829.

1950. Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM.
Role of Rab5 in the recruitment of hVps34/p150 to the early endo-
some. Traffic 2002; 3:416-27; http://dx.doi.org/10.1034/j.1600-
0854.2002.30605.x.

1951. Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial
quality control: implications for Parkinson disease. Hum Mol Genet
2010; 19:R28-37; http://dx.doi.org/10.1093/hmg/ddq143.

1952. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May
J, Tocilescu MA, Liu W, Ko HS, et al. PINK1-dependent recruit-
ment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci
USA 2010; 107:378-83; http://dx.doi.org/10.1073/pnas.0911187107.

1953. Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK.
The Ras/cAMP-dependent protein kinase signaling pathway regu-
lates an early step of the autophagy process in Saccharomyces cere-
visiae. J Biol Chem 2004; 279:20663-71; http://dx.doi.org/10.1074/
jbc.M400272200.

1954. Shahab S, Namolovan A, Mogridge J, Kim PK, Brumell JH. Bacterial
toxins can inhibit host cell autophagy through cAMP generation.
Autophagy 2011; 7:957-65.

1955. Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ. Atg41/Icy2
regulates autophagosome formation. Autophagy 2015; 11:in press.

1956. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D,
Coxon FP, Miranda de Stegmann D, Bhogaraju S, Maddi K, et al.
PLEKHM1 regulates autophagosome-lysosome fusion through
HOPS complex and LC3/GABARAP proteins. Mol Cell 2015;
57:39-54; http://dx.doi.org/10.1016/j.molcel.2014.11.006.

1957. Broadley K, Larsen L, Herst PM, Smith RA, Berridge MV, McCon-
nell MJ. The novel phloroglucinol PMT7 kills glycolytic cancer cells
by blocking autophagy and sensitizing to nutrient stress. J Cell Bio-
chem 2011; 112:1869-79; http://dx.doi.org/10.1002/jcb.23107.

1958. Dupont N, Chauhan S, Arko-Mensah J, Castillo EF, Masedunskas
A, Weigert R, Robenek H, Proikas-Cezanne T, Deretic V. Neutral
lipid stores and lipase PNPLA5 contribute to autophagosome bio-
genesis. Curr Biol 2014; 24:609-20; http://dx.doi.org/10.1016/j.
cub.2014.02.008.

1959. Bhullar KS, Rupasinghe HP. Polyphenols: multipotent therapeutic
agents in neurodegenerative diseases. Oxid Med Cell Longev 2013;
2013:891748; http://dx.doi.org/10.1155/2013/891748.

1960. Macedo D, Tavares L, McDougall GJ, Vicente Miranda H, Stewart
D, Ferreira RB, Tenreiro S, Outeiro TF, Santos CN. (Poly)phenols
protect from alpha-synuclein toxicity by reducing oxidative stress
and promoting autophagy. Hum Mol Genet 2015; 24:1717-32;
http://dx.doi.org/10.1093/hmg/ddu585.

1961. Hasima N, Ozpolat B. Regulation of autophagy by polyphenolic
compounds as a potential therapeutic strategy for cancer. Cell Death
Dis 2014; 5:e1509; http://dx.doi.org/10.1038/cddis.2014.467.

1962. Laplante M, Sabatini DM. Regulation of mTORC1 and its impact
on gene expression at a glance. J Cell Sci 2013; 126:1713-9; http://
dx.doi.org/10.1242/jcs.125773.

1963. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso E,
Davidson MM, Michalik L, Wahli W, Vazquez-Carrera M. PPAR-
beta/delta attenuates palmitate-induced endoplasmic reticulum
stress and induces autophagic markers in human cardiac cells. Int J
Cardiol 2014; 174:110-8; http://dx.doi.org/10.1016/j.ijcard.2014.03.176.

1964. Pawson T, Nash P. Protein-protein interactions define specificity in
signal transduction. Genes Dev 2000; 14:1027-47.

1965. Phizicky EM, Fields S. Protein-protein interactions: methods for
detection and analysis. Microbiol Rev 1995; 59:94-123.

1966. Safari-Alighiarloo N, Taghizadeh M, Rezaei-Tavirani M, Goliaei B,
Peyvandi AA. Protein-protein interaction networks (PPI) and com-
plex diseases. Gastroenterol Hepatol Bed Bench 2014; 7:17-31.

1967. Le Guezennec X, Brichkina A, Huang YF, Kostromina E, Han W,
Bulavin DV. Wip1-dependent regulation of autophagy, obesity, and
atherosclerosis. Cell Metab 2012; 16:68-80; http://dx.doi.org/
10.1016/j.cmet.2012.06.003.

1968. Uddin MN, Ito S, Nishio N, Suganya T, Isobe KI. Gadd34 induces
autophagy through the suppression of the mTOR pathway during
starvation. Biochem Biophys Res Comm 2011; 407:692-8.

1969. Peti W, Nairn AC, Page R. Structural basis for protein phosphatase
1 regulation and specificity. FEBS J 2013; 280:596-611; http://dx.
doi.org/10.1111/j.1742-4658.2012.08509.x.

1970. Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti
R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al.
Lysosomal calcium signalling regulates autophagy through calci-
neurin and TFEB. Nat Cell Biol 2015; 17:288-99; http://dx.doi.org/
10.1038/ncb3114.

1971. Eisenberg-Lerner A, Kimchi A. PKD is a kinase of Vps34 that medi-
ates ROS-induced autophagy downstream of DAPk. Cell Death Dif-
fer 2012; 19:788-97; http://dx.doi.org/10.1038/cdd.2011.149.

1972. Moravcevic K, Oxley CL, Lemmon MA. Conditional peripheral
membrane proteins: facing up to limited specificity. Structure 2012;
20:15-27; http://dx.doi.org/10.1016/j.str.2011.11.012.

1973. Baskaran S, Ragusa MJ, Boura E, Hurley JH. Two-site recognition of
phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol
Cell 2012; 47:339-48; http://dx.doi.org/10.1016/j.molcel.2012.05.027.

1974. Krick R, Busse RA, Scacioc A, Stephan M, Janshoff A, Thumm M,
Kuhnel K. Structural and functional characterization of the two
phosphoinositide binding sites of PROPPINs, a beta-propeller pro-
tein family. Proc Natl Acad Sci USA 2012; 109:E2042-9; http://dx.
doi.org/10.1073/pnas.1205128109.

AUTOPHAGY 179

http://dx.doi.org/10.1091/mbc.E04-09-0842
http://dx.doi.org/10.1038/ni.1634
http://dx.doi.org/10.1038/ni.1634
http://dx.doi.org/10.4161/auto.3912
http://dx.doi.org/10.15252/embj.201489083
http://dx.doi.org/10.4161/auto.7.6.14873
http://dx.doi.org/10.1074/jbc.M507201200
http://dx.doi.org/10.1016/B978-0-12-386487-1.00009-2
http://dx.doi.org/10.1371/journal.pone.0048853
http://dx.doi.org/10.1073/pnas.1507263112
http://dx.doi.org/10.1083/jcb.201006056
http://dx.doi.org/10.4161/auto.5829
http://dx.doi.org/10.1034/j.1600-0854.2002.30605.x
http://dx.doi.org/10.1034/j.1600-0854.2002.30605.x
http://dx.doi.org/10.1093/hmg/ddq143
http://dx.doi.org/10.1073/pnas.0911187107
http://dx.doi.org/10.1074/jbc.M400272200
http://dx.doi.org/10.1074/jbc.M400272200
http://dx.doi.org/10.1016/j.molcel.2014.11.006
http://dx.doi.org/10.1002/jcb.23107
http://dx.doi.org/10.1016/j.cub.2014.02.008
http://dx.doi.org/10.1016/j.cub.2014.02.008
http://dx.doi.org/10.1155/2013/891748
http://dx.doi.org/10.1093/hmg/ddu585
http://dx.doi.org/10.1038/cddis.2014.467
http://dx.doi.org/10.1242/jcs.125773
http://dx.doi.org/10.1016/j.ijcard.2014.03.176
http://dx.doi.org/10.1016/j.cmet.2012.06.003
http://dx.doi.org/10.1111/j.1742-4658.2012.08509.x
http://dx.doi.org/10.1038/ncb3114
http://dx.doi.org/10.1038/cdd.2011.149
http://dx.doi.org/10.1016/j.str.2011.11.012
http://dx.doi.org/10.1016/j.molcel.2012.05.027
http://dx.doi.org/10.1073/pnas.1205128109


1975. Watanabe Y, Kobayashi T, Yamamoto H, Hoshida H, Akada R, Ina-
gaki F, Ohsumi Y, Noda NN. Structure-based analyses reveal dis-
tinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol
Chem 2012; 287:31681-90; http://dx.doi.org/10.1074/jbc.M112.
397570.

1976. Marshall RS, Li F, Gemperline DC, Book AJ, Vierstra RD. Autopha-
gic Degradation of the 26S Proteasome Is Mediated by the Dual
ATG8/Ubiquitin Receptor RPN10 in Arabidopsis. Mol Cell 2015;
58:1053-66; http://dx.doi.org/10.1016/j.molcel.2015.04.023.

1977. Starokadomskyy P, Dmytruk KV. A bird’s-eye view of autophagy.
Autophagy 2013; 9:1121-6; http://dx.doi.org/10.4161/auto.24544.

1978. Neely KM, Green KN, Laferla FM. Presenilin is necessary for effi-
cient proteolysis through the autophagy-lysosome system in a
{gamma}-secretase-independent manner. J Neurosci 2011; 31:2781-
91; http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010.

1979. Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. Protein posttransla-
tional modifications: the chemistry of proteome diversifications.
Angew Chem Int Ed Engl 2005; 44:7342-72; http://dx.doi.org/
10.1002/anie.200501023.

1980. Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-
translational modifications with mass spectrometry. Nat Methods
2007; 4:798-806; http://dx.doi.org/10.1038/nmeth1100.

1981. Popelka H, Klionsky DJ. Posttranslationally-modified structures in
the autophagy machinery: an integrative perspective. FEBS J 2015;
282:3474-88.

1982. Huang YH, Al-Aidaroos AQ, Yuen HF, Zhang SD, Shen HM,
Rozycka E, McCrudden CM, Tergaonkar V, Gupta A, Lin YB, et al.
A role of autophagy in PTP4A3-driven cancer progression. Auto-
phagy 2014; 10:1787-800; http://dx.doi.org/10.4161/auto.29989.

1983. Martin KR, Xu Y, Looyenga BD, Davis RJ, Wu CL, Tremblay ML,
Xu HE, MacKeigan JP. Identification of PTPsigma as an autophagic
phosphatase. J Cell Sci 2011; 124:812-9; http://dx.doi.org/10.1242/
jcs.080341.

1984. Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Din-
kins C, Silvestri G, Munch J, Kirchhoff F, Simonsen A, et al. TRIM
Proteins Regulate Autophagy and Can Target Autophagic Sub-
strates by Direct Recognition. Dev Cell 2014; 30:394-409; http://dx.
doi.org/10.1016/j.devcel.2014.06.013.

1985. Nagy G, Ward J, Mosser DD, Koncz A, Gergely P, Jr., Stancato C,
Qian Y, Fernandez D, Niland B, Grossman CE, et al. Regulation of
CD4 expression via recycling by HRES-1/RAB4 controls suscepti-
bility to HIV infection. J Biol Chem 2006; 281:34574-91; http://dx.
doi.org/10.1074/jbc.M606301200.

1986. Fernandez DR, Telarico T, Bonilla E, Li Q, Banerjee S, Middleton
FA, Phillips PE, Crow MK, Oess S, Muller-Esterl W, et al. Activa-
tion of mammalian target of rapamycin controls the loss of TCRzeta
in lupus T cells through HRES-1/Rab4-regulated lysosomal degra-
dation. J Immunol 2009; 182:2063-73; http://dx.doi.org/10.4049/
jimmunol.0803600.

1987. Caza TN, Fernandez DR, Talaber G, Oaks Z, Haas M, Madaio MP,
Lai ZW, Miklossy G, Singh RR, Chudakov DM, et al. HRES-1/
Rab4-mediated depletion of Drp1 impairs mitochondrial homeosta-
sis and represents a target for treatment in SLE. Ann Rheum Dis
2014; 73:1888-97; http://dx.doi.org/10.1136/annrheumdis-2013-
203794.

1988. Talaber G, Miklossy G, Oaks Z, Liu Y, Tooze SA, Chudakov DM,
Banki K, Perl A. HRES-1/Rab4 promotes the formation of LC3(C)
autophagosomes and the accumulation of mitochondria during
autophagy. PloS One 2014; 9:e84392; http://dx.doi.org/10.1371/
journal.pone.0084392.

1989. Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of
autophagosomes. Annu Rev Biochem 2011; 80:125-56; http://dx.
doi.org/10.1146/annurev-biochem-052709-094552.

1990. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nature
Rev Mol Cell Biol 2009; 10:513-25; http://dx.doi.org/10.1038/
nrm2728.

1991. Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen
EL. Role for Rab7 in maturation of late autophagic vacuoles. J Cell
Sci 2004; 117:4837-48; http://dx.doi.org/10.1242/jcs.01370.

1992. Pilli M, Arko-Mensah J, Ponpuak M, Roberts E, Master S, Mandell
MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, et al. TBK-1
promotes autophagy-mediated antimicrobial defense by controlling
autophagosome maturation. Immunity 2012; 37:223-34; http://dx.
doi.org/10.1016/j.immuni.2012.04.015.

1993. Longatti A, Lamb CA, Razi M, Yoshimura S, Barr FA, Tooze SA.
TBC1D14 regulates autophagosome formation via Rab11- and
ULK1-positive recycling endosomes. J Cell Biol 2012; 197:659-75;
http://dx.doi.org/10.1083/jcb.201111079.

1994. Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and auto-
phagy through controlling the degradation of amino-acid trans-
porter PAT4. EMBO Rep 2013; 14:450-7; http://dx.doi.org/10.1038/
embor.2013.32.

1995. Jean S, Cox S, Nassari S, Kiger AA. Starvation-induced MTMR13
and RAB21 activity regulates VAMP8 to promote autophagosome-
lysosome fusion. EMBO Rep 2015; 16:297-311; http://dx.doi.org/
10.15252/embr.201439464.

1996. Munafo DB, Colombo MI. Induction of autophagy causes dramatic
changes in the subcellular distribution of GFP-Rab24. Traffic 2002;
3:472-82; http://dx.doi.org/10.1034/j.1600-0854.2002.30704.x.

1997. Yl€a-Anttila P, Mikkonen E, Happonen KE, Holland P, Ueno T,
Simonsen A, Eskelinen E-L: RAB24 facilitates clearance of auto-
phagic compartments during basal conditions. Autophagy 2015,
10:1833-48 DOI: 10.1080/15548627.2015.108652210.1080/15548627.
2015.1086522

1998. Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for
the formation of autophagic vacuoles under basal conditions. Cell
Mol Life Sci 2009; 66:2913-32; http://dx.doi.org/10.1007/s00018-
009-0080-9.

1999. Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M.
Golgi-resident small GTPase Rab33B interacts with Atg16L and
modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-
25; http://dx.doi.org/10.1091/mbc.E07-12-1231.

2000. Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. OATL1, a novel
autophagosome-resident Rab33B-GAP, regulates autophagosomal
maturation. J Cell Biol 2011; 192:839-53; http://dx.doi.org/10.1083/
jcb.201008107.

2001. Chen XW, Leto D, Xiong T, Yu G, Cheng A, Decker S, Saltiel AR. A
Ral GAP complex links PI 3-kinase/Akt signaling to RalA activation
in insulin action. Mol Biol Cell 2011; 22:141-52; http://dx.doi.org/
10.1091/mbc.E10-08-0665.

2002. Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signal-
ing and oncogenesis: More than just 15minutes of fame. Biochim
Biophys Acta 2014; 1843:2976-88; http://dx.doi.org/10.1016/j.
bbamcr.2014.09.004.

2003. Martin TD, Chen XW, Kaplan RE, Saltiel AR, Walker CL, Reiner
DJ, Der CJ. Ral and Rheb GTPase activating proteins integrate
mTOR and GTPase signaling in aging, autophagy, and tumor cell
invasion. Mol Cell 2014; 53:209-20; http://dx.doi.org/10.1016/j.
molcel.2013.12.004.

2004. Geng J, Nair U, Yasumura-Yorimitsu K, Klionsky DJ. Post-Golgi
Sec proteins are required for autophagy in Saccharomyces cerevisiae.
Mol Biol Cell 2010; 21:2257-69; http://dx.doi.org/10.1091/mbc.E09-
11-0969.

2005. Shirakawa R, Fukai S, Kawato M, Higashi T, Kondo H, Ikeda T,
Nakayama E, Okawa K, Nureki O, Kimura T, et al. Tuberous sclero-
sis tumor suppressor complex-like complexes act as GTPase-acti-
vating proteins for Ral GTPases. J Biol Chem 2009; 284:21580-8;
http://dx.doi.org/10.1074/jbc.M109.012112.

2006. Oeckinghaus A, Postler TS, Rao P, Schmitt H, Schmitt V, Grinberg-
Bleyer Y, Kuhn LI, Gruber CW, Lienhard GE, Ghosh S. kappaB-Ras
proteins regulate both NF-kappaB-dependent inflammation and
Ral-dependent proliferation. Cell Rep 2014; 8:1793-807; http://dx.
doi.org/10.1016/j.celrep.2014.08.015.

2007. Punnonen EL, Reunanen H, Hirsimaki P, Lounatmaa K. Filipin
labelling and intramembrane particles on the membranes of early
and later autophagic vacuoles in Ehrlich ascites cells. Virchows
Archiv B, Cell Pathol 1988; 54:317-26; http://dx.doi.org/10.1007/
BF02899229.

180 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1074/jbc.M112.<?A3B2 re3j?>397570
http://dx.doi.org/10.1074/jbc.M112.<?A3B2 re3j?>397570
http://dx.doi.org/10.1016/j.molcel.2015.04.023
http://dx.doi.org/10.4161/auto.24544
http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010
http://dx.doi.org/10.1002/anie.200501023
http://dx.doi.org/10.1038/nmeth1100
http://dx.doi.org/10.4161/auto.29989
http://dx.doi.org/10.1242/jcs.080341
http://dx.doi.org/10.1242/jcs.080341
http://dx.doi.org/10.1016/j.devcel.2014.06.013
http://dx.doi.org/10.1074/jbc.M606301200
http://dx.doi.org/10.4049/jimmunol.0803600
http://dx.doi.org/10.4049/jimmunol.0803600
http://dx.doi.org/10.1136/annrheumdis-2013-203794
http://dx.doi.org/10.1136/annrheumdis-2013-203794
http://dx.doi.org/10.1371/journal.pone.0084392
http://dx.doi.org/10.1371/journal.pone.0084392
http://dx.doi.org/10.1146/annurev-biochem-052709-094552
http://dx.doi.org/10.1038/nrm2728
http://dx.doi.org/10.1038/nrm2728
http://dx.doi.org/10.1242/jcs.01370
http://dx.doi.org/10.1016/j.immuni.2012.04.015
http://dx.doi.org/10.1083/jcb.201111079
http://dx.doi.org/10.1038/embor.2013.32
http://dx.doi.org/10.1038/embor.2013.32
http://dx.doi.org/10.15252/embr.201439464
http://dx.doi.org/10.1034/j.1600-0854.2002.30704.x
http://dx.doi.org/10.1007/s00018-009-0080-9
http://dx.doi.org/10.1007/s00018-009-0080-9
http://dx.doi.org/10.1091/mbc.E07-12-1231
http://dx.doi.org/10.1083/jcb.201008107
http://dx.doi.org/10.1083/jcb.201008107
http://dx.doi.org/10.1091/mbc.E10-08-0665
http://dx.doi.org/10.1016/j.bbamcr.2014.09.004
http://dx.doi.org/10.1016/j.bbamcr.2014.09.004
http://dx.doi.org/10.1016/j.molcel.2013.12.004
http://dx.doi.org/10.1016/j.molcel.2013.12.004
http://dx.doi.org/10.1091/mbc.E09-11-0969
http://dx.doi.org/10.1091/mbc.E09-11-0969
http://dx.doi.org/10.1074/jbc.M109.012112
http://dx.doi.org/10.1016/j.celrep.2014.08.015
http://dx.doi.org/10.1007/BF02899229
http://dx.doi.org/10.1007/BF02899229


2008. Opipari AJ, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR.
Resveratrol-induced autophagocytosis in ovarian cancer cells. Can-
cer Res 2004; 15:696-703; http://dx.doi.org/10.1158/0008-5472.
CAN-03-2404.

2009. Ogier-Denis E, Petiot A, Bauvy C, Codogno P. Control of the
expression and activity of the Galpha-interacting protein (GAIP) in
human intestinal cells. J Biol Chem 1997; 272:24599-603; http://dx.
doi.org/10.1074/jbc.272.39.24599.

2010. Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A
and Sch9 cooperatively regulate induction of autophagy in Saccha-
romyces cerevisiae. Mol Biol Cell 2007; 18:4180-9; http://dx.doi.
org/10.1091/mbc.E07-05-0485.

2011. Yonekawa T, Gamez G, Kim J, Tan AC, Thorburn J, Gump J, Thor-
burn A, Morgan MJ. RIP1 negatively regulates basal autophagic
flux through TFEB to control sensitivity to apoptosis. EMBO Rep
2015; 16:700-8; http://dx.doi.org/10.15252/embr.201439496.

2012. Hillwig MS, Contento AL, Meyer A, Ebany D, Bassham DC, Macin-
tosh GC. RNS2, a conserved member of the RNase T2 family, is
necessary for ribosomal RNA decay in plants. Proc Natl Acad Sci
USA 2011; 108:1093-8; http://dx.doi.org/10.1073/pnas.1009809108.

2013. Haud N, Kara F, Diekmann S, Henneke M, Willer JR, Hillwig MS,
Gregg RG, Macintosh GC, Gartner J, Alia A, et al. rnaset2 mutant
zebrafish model familial cystic leukoencephalopathy and reveal a
role for RNase T2 in degrading ribosomal RNA. Proc Natl Acad Sci
USA 2011; 108:1099-103; http://dx.doi.org/10.1073/pnas.1009811107.

2014. Xu C, Feng K, Zhao X, Huang S, Cheng Y, Qian L, Wang Y, Sun H,
Jin M, Chuang TH, et al. Regulation of autophagy by E3 ubiquitin
ligase RNF216 through BECN1 ubiquitination. Autophagy 2014;
10:2239-50..

2015. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X. ULK1.
ATG13.FIP200 complex mediates mTOR signaling and is essential
for autophagy. J Biol Chem 2009; 284:12297-305; http://dx.doi.org/
10.1074/jbc.M900573200.

2016. Dunlop EA, Hunt DK, Acosta-Jaquez HA, Fingar DC, Tee AR.
ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phos-
phorylation and hinders substrate binding. Autophagy 2011; 7:737-
47; http://dx.doi.org/10.4161/auto.7.7.15491.

2017. Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan K-L. Regulation
of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol
2008; 10:935-45; http://dx.doi.org/10.1038/ncb1753.

2018. White E. Exploiting the bad eating habits of Ras-driven cancers.
Genes Dev 2013; 27:2065-71; http://dx.doi.org/10.1101/
gad.228122.113.

2019. Shao Y, Gao Z, Marks PA, Jiang X. Apoptotic and autophagic
cell death induced by histone deacetylase inhibitors. Proc Natl
Acad Sci USA 2004; 101:18030-5; http://dx.doi.org/10.1073/
pnas.0408345102.

2020. Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayo-
tova-Dimitrova D, Schoening J, Bourquin JP, Schweitzer N, Lever-
kus M, Welte K, et al. Histone deacetylase inhibitors induce
apoptosis in myeloid leukemia by suppressing autophagy. Leukemia
2014; 28:577-88; http://dx.doi.org/10.1038/leu.2013.264.

2021. Dokudovskaya S, Waharte F, Schlessinger A, Pieper U, Devos DP,
Cristea IM, Williams R, Salamero J, Chait BT, Sali A, et al. A con-
served coatomer-related complex containing Sec13 and Seh1
dynamically associates with the vacuole in Saccharomyces cerevi-
siae. Mol Cell Proteomics 2011; 10:M110 006478.

2022. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W-L,
Griffith J, Nag S, Wang K, Moss T, et al. SNARE proteins are
required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.
org/10.1016/j.cell.2011.06.022.

2023. Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL,
Griffith J, Nag S, Wang K, Moss T, et al. SNARE proteins are
required for macroautophagy. Cell 2011; 146:290-302; http://dx.doi.
org/10.1016/j.cell.2011.06.022.

2024. Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A,
Yoshimori T, Noda T, Ohsumi Y. Autophagosome requires specific
early Sec proteins for its formation and NSF/SNARE for vacuolar
fusion. Mol Biol Cell 2001; 12:3690-702; http://dx.doi.org/10.1091/
mbc.12.11.3690.

2025. Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degrada-
tive autophagy: unconventional secretion of inflammatory media-
tors. J Innate Immun 2013; 5:471-9; http://dx.doi.org/10.1159/
000346707.

2026. Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M,
Gouin E, Demangel C, Brosch R, Zimmer C, et al. Entrapment of
intracytosolic bacteria by septin cage-like structures. Cell Host
Microbe 2010; 8:433-44; http://dx.doi.org/10.1016/j.chom.2010.10.009.

2027. Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maur-
ice N, Mukherjee A, Goldbach C, Watkins S, et al. An autophagy-
enhancing drug promotes degradation of mutant alpha1-antitrypsin
Z and reduces hepatic fibrosis. Science 2010; 329:229-32; http://dx.
doi.org/10.1126/science.1190354.

2028. Lee JH, Budanov AV, Karin M. Sestrins orchestrate cellular metabo-
lism to attenuate aging. Cell Metab 2013; 18:792-801; http://dx.doi.
org/10.1016/j.cmet.2013.08.018.

2029. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang
D, Rhee SG. Sestrins activate Nrf2 by promoting p62-dependent
autophagic degradation of Keap1 and prevent oxidative liver dam-
age. Cell Metab 2013; 17:73-84; http://dx.doi.org/10.1016/j.
cmet.2012.12.002.

2030. Budanov AV, Karin M. p53 target genes sestrin1 and sestrin2 con-
nect genotoxic stress and mTOR signaling. Cell 2008; 134:451-60;
http://dx.doi.org/10.1016/j.cell.2008.06.028.

2031. Park HW, Park H, Ro SH, Jang I, Semple IA, Kim DN, Kim M,
Nam M, Zhang D, Yin L, et al. Hepatoprotective role of Sestrin2
against chronic ER stress. Nat Commun 2014; 5:4233.

2032. Ben-Sahra I, Dirat B, Laurent K, Puissant A, Auberger P, Budanov
A, Tanti JF, Bost F. Sestrin2 integrates Akt and mTOR signaling to
protect cells against energetic stress-induced death. Cell Death Dif-
fer 2013; 20:611-9; http://dx.doi.org/10.1038/cdd.2012.157.

2033. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato
Y, Liang C, Jung JU, Cheng JQ, Mule JJ, et al. Bif-1 interacts with
Beclin 1 through UVRAG and regulates autophagy and tumorigen-
esis. Nat Cell Biol 2007; 9:1142-51; http://dx.doi.org/10.1038/
ncb1634.

2034. Wong AS, Lee RH, Cheung AY, Yeung PK, Chung SK, Cheung ZH,
Ip NY. Cdk5-mediated phosphorylation of endophilin B1 is
required for induced autophagy in models of Parkinson’s disease.
Nat Cell Biol 2011; 13:568-79; http://dx.doi.org/10.1038/ncb2217.

2035. Zhang C, Li A, Zhang X, Xiao H. A novel TIP30 protein complex
regulates EGF receptor signaling and endocytic degradation. J Biol
Chem 2011; 286:9373-81; http://dx.doi.org/10.1074/jbc.M110.207720.

2036. Khan MM, Strack S, Wild F, Hanashima A, Gasch A, Brohm K,
Reischl M, Carnio S, Labeit D, Sandri M, et al. Role of autophagy,
SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic ace-
tylcholine receptors. Autophagy 2014; 10:123-36; http://dx.doi.org/
10.4161/auto.26841.

2037. Belaid A, Ndiaye PD, Klionsky DJ, Hofman P, Mograbi B. Signal-
phagy: Scheduled signal termination by macroautophagy. Auto-
phagy 2013; 9:1629-30.

2038. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tso-
kos M, Alt FW, Finkel T. A role for the NAD-dependent deacetylase
Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008;
105:3374-9; http://dx.doi.org/10.1073/pnas.0712145105.

2039. Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of auto-
phagy and mitophagy by nutrient availability and acetylation. Bio-
chim Biophys Acta 2014; 1841:525-34; http://dx.doi.org/10.1016/j.
bbalip.2014.02.001.

2040. Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie
J, et al. SIRT3-SOD2-mROS-dependent autophagy in cadmium-
induced hepatotoxicity and salvage by melatonin. Autophagy 2015;
11:1037-51; http://dx.doi.org/10.1080/15548627.2015.1052208.

2041. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S,
Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al. SIRT5 reg-
ulation of ammonia-induced autophagy and mitophagy. Autophagy
2015; 11:253-70; http://dx.doi.org/10.1080/15548627.2015.1009778.

2042. Takasaka N, Araya J, Hara H, Ito S, Kobayashi K, Kurita Y, Wakui
H, Yoshii Y, Yumino Y, Fujii S, et al. Autophagy induction by
SIRT6 through attenuation of insulin-like growth factor signaling is

AUTOPHAGY 181

http://dx.doi.org/10.1158/0008-5472.CAN-03-2404
http://dx.doi.org/10.1158/0008-5472.CAN-03-2404
http://dx.doi.org/10.1074/jbc.272.39.24599
http://dx.doi.org/10.1091/mbc.E07-05-0485
http://dx.doi.org/10.15252/embr.201439496
http://dx.doi.org/10.1073/pnas.1009809108
http://dx.doi.org/10.1073/pnas.1009811107
http://dx.doi.org/10.1074/jbc.M900573200
http://dx.doi.org/10.4161/auto.7.7.15491
http://dx.doi.org/10.1038/ncb1753
http://dx.doi.org/10.1101/gad.228122.113
http://dx.doi.org/10.1101/gad.228122.113
http://dx.doi.org/10.1073/pnas.0408345102
http://dx.doi.org/10.1073/pnas.0408345102
http://dx.doi.org/10.1038/leu.2013.264
http://dx.doi.org/10.1016/j.cell.2011.06.022
http://dx.doi.org/10.1016/j.cell.2011.06.022
http://dx.doi.org/10.1091/mbc.12.11.3690
http://dx.doi.org/10.1091/mbc.12.11.3690
http://dx.doi.org/10.1159/000346707
http://dx.doi.org/10.1159/000346707
http://dx.doi.org/10.1016/j.chom.2010.10.009
http://dx.doi.org/10.1126/science.1190354
http://dx.doi.org/10.1016/j.cmet.2013.08.018
http://dx.doi.org/10.1016/j.cmet.2012.12.002
http://dx.doi.org/10.1016/j.cmet.2012.12.002
http://dx.doi.org/10.1016/j.cell.2008.06.028
http://dx.doi.org/10.1038/cdd.2012.157
http://dx.doi.org/10.1038/ncb1634
http://dx.doi.org/10.1038/ncb1634
http://dx.doi.org/10.1038/ncb2217
http://dx.doi.org/10.1074/jbc.M110.207720
http://dx.doi.org/10.4161/auto.26841
http://dx.doi.org/10.1073/pnas.0712145105
http://dx.doi.org/10.1016/j.bbalip.2014.02.001
http://dx.doi.org/10.1016/j.bbalip.2014.02.001
http://dx.doi.org/10.1080/15548627.2015.1052208
http://dx.doi.org/10.1080/15548627.2015.1009778


involved in the regulation of human bronchial epithelial cell senes-
cence. J Immunol 2014; 192:958-68; http://dx.doi.org/10.4049/
jimmunol.1302341.

2043. Araki S, Izumiya Y, Rokutanda T, Ianni A, Hanatani S, Kimura Y,
Onoue Y, Senokuchi T, Yoshizawa T, Yasuda O, et al. Sirt7 Contrib-
utes to Myocardial Tissue Repair by Maintaining TGF-beta Signal-
ing Pathway. Circulation 2015.

2044. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins
DE, Brumell JH. Listeriolysin O allows Listeria monocytogenes repli-
cation in macrophage vacuoles. Nature 2008; 451:350-4; http://dx.
doi.org/10.1038/nature06479.

2045. Bhardwaj V, Kanagawa O, Swanson PE, Unanue ER. Chronic Liste-
ria infection in SCID mice: requirements for the carrier state and
the dual role of T cells in transferring protection or suppression. J
Immunol 1998; 160:376-84.

2046. Liu H, Ma Y, He HW, Wang JP, Jiang JD, Shao RG. SLC9A3R1
stimulates autophagy via BECN1 stabilization in breast cancer cells.
Autophagy 2015:0.

2047. Catalina-Rodriguez O, Kolukula VK, Tomita Y, Preet A, Palmieri F,
Wellstein A, Byers S, Giaccia AJ, Glasgow E, Albanese C, et al. The
mitochondrial citrate transporter, CIC, is essential for mitochon-
drial homeostasis. Oncotarget 2012; 3:1220-35; http://dx.doi.org/
10.18632/oncotarget.714.

2048. Jung J, Genau HM, Behrends C. Amino Acid-Dependent mTORC1
Regulation by the Lysosomal Membrane Protein SLC38A9. Mol
Cell Biol 2015; 35:2479-94; http://dx.doi.org/10.1128/MCB.00125-
15.

2049. Rebsamen M, Pochini L, Stasyk T, de Araujo ME, Galluccio M,
Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner
M, et al. SLC38A9 is a component of the lysosomal amino acid
sensing machinery that controls mTORC1. Nature 2015; 519:477-
81; http://dx.doi.org/10.1038/nature14107.

2050. Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME,
Yuan ED, Jones TD, Chantranupong L, Comb W, et al. Metabolism.
Lysosomal amino acid transporter SLC38A9 signals arginine suffi-
ciency to mTORC1. Science 2015; 347:188-94; http://dx.doi.org/
10.1126/science.1257132.

2051. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation
and immunity. Nat Rev Immunol 2013; 13:722-37; http://dx.doi.
org/10.1038/nri3532.

2052. Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kim-
chi A. A short mitochondrial form of p19ARF induces autophagy
and caspase-independent cell death. Mol Cell 2006; 22:463-75;
http://dx.doi.org/10.1016/j.molcel.2006.04.014.

2053. Morelli E, Ginefra P, Mastrodonato V, Beznoussenko GV, Rusten
TE, Bilder D, Stenmark H, Mironov AA, Vaccari T. Multiple func-
tions of the SNARE protein Snap29 in autophagy, endocytic, and
exocytic trafficking during epithelial formation in Drosophila.
Autophagy 2014; 10:2251-68; http://dx.doi.org/10.4161/15548627.
2014.981913.

2054. Batelli S, Peverelli E, Rodilossi S, Forloni G, Albani D. Macroauto-
phagy and the proteasome are differently involved in the degrada-
tion of alpha-synuclein wild type and mutated A30P in an in vitro
inducible model (PC12/TetOn). Neuroscience 2011; 195:128-37;
http://dx.doi.org/10.1016/j.neuroscience.2011.08.030.

2055. Song JX, Lu JH, Liu LF, Chen LL, Durairajan SS, Yue Z, Zhang HQ,
Li M. HMGB1 is involved in autophagy inhibition caused by
SNCA/alpha-synuclein overexpression: a process modulated by the
natural autophagy inducer corynoxine B. Autophagy 2014; 10:144-
54; http://dx.doi.org/10.4161/auto.26751.

2056. Knaevelsrud H, Soreng K, Raiborg C, Haberg K, Rasmuson F, Brech
A, Liestol K, Rusten TE, Stenmark H, Neufeld TP, et al. Membrane
remodeling by the PX-BAR protein SNX18 promotes autophago-
some formation. J Cell Biol 2013; 202:331-49; http://dx.doi.org/
10.1083/jcb.201205129.

2057. Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN,
Davies MR, Schulz BL, Nizet V, Teasdale RD, et al. The globally dis-
seminated M1T1 clone of group A Streptococcus evades autophagy
for intracellular replication. Cell Host Microbe 2013; 14:675-82;
http://dx.doi.org/10.1016/j.chom.2013.11.003.

2058. Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, Cai Y, Norberg HV,
Zhang T, Furuya T, et al. Beclin1 controls the levels of p53 by regu-
lating the deubiquitination activity of USP10 and USP13. Cell 2011;
147:223-34; http://dx.doi.org/10.1016/j.cell.2011.08.037.

2059. Pietrocola F, Lachkar S, Enot DP, Niso-Santano M, Bravo-San
Pedro JM, Sica V, Izzo V, Maiuri MC, Madeo F, Marino G, et al.
Spermidine induces autophagy by inhibiting the acetyltransferase
EP300. Cell Death Differ 2015; 22:509-16.

2060. Ghidoni R, Houri JJ, Giuliani A, Ogier-Denis E, Parolari E,
Botti S, Bauvy C, Codogno P. The metabolism of sphingo
(glyco)lipids is correlated with the differentiation-dependent
autophagic pathway in HT-29 cells. Eur J Biochem 1996;
237:454-9; http://dx.doi.org/10.1111/j.1432-1033.1996.0454k.x.

2061. Lavieu G, Scarlatti F, Sala G, Levade T, Ghidoni R, Botti J, Codogno
P. Is autophagy the key mechanism by which the sphingolipid rheo-
stat controls the cell fate decision? Autophagy 2007; 3:45-7; http://
dx.doi.org/10.4161/auto.3416.

2062. Rong Y, McPhee C, Deng S, Huang L, Chen L, Liu M, Tracy K,
Baehreck EH, Yu L, Lenardo MJ. Spinster is required for autophagic
lysosome reformation and mTOR reactivation following starvation.
Proc Natl Acad Sci USA 2011; 108:7826-31; http://dx.doi.org/
10.1073/pnas.1013800108.

2063. Chen Q, Yue F, Li W, Zou J, Xu T, Huang C, Zhang Y, Song K,
Huang G, Xu G, et al. Potassium Bisperoxo (1,10-phenanthroline)
Oxovanadate (bpV(phen)) Induces Apoptosis and Pyroptosis and
Disrupts the P62-HDAC6 Interaction to Suppress the Acetylated
Microtubule-dependent Degradation of Autophagosomes. J Biol
Chem 2015; 290:26051-8.

2064. Tambe Y, Yamamoto A, Isono T, Chano T, Fukuda M, Inoue H.
The drs tumor suppressor is involved in the maturation process of
autophagy induced by low serum. Cancer Lett 2009; 283:74-83;
http://dx.doi.org/10.1016/j.canlet.2009.03.028.

2065. Mesquita FS, Thomas M, Sachse M, Santos AJ, Figueira R, Holden
DW. The Salmonella deubiquitinase SseL inhibits selective auto-
phagy of cytosolic aggregates. PLoS Pathog 2012; 8:e1002743;
http://dx.doi.org/10.1371/journal.ppat.1002743.

2066. Shen S, Niso-Santano M, Adjemian S, Takehara T, Malik SA, Minoux
H, Souquere S, Marino G, Lachkar S, Senovilla L, et al. Cytoplasmic
STAT3 represses autophagy by inhibiting PKR activity. Mol Cell
2012; 48:667-80; http://dx.doi.org/10.1016/j.molcel.2012.09.013.

2067. Wang CW. Stationary phase lipophagy as a cellular mechanism to
recycle sterols during quiescence. Autophagy 2014; 10:2075-6;
http://dx.doi.org/10.4161/auto.36137.

2068. Wang CW, Miao YH, Chang YS. A sterol-enriched vacuolar micro-
domain mediates stationary phase lipophagy in budding yeast. J Cell
Biol 2014; 206:357-66; http://dx.doi.org/10.1083/jcb.201404115.

2069. Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J,
Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, et al. Phosphoryla-
tion of LC3 by the Hippo kinases STK3/STK4 is essential for auto-
phagy. Mol Cell 2015; 57:55-68; http://dx.doi.org/10.1016/j.
molcel.2014.11.019.

2070. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, Sciarretta S, Del Re
DP, Zablocki DK, Hsu CP, et al. Mst1 inhibits autophagy by pro-
moting the interaction between Beclin1 and Bcl-2. Nat Med 2013;
19:1478-88; http://dx.doi.org/10.1038/nm.3322.

2071. Renna M, Schaffner C, Winslow AR, Menzies FM, Peden AA, Floto
RA, Rubinsztein DC. Autophagic substrate clearance requires activ-
ity of the syntaxin-5 SNARE complex. J Cell Sci 2011; 124:469-82;
http://dx.doi.org/10.1242/jcs.076489.

2072. Lu Y, Zhang Z, Sun D, Sweeney ST, Gao FB. Syntaxin 13, a genetic
modifier of mutant CHMP2B in frontotemporal dementia, is
required for autophagosome maturation. Mol Cell 2013; 52:264-71;
http://dx.doi.org/10.1016/j.molcel.2013.08.041.

2073. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita
N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, et al. Autophago-
somes form at ER-mitochondria contact sites. Nature 2013;
495:389-93; http://dx.doi.org/10.1038/nature11910.

2074. Webber JL, Tooze SA. Coordinated regulation of autophagy by p38
{alpha} MAPK through mAtg9 and p38IP. EMBO J 2010; 29:27-40;
http://dx.doi.org/10.1038/emboj.2009.321.

182 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.4049/jimmunol.1302341
http://dx.doi.org/10.4049/jimmunol.1302341
http://dx.doi.org/10.1038/nature06479
http://dx.doi.org/10.18632/oncotarget.714
http://dx.doi.org/10.1128/MCB.00125-15
http://dx.doi.org/10.1128/MCB.00125-15
http://dx.doi.org/10.1038/nature14107
http://dx.doi.org/10.1126/science.1257132
http://dx.doi.org/10.1038/nri3532
http://dx.doi.org/10.1016/j.molcel.2006.04.014
http://dx.doi.org/10.4161/15548627.<?A3B2 re3j?>2014.981913
http://dx.doi.org/10.4161/15548627.<?A3B2 re3j?>2014.981913
http://dx.doi.org/10.1016/j.neuroscience.2011.08.030
http://dx.doi.org/10.4161/auto.26751
http://dx.doi.org/10.1083/jcb.201205129
http://dx.doi.org/10.1016/j.chom.2013.11.003
http://dx.doi.org/10.1016/j.cell.2011.08.037
http://dx.doi.org/10.1111/j.1432-1033.1996.0454k.x
http://dx.doi.org/10.4161/auto.3416
http://dx.doi.org/10.1073/pnas.1013800108
http://dx.doi.org/10.1016/j.canlet.2009.03.028
http://dx.doi.org/10.1371/journal.ppat.1002743
http://dx.doi.org/10.1016/j.molcel.2012.09.013
http://dx.doi.org/10.4161/auto.36137
http://dx.doi.org/10.1083/jcb.201404115
http://dx.doi.org/10.1016/j.molcel.2014.11.019
http://dx.doi.org/10.1016/j.molcel.2014.11.019
http://dx.doi.org/10.1038/nm.3322
http://dx.doi.org/10.1242/jcs.076489
http://dx.doi.org/10.1016/j.molcel.2013.08.041
http://dx.doi.org/10.1038/nature11910
http://dx.doi.org/10.1038/emboj.2009.321


2075. Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Comi-
netti D, Folini M, Perego P, Castiglioni V, Scanziani E, et al. Syner-
gistic cooperation between sunitinib and cisplatin promotes
apoptotic cell death in human medullary thyroid cancer. J Clin
Endocrinol Metab 2014; 99:498-509; http://dx.doi.org/10.1210/
jc.2013-2574.

2076. Jackson DJ, Worheide G. Symbiophagy and biomineralization in
the “living fossil” Astrosclera willeyana. Autophagy 2014; 10:408-
15; http://dx.doi.org/10.4161/auto.27319.

2077. Criollo A, Niso-Santano M, Malik SA, Michaud M, Morselli E, Mar-
ino G, Lachkar S, Arkhipenko AV, Harper F, Pierron G, et al. Inhi-
bition of autophagy by TAB2 and TAB3. EMBO J 2011; 30:4908-20;
http://dx.doi.org/10.1038/emboj.2011.413.

2078. Takaesu G, Kobayashi T, Yoshimura A. TGFbeta-activated kinase 1
(TAK1)-binding proteins (TAB) 2 and 3 negatively regulate auto-
phagy. J Biochem 2012; 151:157-66; http://dx.doi.org/10.1093/jb/
mvr123.

2079. Nagahara Y, Takeyoshi M, Sakemoto S, Shiina I, Nakata K, Fuji-
mori K, Wang Y, Umeda E, Watanabe C, Uetake S, et al. Novel
tamoxifen derivative Ridaifen-B induces Bcl-2 independent auto-
phagy without estrogen receptor involvement. Biochem Biophys
Res Comm 2013; 435:657-63; http://dx.doi.org/10.1016/j.
bbrc.2013.05.040.

2080. Bose JK, Huang CC, Shen CK. Regulation of autophagy by neuro-
pathological protein TDP-43. J Biol Chem 2011; 286:44441-8;
http://dx.doi.org/10.1074/jbc.M111.237115.

2081. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T,
Yoshida S, Hong S, Berry LS, Reichelt S, Ferreira M, et al. Spatial
coupling of mTOR and autophagy augments secretory phenotypes.
Science 2011; 332:966-70; http://dx.doi.org/10.1126/science.
1205407.

2082. Newman AC, Scholefield CL, Kemp AJ, Newman M, McIver EG,
Kamal A, Wilkinson S. TBK1 kinase addiction in lung cancer cells
is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical
NF-kappaB signalling. PloS One 2012; 7:e50672; http://dx.doi.org/
10.1371/journal.pone.0050672.

2083. Dibble CC, Elis W, Menon S, Qin W, Klekota J, Asara JM, Finan PM,
Kwiatkowski DJ, Murphy LO, Manning BD. TBC1D7 is a third sub-
unit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell
2012; 47:535-46; http://dx.doi.org/10.1016/j.molcel.2012.06.009.

2084. Alfaiz AA, Micale L, Mandriani B, Augello B, Pellico MT, Chrast J,
Xenarios I, Zelante L, Merla G, Reymond A. TBC1D7 mutations
are associated with intellectual disability, macrocrania, patellar dis-
location, and celiac disease. Hum Mutat 2014; 35:447-51; http://dx.
doi.org/10.1002/humu.22529.

2085. Capo-Chichi JM, Tcherkezian J, Hamdan FF, Decarie JC, Dobrze-
niecka S, Patry L, Nadon MA, Mucha BE, Major P, Shevell M, et al.
Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein com-
plex, in intellectual disability and megalencephaly. J Med Genet
2013; 50:740-4; http://dx.doi.org/10.1136/jmedgenet-2013-101680.

2086. Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling
complex containing TRAF2, TANK and TBK1, a novel IKK-related
kinase. EMBO J 1999; 18:6694-704; http://dx.doi.org/10.1093/
emboj/18.23.6694.

2087. Neill T, Torres A, Buraschi S, Owens RT, Hoek JB, Baffa R, Iozzo
RV. Decorin induces mitophagy in breast carcinoma cells via perox-
isome proliferator-activated receptor gamma coactivator-1alpha
(PGC-1alpha) and mitostatin. J Biol Chem 2014; 289:4952-68;
http://dx.doi.org/10.1074/jbc.M113.512566.

2088. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M,
Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, et al. A tecpr1-
dependent selective autophagy pathway targets bacterial pathogens.
Cell Host Microbe 2011; 9:376-89; http://dx.doi.org/10.1016/j.
chom.2011.04.010.

2089. Li L, Khatibi NH, Hu Q, Yan J, Chen C, Han J, Ma D, Chen Y, Zhou
C. Transmembrane protein 166 regulates autophagic and apoptotic
activities following focal cerebral ischemic injury in rats. Exp
Neurol 2012; 234:181-90; http://dx.doi.org/10.1016/j.expneurol.
2011.12.038.

2090. Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K,
Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, et al. Muta-
tion in TECPR2 reveals a role for autophagy in hereditary spastic
paraparesis. Am J Hum Genet 2012; 91:1065-72; http://dx.doi.org/
10.1016/j.ajhg.2012.09.015.

2091. Oz-Levi D, Gelman A, Elazar Z, Lancet D. TECPR2: a new auto-
phagy link for neurodegeneration. Autophagy 2013; 9:801-2; http://
dx.doi.org/10.4161/auto.23961.

2092. D’Eletto M, Farrace MG, Falasca L, Reali V, Oliverio S, Melino G,
Griffin M, Fimia GM, Piacentini M. Transglutaminase 2 is involved
in autophagosome maturation. Autophagy 2009; 5:1145-54; http://
dx.doi.org/10.4161/auto.5.8.10040.

2093. Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente
M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, et al. Canna-
binoid action induces autophagy-mediated cell death through stim-
ulation of ER stress in human glioma cells. J Clin Invest 2009;
119:1359-72; http://dx.doi.org/10.1172/JCI37948.

2094. Salazar M, Lorente M, Garcia-Taboada E, Hernandez-Tiedra S,
Davila D, Francis SE, Guzman M, Kiss-Toth E, Velasco G.
The pseudokinase tribbles homologue-3 plays a crucial role in
cannabinoid anticancer action. Biochim Biophys Acta 2013;
1831:1573-8; http://dx.doi.org/10.1016/j.bbalip.2013.03.014.

2095. Velasco G, Sanchez C, Guzman M. Towards the use of cannabi-
noids as antitumour agents. Nat Rev Cancer 2012; 12:436-44;
http://dx.doi.org/10.1038/nrc3247.

2096. Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular
ROS levels by TIGAR controls autophagy. EMBO J 2009; 28:3015-
26; http://dx.doi.org/10.1038/emboj.2009.242.

2097. Lok CN, Sy LK, Liu F, Che CM. Activation of autophagy of
aggregation-prone ubiquitinated proteins by timosaponin A-III. J
Biol Chem 2011; 286:31684-96; http://dx.doi.org/10.1074/jbc.
M110.202531.

2098. He P, Peng Z, Luo Y, Wang L, Yu P, Deng W, An Y, Shi T, Ma D.
High-throughput functional screening for autophagy-related
genes and identification of TM9SF1 as an autophagosome-
inducing gene. Autophagy 2009; 5:52-60; http://dx.doi.org/10.4161/
auto.5.1.7247.

2099. Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C,
Pimentel-Muinos FX. TMEM59 defines a novel ATG16L1-binding
motif that promotes local activation of LC3. EMBO J 2013; 32:566-
82; http://dx.doi.org/10.1038/emboj.2013.8.

2100. Shi CS, Kehrl JH. Traf6 and A20 differentially regulate TLR4-
induced autophagy by affecting the ubiquitination of Beclin 1.
Autophagy 2010; 6:986-7; http://dx.doi.org/10.4161/auto.6.7.13288.

2101. Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y,
Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, et al.
TNFAIP3 promotes survival of CD4 T cells by restricting MTOR
and promoting autophagy. Autophagy 2015; 11:1052-62; http://dx.
doi.org/10.1080/15548627.2015.1055439.

2102. Jacinto E. What controls TOR? IUBMB Life 2008; 60:483-96; http://
dx.doi.org/10.1002/iub.56.

2103. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl
WM, Gray NS, Sabatini DM. DEPTOR is an mTOR inhibitor fre-
quently overexpressed in multiple myeloma cells and required for
their survival. Cell 2009; 137:873-86; http://dx.doi.org/10.1016/j.
cell.2009.03.046.

2104. Pearce LR, Huang X, Boudeau J, Pawlowski R, Wullschleger S, Deak
M, Ibrahim AF, Gourlay R, Magnuson MA, Alessi DR. Identifica-
tion of Protor as a novel Rictor-binding component of mTOR com-
plex-2. Biochem J 2007; 405:513-22; http://dx.doi.org/10.1042/
BJ20070540.

2105. Vlahakis A, Graef M, Nunnari J, Powers T. TOR complex 2-Ypk1
signaling is an essential positive regulator of the general amino acid
control response and autophagy. Proc Natl Acad Sci USA 2014;
111:10586-91; http://dx.doi.org/10.1073/pnas.1406305111.

2106. Renna M, Bento CF, Fleming A, Menzies FM, Siddiqi FH, Raviku-
mar B, Puri C, Garcia-Arencibia M, Sadiq O, Corrochano S, et al.
IGF-1 receptor antagonism inhibits autophagy. Hum Mol Genet
2013; 22:4528-44; http://dx.doi.org/10.1093/hmg/ddt300.

AUTOPHAGY 183

http://dx.doi.org/10.1210/jc.2013-2574
http://dx.doi.org/10.1210/jc.2013-2574
http://dx.doi.org/10.4161/auto.27319
http://dx.doi.org/10.1038/emboj.2011.413
http://dx.doi.org/10.1093/jb/mvr123
http://dx.doi.org/10.1093/jb/mvr123
http://dx.doi.org/10.1016/j.bbrc.2013.05.040
http://dx.doi.org/10.1016/j.bbrc.2013.05.040
http://dx.doi.org/10.1074/jbc.M111.237115
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>1205407
http://dx.doi.org/10.1126/science.<?A3B2 re3j?>1205407
http://dx.doi.org/10.1371/journal.pone.0050672
http://dx.doi.org/10.1016/j.molcel.2012.06.009
http://dx.doi.org/10.1002/humu.22529
http://dx.doi.org/10.1136/jmedgenet-2013-101680
http://dx.doi.org/10.1093/emboj/18.23.6694
http://dx.doi.org/10.1093/emboj/18.23.6694
http://dx.doi.org/10.1074/jbc.M113.512566
http://dx.doi.org/10.1016/j.chom.2011.04.010
http://dx.doi.org/10.1016/j.chom.2011.04.010
http://dx.doi.org/10.1016/j.expneurol.<?A3B2 re3j?>2011.12.038
http://dx.doi.org/10.1016/j.expneurol.<?A3B2 re3j?>2011.12.038
http://dx.doi.org/10.1016/j.ajhg.2012.09.015
http://dx.doi.org/10.4161/auto.23961
http://dx.doi.org/10.4161/auto.5.8.10040
http://dx.doi.org/10.1172/JCI37948
http://dx.doi.org/10.1016/j.bbalip.2013.03.014
http://dx.doi.org/10.1038/nrc3247
http://dx.doi.org/10.1038/emboj.2009.242
http://dx.doi.org/10.1074/jbc.M110.202531
http://dx.doi.org/10.1074/jbc.M110.202531
http://dx.doi.org/10.4161/auto.5.1.7247
http://dx.doi.org/10.4161/auto.5.1.7247
http://dx.doi.org/10.1038/emboj.2013.8
http://dx.doi.org/10.4161/auto.6.7.13288
http://dx.doi.org/10.1080/15548627.2015.1055439
http://dx.doi.org/10.1002/iub.56
http://dx.doi.org/10.1016/j.cell.2009.03.046
http://dx.doi.org/10.1016/j.cell.2009.03.046
http://dx.doi.org/10.1042/BJ20070540
http://dx.doi.org/10.1042/BJ20070540
http://dx.doi.org/10.1073/pnas.1406305111
http://dx.doi.org/10.1093/hmg/ddt300


2107. Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM. Lyso-
somal mTORC2/PHLPP1/Akt Regulate Chaperone-Mediated
Autophagy. Mol Cell 2015; 59:270-84; http://dx.doi.org/10.1016/j.
molcel.2015.05.030.

2108. N’Guessan P, Pouyet L, Gosset G, Hamlaoui S, Seillier M, Cano CE,
Seux M, Stocker P, Culcasi M, Iovanna JL, et al. Absence of Tumor
Suppressor Tumor Protein 53-Induced Nuclear Protein 1
(TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibro-
blasts to Redox-Driven Apoptosis. Antioxid Redox Sign 2011;
15:1639-53; http://dx.doi.org/10.1089/ars.2010.3553.

2109. Sancho A, Duran J, Garcia-Espana A, Mauvezin C, Alemu EA,
Lamark T, Macias MJ, DeSalle R, Royo M, Sala D, et al. Absence of
Tumor Suppressor Tumor Protein 53-Induced Nuclear Protein 1
(TP53INP1) Sensitizes Mouse Thymocytes and Embryonic Fibro-
blasts to Redox-Driven Apoptosis. PloS One 2012; 7:e34034; http://
dx.doi.org/10.1371/journal.pone.0034034.

2110. Seillier M, Peuget S, Gayet O, Gauthier C, N’Guessan P, Monte M,
Carrier A, Iovanna JL, Dusetti NJ. TP53INP1, a tumor suppressor,
interacts with LC3 and ATG8-family proteins through the LC3-
interacting region (LIR) and promotes autophagy-dependent cell
death. Cell Death Differ 2012; 19:1525-35; http://dx.doi.org/
10.1038/cdd.2012.30.

2111. Seillier M, Pouyet L, N’Guessan P, Nollet M, Capo F, Guillaumond
F, Peyta L, Dumas JF, Varrault A, Bertrand G, et al. Defects in
mitophagy promote redox-driven metabolic syndrome in the
absence of TP53INP1. EMBO Mol Med 2015.

2112. Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V,
Palac{i}n M, Boya P, Teleman AA, Zorzano A. The nuclear cofactor
DOR regulates autophagy in mammalian and Drosophila cells.
EMBO Rep 2010; 11:37-44; http://dx.doi.org/10.1038/
embor.2009.242.

2113. Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque
MJ, Vaccaro MI, Velasco G, Dagorn JC, Iovanna JL. The TP53INP2
protein is required for autophagy in mammalian cells. Mol Biol Cell
2009; 20:870-81; http://dx.doi.org/10.1091/mbc.E08-07-0671.

2114. Sala D, Ivanova S, Plana N, Ribas V, Duran J, Bach D, Turkseven S,
Laville M, Vidal H, Karczewska-Kupczewska M, et al. Autophagy-
regulating TP53INP2 mediates muscle wasting and is repressed in
diabetes. J Clin Invest 2014; 124:1914-27; http://dx.doi.org/10.1172/
JCI72327.

2115. Cang C, Zhou Y, Navarro B, Seo YJ, Aranda K, Shi L, Battaglia-Hsu
S, Nissim I, Clapham DE, Ren D. mTOR regulates lysosomal ATP-
sensitive two-pore NaC channels to adapt to metabolic state. Cell
2013; 152:778-90; http://dx.doi.org/10.1016/j.cell.2013.01.023.

2116. Lin PH, Duann P, Komazaki S, Park KH, Li H, Sun M, Sermersheim
M, Gumpper K, Parrington J, Galione A, et al. Lysosomal two-pore
channel subtype 2 (TPC2) regulates skeletal muscle autophagic sig-
naling. J Biol Chem 2015; 290:3377-89; http://dx.doi.org/10.1074/
jbc.M114.608471.

2117. Funasaka T, Tsuka E, Wong RW. Regulation of autophagy by
nucleoporin Tpr. Sci Rep 2012; 2:878; http://dx.doi.org/10.1038/
srep00878.

2118. Zou S, Chen Y, Liu Y, Segev N, Yu S, Liu Y, Min G, Ye M, Zeng Y,
Zhu X, et al. Trs130 participates in autophagy through GTPases
Ypt31/32 in Saccharomyces cerevisiae. Traffic 2013; 14:233-46;
http://dx.doi.org/10.1111/tra.12024.

2119. Hua F, Li K, Yu JJ, Lv XX, Yan J, Zhang XW, Sun W, Lin H, Shang
S, Wang F, et al. TRB3 links insulin/IGF to tumour promotion by
interacting with p62 and impeding autophagic/proteasomal degra-
dations. Nat Commun 2015; 6:7951; http://dx.doi.org/10.1038/
ncomms8951.

2120. Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Egia A,
Lorente M, Vazquez P, Torres S, Iovanna JL, Guzman M, et al.
TRB3 links ER stress to autophagy in cannabinoid anti-tumoral
action. Autophagy 2009; 5:1048-9; http://dx.doi.org/10.4161/
auto.5.7.9508.

2121. Francisco R, Perez-Perarnau A, Cortes C, Gil J, Tauler A, Ambrosio
S. Histone deacetylase inhibition induces apoptosis and autophagy
in human neuroblastoma cells. Cancer Lett 2012; 318:42-52; http://
dx.doi.org/10.1016/j.canlet.2011.11.036.

2122. Micale L, Fusco C, Augello B, Napolitano LM, Dermitzakis ET,
Meroni G, Merla G, Reymond A. Williams-Beuren syndrome
TRIM50 encodes an E3 ubiquitin ligase. Eur J Hum Genet 2008;
16:1038-49; http://dx.doi.org/10.1038/ejhg.2008.68.

2123. Fusco C, Micale L, Augello B, Mandriani B, Pellico MT, De Nittis P,
Calcagni A, Monti M, Cozzolino F, Pucci P, et al. HDAC6 mediates
the acetylation of TRIM50. Cell Signal 2014; 26:363-9; http://dx.doi.
org/10.1016/j.cellsig.2013.11.036.

2124. Fusco C, Micale L, Egorov M, Monti M, D’Addetta EV, Augello B,
Cozzolino F, Calcagni A, Fontana A, Polishchuk RS, et al. The E3-
ubiquitin ligase TRIM50 interacts with HDAC6 and p62, and pro-
motes the sequestration and clearance of ubiquitinated proteins
into the aggresome. PloS One 2012; 7:e40440; http://dx.doi.org/
10.1371/journal.pone.0040440.

2125. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA,
Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al. Identifica-
tion of ubiquitin ligases required for skeletal muscle atrophy. Sci-
ence 2001; 294:1704-8; http://dx.doi.org/10.1126/science.1065874.

2126. Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC,
Bang ML, Trombitas K, Granzier H, Gregorio CC, et al. Identifica-
tion of muscle specific ring finger proteins as potential regulators of
the titin kinase domain. J Mol Biol 2001; 306:717-26; http://dx.doi.
org/10.1006/jmbi.2001.4448.

2127. Gatliff J, East D, Crosby J, Abeti R, Harvey R, Craigen W,
Parker P, Campanella M. TSPO interacts with VDAC1 and trig-
gers a ROS-mediated inhibition of mitochondrial quality con-
trol. Autophagy 2014; 10:2279-96; http://dx.doi.org/10.4161/
15548627.2014.991665.

2128. Geisler S, Vollmer S, Golombek S, Kahle PJ. UBE2N, UBE2L3 and
UBE2D2/3 ubiquitin-conjugating enzymes are essential for parkin-
dependent mitophagy. J Cell Sci 2014; 127:3280-93; http://dx.doi.
org/10.1242/jcs.146035.

2129. Fiesel FC, Moussaud-Lamodiere EL, Ando M, Springer W. A spe-
cific subset of E2 ubiquitin-conjugating enzymes regulate Parkin
activation and mitophagy differently. J Cell Sci 2014; 127:3488-504;
http://dx.doi.org/10.1242/jcs.147520.

2130. Newton K, Matsumoto ML, Wertz IE, Kirkpatrick DS, Lill JR, Tan J,
Dugger D, Gordon N, Sidhu SS, Fellouse FA, et al. Ubiquitin chain
editing revealed by polyubiquitin linkage-specific antibodies. Cell
2008; 134:668-78; http://dx.doi.org/10.1016/j.cell.2008.07.039.

2131. Muller M, Kotter P, Behrendt C, Walter E, Scheckhuber CQ, Entian
KD, Reichert AS. Synthetic quantitative array technology identifies
the Ubp3-Bre5 deubiquitinase complex as a negative regulator of
mitophagy. Cell Rep 2015; 10:1215-25; http://dx.doi.org/10.1016/j.
celrep.2015.01.044.

2132. N’Diaye EN, Kajihara KK, Hsieh I, Morisaki H, Debnath J, Brown
EJ. PLIC proteins or ubiquilins regulate autophagy-dependent cell
survival during nutrient starvation. EMBO Rep 2009; 10:173-9;
http://dx.doi.org/10.1038/embor.2008.238.

2133. Chan EYW, Kir S, Tooze SA. siRNA screening of the kinome identi-
fies ULK1 as a multidomain modulator of autophagy. J Biol Chem
2007; 282:25464-74; http://dx.doi.org/10.1074/jbc.M703663200.

2134. Mizushima N. The role of the Atg1/ULK1 complex in autophagy
regulation. Curr Opin Cell Biol 2010; 22:132-9; http://dx.doi.org/
10.1016/j.ceb.2009.12.004.

2135. Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL,
Caldwell-Busby J. Mapping the phosphorylation sites of Ulk1. J
Proteome Res 2009; 8:5253-63; http://dx.doi.org/10.1021/
pr900583m.

2136. Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mande-
makers W, Koentjoro B, Sue C, Gevaert K, De Strooper B, Ver-
streken P, et al. The deubiquitinase USP15 antagonizes Parkin-
mediated mitochondrial ubiquitination and mitophagy. Hum Mol
Genet 2014; 23:5227-42.

2137. Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, Fore-
man O, Kirkpatrick DS, Sheng M. The mitochondrial deubiquiti-
nase USP30 opposes parkin-mediated mitophagy. Nature 2014;
510:370-5.

2138. Taillebourg E, Gregoire I, Viargues P, Jacomin AC, Thevenon D,
Faure M, Fauvarque MO. The deubiquitinating enzyme USP36

184 D. J. KLIONSKY ET AL.

http://dx.doi.org/10.1016/j.molcel.2015.05.030
http://dx.doi.org/10.1016/j.molcel.2015.05.030
http://dx.doi.org/10.1089/ars.2010.3553
http://dx.doi.org/10.1371/journal.pone.0034034
http://dx.doi.org/10.1038/cdd.2012.30
http://dx.doi.org/10.1038/embor.2009.242
http://dx.doi.org/10.1038/embor.2009.242
http://dx.doi.org/10.1091/mbc.E08-07-0671
http://dx.doi.org/10.1172/JCI72327
http://dx.doi.org/10.1172/JCI72327
http://dx.doi.org/10.1016/j.cell.2013.01.023
http://dx.doi.org/10.1074/jbc.M114.608471
http://dx.doi.org/10.1074/jbc.M114.608471
http://dx.doi.org/10.1038/srep00878
http://dx.doi.org/10.1038/srep00878
http://dx.doi.org/10.1111/tra.12024
http://dx.doi.org/10.1038/ncomms8951
http://dx.doi.org/10.1038/ncomms8951
http://dx.doi.org/10.4161/auto.5.7.9508
http://dx.doi.org/10.4161/auto.5.7.9508
http://dx.doi.org/10.1016/j.canlet.2011.11.036
http://dx.doi.org/10.1038/ejhg.2008.68
http://dx.doi.org/10.1016/j.cellsig.2013.11.036
http://dx.doi.org/10.1371/journal.pone.0040440
http://dx.doi.org/10.1126/science.1065874
http://dx.doi.org/10.1006/jmbi.2001.4448
http://dx.doi.org/10.4161/15548627.2014.991665
http://dx.doi.org/10.4161/15548627.2014.991665
http://dx.doi.org/10.1242/jcs.146035
http://dx.doi.org/10.1242/jcs.147520
http://dx.doi.org/10.1016/j.cell.2008.07.039
http://dx.doi.org/10.1016/j.celrep.2015.01.044
http://dx.doi.org/10.1016/j.celrep.2015.01.044
http://dx.doi.org/10.1038/embor.2008.238
http://dx.doi.org/10.1074/jbc.M703663200
http://dx.doi.org/10.1016/j.ceb.2009.12.004
http://dx.doi.org/10.1021/pr900583m
http://dx.doi.org/10.1021/pr900583m


controls selective autophagy activation by ubiquitinated proteins.
Autophagy 2012; 8:767-79; http://dx.doi.org/10.4161/auto.19381.

2139. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU. Auto-
phagic and tumour suppressor activity of a novel Beclin1-binding
protein UVRAG. Nat Cell Biol 2006; 8:688-99; http://dx.doi.org/
10.1038/ncb1426.

2140. Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS, Kim DH.
mTORC1 phosphorylates UVRAG to negatively regulate autopha-
gosome and endosome maturation. Mol Cell 2015; 57:207-18;
http://dx.doi.org/10.1016/j.molcel.2014.11.013.

2141. Munson MJ, Allen GF, Toth R, Campbell DG, Lucocq JM, Ganley
IG. mTOR activates the VPS34-UVRAG complex to regulate auto-
lysosomal tubulation and cell survival. EMBO J 2015.

2142. Pirooz SD, He S, Zhang T, Zhang X, Zhao Z, Oh S, O’Connell D,
Khalilzadeh P, Amini-Bavil-Olyaee S, Farzan M, et al. UVRAG is
required for virus entry through combinatorial interaction with the
class C-Vps complex and SNAREs. Proc Natl Acad Sci USA 2014;
111:2716-21; http://dx.doi.org/10.1073/pnas.1320629111.

2143. Kosta A, Roisin-Bouffay C, Luciani MF, Otto GP, Kessin RH, Gol-
stein P. Autophagy gene disruption reveals a non-vacuolar cell
death pathway in Dictyostelium. J Biol Chem 2004; 279:48404-9;
http://dx.doi.org/10.1074/jbc.M408924200.

2144. Oku M, Nishimura T, Hattori T, Ano Y, Yamashita S, Sakai Y. Role
of Vac8 in formation of the vacuolar sequestering membrane dur-
ing micropexophagy. Autophagy 2006; 2:272-9; http://dx.doi.org/
10.4161/auto.3135.

2145. Klionsky DJ, Herman PK, Emr SD. The fungal vacuole: composi-
tion, function, and biogenesis. Microbiol Rev 1990; 54:266-92.

2146. Hoffman M, Chiang H-L. Isolation of degradation-deficient
mutants defective in the targeting of fructose-1,6-bisphosphatase
into the vacuole for degradation in Saccharomyces cerevisiae.
Genetics 1996; 143:1555-66.

2147. Zhang C, Lee S, Peng Y, Bunker E, Giaime E, Shen J, Zhou Z, Liu X.
PINK1 triggers autocatalytic activation of Parkin to specify cell fate
decisions. Curr Biol 2014; 24:1854-65; http://dx.doi.org/10.1016/j.
cub.2014.07.014.

2148. Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homo-
logue, Vam3p, essential for autophagic and biosynthetic protein
transport to the vacuole. J Cell Biol 1997; 138:517-29; http://dx.doi.
org/10.1083/jcb.138.3.517.

2149. Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/
VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved
in specific steps of the autophagy/multivesicular body pathways.
Biochim Biophys Acta 2009; 1793:1901-16; http://dx.doi.org/
10.1016/j.bbamcr.2009.09.011.

2150. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Auto-
phagosome precursor maturation requires homotypic fusion. Cell
2011; 146:303-17; http://dx.doi.org/10.1016/j.cell.2011.06.023.

2151. Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combina-
tional soluble N-ethylmaleimide-sensitive factor attachment protein
receptor proteins VAMP8 and Vti1b mediate fusion of antimicro-
bial and canonical autophagosomes with lysosomes. Mol Biol Cell
2010; 21:1001-10; http://dx.doi.org/10.1091/mbc.E09-08-0693.

2152. Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D,
Baloh RH, Weihl CC. Valosin-containing protein (VCP) is required
for autophagy and is disrupted in VCP disease. J Cell Biol 2009;
187:875-88; http://dx.doi.org/10.1083/jcb.200908115.

2153. Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dan-
tuma NP, Taylor JP. VCP/p97 is essential for maturation of ubiqui-
tin-containing autophagosomes and this function is impaired by
mutations that cause IBMPFD. Autophagy 2010; 6:217-27; http://
dx.doi.org/10.4161/auto.6.2.11014.

2154. Donohue E, Tovey A, Vogl AW, Arns S, Sternberg E, Young RN,
Roberge M. Inhibition of autophagosome formation by the benzo-
porphyrin derivative verteporfin. J Biol Chem 2011; 286:7290-300;
http://dx.doi.org/10.1074/jbc.M110.139915.

2155. Kaelin WG, Jr. The von Hippel-Lindau tumour suppressor protein:
O2 sensing and cancer. Nat Rev Cancer 2008; 8:865-73; http://dx.
doi.org/10.1038/nrc2502.

2156. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasa-
kawa C. Escape of intracellular Shigella from autophagy. Science
2005; 307:727-31; http://dx.doi.org/10.1126/science.1106036.

2157. Vaccaro MI, Ropolo A, Grasso D, Iovanna JL. A novel mammalian
trans-membrane protein reveals an alternative initiation pathway
for autophagy. Autophagy 2008; 4:388-90; http://dx.doi.org/
10.4161/auto.5656.

2158. Calvo-Garrido J, King JS, Munoz-Braceras S, Escalante R. Vmp1
regulates PtdIns3P signaling during autophagosome formation in
Dictyostelium discoideum. Traffic 2014; 15:1235-46; http://dx.doi.
org/10.1111/tra.12210.

2159. Molejon MI, Ropolo A, Re AL, Boggio V, Vaccaro MI. The VMP1-
Beclin 1 interaction regulates autophagy induction. Sci Rep 2013;
3:1055; http://dx.doi.org/10.1038/srep01055.

2160. Balderhaar HJ, Ungermann C. CORVET and HOPS tethering com-
plexes - coordinators of endosome and lysosome fusion. J Cell Sci
2013; 126:1307-16; http://dx.doi.org/10.1242/jcs.107805.

2161. Nickerson DP, Brett CL, Merz AJ. Vps-C complexes: gatekeepers of
endolysosomal traffic. Curr Opin Cell Biol 2009; 21:543-51; http://
dx.doi.org/10.1016/j.ceb.2009.05.007.

2162. Clancey LF, Beirl AJ, Linbo TH, Cooper CD. Maintenance of mela-
nophore morphology and survival is cathepsin and vps11 depen-
dent in zebrafish. PloS One 2013; 8:e65096.

2163. Uttenweiler A, Schwarz H, Neumann H, Mayer A. The vacuolar
transporter chaperone (VTC) complex is required for microauto-
phagy. Mol Biol Cell 2007; 18:166-75; http://dx.doi.org/10.1091/
mbc.E06-08-0664.

2164. Simonsen A, Birkeland HC, Gillooly DJ, Mizushima N, Kuma A,
Yoshimori T, Slagsvold T, Brech A, Stenmark H. Alfy, a novel
FYVE-domain-containing protein associated with protein granules
and autophagic membranes. J Cell Sci 2004; 117:4239-51; http://dx.
doi.org/10.1242/jcs.01287.

2165. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia
TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, et al. The
selective macroautophagic degradation of aggregated proteins
requires the PI3P-binding protein Alfy. Mol Cell 2010; 38:265-79;
http://dx.doi.org/10.1016/j.molcel.2010.04.007.

2166. Clausen TH, Lamark T, Isakson P, Finley K, Larsen KB, Brech A,
Overvatn A, Stenmark H, Bjorkoy G, Simonsen A, et al. p62/
SQSTM1 and ALFY interact to facilitate the formation of p62 bod-
ies/ALIS and their degradation by autophagy. Autophagy 2010;
6:330-44; http://dx.doi.org/10.4161/auto.6.3.11226.

2167. Kast DJ, Zajac AL, Holzbaur EL, Ostap EM, Dominguez R.
WHAMM Directs the Arp2/3 Complex to the ER for Autophago-
some Biogenesis through an Actin Comet Tail Mechanism. Curr
Biol 2015; 25:1791-7; http://dx.doi.org/10.1016/j.cub.2015.05.042.

2168. Haack TB, Hogarth P, Kruer MC, Gregory A, Wieland T, Schwarz-
mayr T, Graf E, Sanford L, Meyer E, Kara E, et al. Exome sequenc-
ing reveals de novo WDR45 mutations causing a phenotypically
distinct, X-linked dominant form of NBIA. Am J Hum Genet 2012;
91:1144-9; http://dx.doi.org/10.1016/j.ajhg.2012.10.019.

2169. Abidi A, Mignon-Ravix C, Cacciagli P, Girard N, Milh M, Villard L.
Early-onset epileptic encephalopathy as the initial clinical presenta-
tion of WDR45 deletion in a male patient. Eur J Hum Genet 2015.

2170. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai
K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, et al. De
novo mutations in the autophagy gene WDR45 cause static enceph-
alopathy of childhood with neurodegeneration in adulthood. Nat
Genet 2013; 45:445-9, 9e1; http://dx.doi.org/10.1038/ng.2562.

2171. Biagosch CA, Hensler S, K€uhn R, Meitinger T, Prokisch HT. ALEN-
mediated mutagenesis as a tool to generate disease models for dis-
eases caused by dominant de novo mutations. Eur J Hum Genet
2014; 22:153.

2172. Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through
novel pathways of apoptosis and autophagy. Expert Opin Ther Tar
2012; 16:1203-14; http://dx.doi.org/10.1517/14728222.2012.719499.

2173. Petherick KJ, Williams AC, Lane JD, Ordonez-Moran P, Huelsken
J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C, et al. Auto-
lysosomal beta-catenin degradation regulates Wnt-autophagy-p62

AUTOPHAGY 185

http://dx.doi.org/10.4161/auto.19381
http://dx.doi.org/10.1038/ncb1426
http://dx.doi.org/10.1016/j.molcel.2014.11.013
http://dx.doi.org/10.1073/pnas.1320629111
http://dx.doi.org/10.1074/jbc.M408924200
http://dx.doi.org/10.4161/auto.3135
http://dx.doi.org/10.1016/j.cub.2014.07.014
http://dx.doi.org/10.1016/j.cub.2014.07.014
http://dx.doi.org/10.1083/jcb.138.3.517
http://dx.doi.org/10.1016/j.bbamcr.2009.09.011
http://dx.doi.org/10.1016/j.cell.2011.06.023
http://dx.doi.org/10.1091/mbc.E09-08-0693
http://dx.doi.org/10.1083/jcb.200908115
http://dx.doi.org/10.4161/auto.6.2.11014
http://dx.doi.org/10.1074/jbc.M110.139915
http://dx.doi.org/10.1038/nrc2502
http://dx.doi.org/10.1126/science.1106036
http://dx.doi.org/10.4161/auto.5656
http://dx.doi.org/10.1111/tra.12210
http://dx.doi.org/10.1038/srep01055
http://dx.doi.org/10.1242/jcs.107805
http://dx.doi.org/10.1016/j.ceb.2009.05.007
http://dx.doi.org/10.1091/mbc.E06-08-0664
http://dx.doi.org/10.1091/mbc.E06-08-0664
http://dx.doi.org/10.1242/jcs.01287
http://dx.doi.org/10.1016/j.molcel.2010.04.007
http://dx.doi.org/10.4161/auto.6.3.11226
http://dx.doi.org/10.1016/j.cub.2015.05.042
http://dx.doi.org/10.1016/j.ajhg.2012.10.019
http://dx.doi.org/10.1038/ng.2562
http://dx.doi.org/10.1517/14728222.2012.719499


crosstalk. EMBO J 2013; 32:1903-16; http://dx.doi.org/10.1038/
emboj.2013.123.

2174. Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intesti-
nal epithelium and inflammatory bowel disease. Semin Immunol
2009; 21:156-63; http://dx.doi.org/10.1016/j.smim.2009.01.001.

2175. Levine B. Eating oneself and uninvited guests: autophagy-related
pathways in cellular defense. Cell 2005; 120:159-62.

2176. Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D,
Molgo J, Diaz J, Lavandero S, Harper F, et al. Regulation of auto-
phagy by the inositol trisphosphate receptor. Cell Death Differ
2007; 14:1029-39.

2177. Kweon Y, Rothe A, Conibear E, Stevens TH. Ykt6p is a multifunc-
tional yeast R-SNARE that is required for multiple membrane
transport pathways to the vacuole. Mol Biol Cell 2003; 14:1868-81;
http://dx.doi.org/10.1091/mbc.E02-10-0687.

2178. Cebollero E, van der Vaart A, Zhao M, Rieter E, Klionsky DJ, Helms
JB, Reggiori F. Phosphatidylinositol-3-phosphate clearance plays a
key role in autophagosome completion. Curr Biol 2012; 22:1545-53;
http://dx.doi.org/10.1016/j.cub.2012.06.029.

2179. Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K,
Ohsumi Y, Fujimoto T. Yeast and mammalian autophagosomes
exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat
Commun 2014; 5:3207.

2180. Huang J, Birmingham CL, Shahnazari S, Shiu J, Zheng YT, Smith
AC, Campellone KG, Heo WD, Gruenheid S, Meyer T, et al. Anti-
bacterial autophagy occurs at PI(3)P-enriched domains of the endo-
plasmic reticulum and requires Rab1 GTPase. Autophagy 2011;
7:17-26; http://dx.doi.org/10.4161/auto.7.1.13840.

2181. Zoppino FC, Militello RD, Slavin I, Alvarez C, Colombo MI. Auto-
phagosome formation depends on the small GTPase Rab1 and

functional ER exit sites. Traffic 2010; 11:1246-61; http://dx.doi.org/
10.1111/j.1600-0854.2010.01086.x.

2182. Pozuelo-Rubio M. Regulation of autophagic activity by 14-3-3zeta
proteins associated with class III phosphatidylinositol-3-kinase.
Cell Death Differ 2011; 18:479-92; http://dx.doi.org/10.1038/
cdd.2010.118.

2183. Vantaggiato C, Crimella C, Airoldi G, Polishchuk R, Bonato S,
Brighina E, Scarlato M, Musumeci O, Toscano A, Martinuzzi A,
et al. Defective autophagy in spastizin mutated patients with heredi-
tary spastic paraparesis type 15. Brain 2013; 136:3119-39; http://dx.
doi.org/10.1093/brain/awt227.

2184. Lin JF, Lin YC, Lin YH, Tsai TF, Chou KY, Chen HE, Hwang TI.
Zoledronic acid induces autophagic cell death in human prostate
cancer cells. J Urol 2011; 185:1490-6; http://dx.doi.org/10.1016/j.
juro.2010.11.045.

2185. Schneider EM, Lorezn M, Walther P. Autophagy as a hallmark of
hemophagocytic diseases In: Gorbunov N, ed. Autophagy: Princi-
ples, Regulation and Roles in Disease: Nova Science Publishers,
2012.

2186. Ryhanen T, Hyttinen JM, Kopitz J, Rilla K, Kuusisto E, Man-
nermaa E, Viiri J, Holmberg CI, Immonen I, Meri S, et al.
Crosstalk between Hsp70 molecular chaperone, lysosomes and
proteasomes in autophagy-mediated proteolysis in human reti-
nal pigment epithelial cells. J Cell Mol Med 2009; 13:3616-31;
http://dx.doi.org/10.1111/j.1582-4934.2008.00577.x.

2187. Amadoro G, Corsetti V, Florenzano F, Atlante A, Bobba A, Nicolin
V, Nori SL, Calissano P. Morphological and bioenergetic demands
underlying the mitophagy in post-mitotic neurons: the pink-parkin
pathway. Front Aging Neurosci 2014; 6:18; http://dx.doi.org/
10.3389/fnagi.2014.00018.

Glossary
3-MA (3-methyladenine): An inhibitor of class I PI3K and
class III PtdIns3K, which results in macroautophagy inhibition
due to suppression of class III PtdIns3K,329 but may under
some conditions show the opposite effect.330 At concentrations
>10 mM 3-MA inhibits other kinases such as AKT (Ser473),
MAPK/p38 (Thr180/Tyr182) and MAPK/JNK (Thr183/
Tyr185).1534

110-deoxyverticillin A (C42): An epipolythiodioxopiperazine
fungal secondary metabolite that is used as an anticancer drug;
it triggers apoptotic and necrotic cell death, and enhances
macroautophagy through the action of PARP1 and RIPK1.1535

12-ylation: The modification of substrates by covalent conju-
gation to ATG12, first used to describe the autocatalytic conju-
gation of ATG12 to ATG3.1536

14-3-3z: See YWHAZ.
ABT737: A BH3 mimetic that competitively disrupts the inter-
action between BECN1 and BCL2 or BCL2L1, thus inducing
macroautophagy.1537 It should be noted, however, that by its
inhibitory action on the anti-apoptotic BCL2 family members,
ABT737 also leads to apoptosis.1538

ACBD5 (acyl-CoA binding domain containing 5): ACBD5 is
the human ortholog of fungal Atg37; it is a peroxisomal protein
that is required for pexophagy.345,1539 See also Atg37.
Acetyl-coenzyme A: A central energy metabolite that represses
macroautophagy if present in the cytosol.1540,1541

Acinus: A protein that in Drosophila regulates both endocyto-
sis and macroautophagy; the acn mutant is defective in auto-
phagosome maturation, whereas stabilization of endogenous
Acn by mutation of its caspase cleavage site,1542 or overexpres-
sion of Acn leads to excessive macroautophagy.1543 Note that

Acn can also induce DNA condensation or fragmentation after
its activation by CASP3 in apoptotic cells.
ActA: A L. monocytogenes protein that recruits the Arp2/3
complex and other actin-associated components to the cell sur-
face to evade recognition by xenophagy; this effect is indepen-
dent of bacterial motility.1544

Adaptophagy: Selective degradation of signaling adaptors
downstream of TLRs or similar types of receptor
families.1545

ADNP (activity-dependent neuroprotective homeobox): A
protein that interacts with LC3B and shows an increased
expression in lymphocytes from schizophrenia patients.1019

AEG-1: See MTDH.
AEN/ISG20L1 (apoptosis-enhancing nuclease): A protein
that localizes to nucleolar and perinucleolar regions of the
nucleus, which regulates macroautophagy associated with gen-
otoxic stress; transcription of AEN is regulated by TP53 family
members.1546

AGER/RAGE (advanced glycosylation end product-specific
receptor): A member of the immunoglobulin gene superfamily
that binds the HMGB1 (high mobility group box 1) chromatin
binding protein.1547 AGER overexpression enhances
macroautophagy and reduces apoptosis. This can occur in
response to ROS, resulting in the upregulation of macroauto-
phagy and the concomitant downregulation of apoptosis, favor-
ing tumor cell survival in response to anticancer treatments
that increase ROS production.1548 See also HMGB1.
Aggrephagy: The selective removal of aggregates by a
macroautophagy-like process.731

AGS3: See GPSM1.
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Aggresome: An aggregation of misfolded proteins formed
by a highly regulated process mediated by HDAC6 or
BAG3.1549,1550 This process requires protein transport by a
dynein motor and microtubule integrity. Aggresomes form
at the microtubule-organizing center and are surrounded by
a cage of the intermediate filament protein VIM/vimentin.
Note that not all proteins that aggregate and form filaments
like HTT or MAPT form aggregsomes.
AHA (L-azidohomoalanine): An amino acid analog used for
labeling newly synthesized protein and monitoring autophagic
protein degradation.660

AICAR (aminoimidazole-4-carboxamide riboside): Cell per-
meable nucleotide analog that is an activator of AMPK; inhibits
macroautophagy472 through mechanisms that are not related to
its effect on AMPK.483,1551

AIM (Atg8-family interacting motif): A short peptide motif
that allows interaction with Atg8.1481 See WXXL and LIR/LRS.
AKT/PKB (v-akt murine thymoma viral oncogene homolog
1): A serine/threonine kinase that negatively regulates
macroautophagy in some cellular systems.
Alfy: See WDFY3.
ALIS (aggresome-like induced structures): These structures
may function as protein storage compartments and are cleared
by macroautophagy.315 SQSTM1 may regulate their formation
and macroautophagic degradation.317 See also DALIS.
Allophagy: The selective degradation of sperm components by
macroautophagy; this process occurs in C. elegans.739

ALOX5 (arachidonate 5-lipoxygenase): See lipoxygenases.
ALOX15 (arachidonate 15-lipoxygenase): See lipoxygenases.
ALR: See autophagic lysosome reformation.
ALS2/alsin (amyotrophic lateral sclerosis 2 [juvenile]): A
guanine nucleotide exchange factor for the small GTPase RAB5
that regulates endosome and autophagosome fusion and traf-
ficking; loss of ALS2 accounts for juvenile recessive amyotro-
phic lateral sclerosis, juvenile primary lateral sclerosis, and
infantile-onset ascending hereditary spastic paralysis.1552,1553

ALSFTD: See C9orf72.
AMBRA1 (autophagy/beclin-1 regulator 1): A positive regu-
lator of macroautophagy. AMBRA1 interacts with both BECN1
and ULK1, modulating their activity.488,501,1206 Also, a role in
both PARK2-dependent and -independent mitophagy has been
described for AMBRA1.768 AMBRA1 activity is regulated by
dynamic interactions with DDB1 and TCEB2/Elongin B, the
adaptor proteins of the E3 ubiquitin ligase complexes contain-
ing CUL4/Cullin 4 and CUL5, respectively.1554 Finally,
AMBRA1 is the macroautophagy adaptor linking this process
to cell proliferation, by negatively regulating the oncogenic
protein MYC through the latter’s phosphorylation status.1555

AMFR/gp78 (autocrine motility factor receptor, E3 ubiqui-
tin protein ligase): An ER-associated E3 ubiquitin ligase that
degrades the MFN/mitofusin mitochondrial fusion proteins
and induces mitophagy.1556

Amiodarone: An FDA-approved antiarrhythmic drug that
induces macroautophagic flux via AMPK- and AKT-mediated
MTOR inhibition.1557,1558

Amphisome (AM): Intermediate compartment formed by the
fusion of an autophagosome with an endosome (this compart-
ment can be considered a type of autophagic vacuole and may
be equivalent to a late autophagosome, and as such has a single

limiting membrane); the amphisome has not yet fused with a
lysosome.1559 Amphisomes can also fuse with the plasma mem-
brane to release the macroautophagic cargo (exosomal path-
way). See also exophagy.
AMPK (AMP-activated protein kinase): A sensor of energy
level that is activated by an increase in the AMP/ATP ratio via the
STK11/LKB1 kinase. Phosphorylates the MTORC1 subunit
RPTOR to cause induction of macroautophagy. AMPK also acti-
vates the TSC1/2 complex (thus inhibiting RHEB), and binds and
directly phosphorylates (and activates) ULK1 as part of the ULK1
kinase complex, which includes ATG13, ATG101 and
RB1CC1.477,478 The yeast homolog of AMPK is Snf1.472,1560 Con-
versely, ULK1 can phosphorylate AMPK through a negative feed-
back loop.496 AMPK is a heterotrimeric enzyme composed of the
PRKAA1/AMPKa1 or PRKAA2/AMPKa2 subunit, the PRKAB1/
AMPKb1 or PRKAB2/AMPKb2 subunit and the PRKAG1/
AMPKg1, PRKAG2/AMPKg2 or PRKAG3/AMPKg subunits.
Ams1/a-mannosidase: A cargo of the Cvt pathway; Ams1
forms an oligomer in the cytosol similar to prApe1.
AMSH1/3: Two Arabidopsis deubiquitinating enzymes that
have been linked to plant macroautophagy.1561,1562

APC (activated protein C): APC (PROC that has been activated
by thrombin) modulates cardiac metabolism and augments
macroautophagy in the ischemic heart by inducing the activation
of AMPK in amousemodel of ischemia/reperfusion injury.1563

Ape1 (aminopeptidase I): A resident vacuolar hydrolase that
can be delivered in its precursor form (prApe1) to the vacuole
through either the cytoplasm-to-vacuole targeting (Cvt) path-
way or macroautophagy, in vegetative or starvation conditions,
respectively.128 The propeptide of prApe1 is removed upon vac-
uolar delivery, providing a convenient way to monitor localiza-
tion of the protein and the functioning of these pathways,
although it must be noted that delivery involves a receptor and
scaffold so that its transit involves a type of selective
macroautophagy even in starvation conditions. See also Atg11,
Atg19 and cytoplasm-to-vacuole targeting pathway.
Ape1 complex/prApe1 complex: A large protein complex com-
prised of multiple prApe1 dodecamers localized in the cytosol.131

Ape4: An aspartyl aminopeptidase that binds the Atg19 receptor
and is transported to the vacuole through the Cvt pathway.1564

APMA (autophagic macrophage activation): A collection of
macroautophagy-related processes in cells of the reticulo-endo-
thelial system. APMA includes (1) convergence of phagocytosis
and the macroautophagic machinery, (2) enhanced microbici-
dal properties of autolysosomes in comparison to standard
phagolysosomes, (3) macroautophagic modulation of pathogen
recognition receptor signaling, (4) cooperation between immu-
nity-related GTPases and ATG proteins in attacking parasito-
phorus vacuoles, and (5) enhanced antigen presentation.
APMA is thus recognized as a complex outcome of macroauto-
phagy stimulation in macrophages, representing a unique com-
posite process that brings about a heightened state of
immunological activation.1565

Appressorium: A specialized infection structure produced by
pathogenic fungi to rupture the outer layer of their host and
gain entry to host cells. In plant pathogenic fungi, such as the
rice blast fungus M. oryzae, formation of appressoria follows
macroautophagy in conidia and recycling of the spore contents
to the developing infection cell.275,1316
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ARD1: See NAA10.
Are1: See Ayr1.
Are2: See Ayr1.
ARRB1/b-arrestin-1 (arrestin, beta 1): Members of the
arrestin/beta-arrestin protein family are thought to participate
in agonist-mediated desensitization of G-protein-coupled
receptors and cause specific dampening of cellular responses to
stimuli such as hormones, neurotransmitters, or sensory sig-
nals. ARRB1 is a cytosolic protein and acts as a cofactor in the
ADRBK/BARK (adrenergic, beta, receptor kinase)-mediated
desensitization of beta-adrenergic receptors. Besides the central
nervous system, it is expressed at high levels in peripheral blood
leukocytes, and thus the ADRBK/beta-arrestin system is
thought to play a major role in regulating receptor-mediated
immune functions. This protein plays a neuroprotective role in
the context of cerebral ischemia through regulating BECN1-
dependent autophagosome formation.1566

ARHI: See DIRAS3.
ARN5187: Lysosomotropic compound with dual inhibitory
activity against the circadian regulator NR1D2/REV-ERBb and
autophagy. Although ARN5187 and chloroquine have similar
lysosomotropic potency and are equivocal with regard to auto-
phagy inhibition, ARN5187 has a significantly improved in
vitro anticancer activity.1497

ASB10 (ankyrin repeat and SOCS box containing 10): The
ASB family of proteins mediate ubiquitination of protein sub-
strates via their SOCS box and as such have been implicated as
negative regulators of cell signaling. ASB10 colocalizes with
aggresome biomarkers and pre-autophagic structures and may
form ALIS.1567

ATF4 (activating transcription factor 4): A transcription fac-
tor that is induced by hypoxia, amino acid starvation and ER
stress, and is involved in the unfolded protein response, playing
a critical role in stress adaptation; ATF4 binds to a cAMP
response element binding site in the LC3B promoter, resulting
in upregulation of LC3B,1568 and also directs a macroautophagy
gene transcriptional program in response to amino acid deple-
tion and ER stress.408

ATF5 (activating transcription factor 5): A transcription fac-
tor that is upregulated by the BCR-ABL protein tyrosine kinase,
a macroautophagy repressor, through the PI3K-AKT pathway
that inhibits FOXO4, a repressor of ATF5 transcription; one of
the targets of ATF5 is MTOR.1569

Atg (autophagy-related): Abbreviation used for most of the
components of the protein machinery that are involved in
selective and nonselective macroautophagy and in selective
microautophagy.1570

ATG-11/EPG-7: A scaffold protein mediating the macroauto-
phagic degradation of the C. elegans SQSTM1 homolog
SQST-1.1585 ATG-11/EPG-7 interacts with SQST-1 and also
with multiple ATG proteins. ATG-11/EPG-7 itself is degraded
by macroautophagy.
ATG-13/EPG-1: The highly divergent homolog of Atg13 in
C. elegans. ATG-13/EPG-1 directly interacts with the C. elegans
Atg1 homolog UNC-51.1733 See also Atg13.
Atg1: A serine/threonine protein kinase that functions in
recruitment and release of other Atg proteins from the PAS.1571

The functional homologs in higher eukaryotes are ULK1 and
ULK2, and in C. elegans UNC-51.

Atg2: A protein that interacts with Atg18; in atg2D mutant
cells Atg9 accumulates primarily at the PAS.1572,1573

Atg3: A ubiquitin-conjugating enzyme (E2) analog that conju-
gates Atg8/LC3 to phosphatidylethanolamine (PE) after activa-
tion of the C-terminal residue by Atg7.1574,1575 ATG3 can also
be conjugated to ATG12 in higher eukaryotes.1536 See also 12-
ylation.
Atg4: A cysteine protease that processes Atg8/LC3 by remov-
ing the amino acid residue(s) that are located on the C-terminal
side of what will become the ultimate glycine. Atg4 also
removes PE from Atg8/LC3 in a step referred to as “deconjuga-
tion”.213 Mammals have 4 ATG4 proteins (ATG4A to
ATG4D), but ATG4B appears to be the most relevant for
macroautophagy and has the broadest range of activity for all
of the Atg8 homologs.172,1576 See also deconjugation.
Atg5: A protein containing ubiquitin folds that is part of the
Atg12–Atg5-Atg16 complex, which acts in part as an E3 ligase
for Atg8/LC3–PE conjugation.1577

Atg6: See Vps30.
Atg7: A ubiquitin activating (E1) enzyme homolog that activates
both Atg8/LC3 andAtg12 in an ATP-dependent process.1578,1579

Atg8: A ubiquitin-like protein that is conjugated to PE;
involved in cargo recruitment into, and biogenesis of, autopha-
gosomes. Autophagosomal size is regulated by the amount of
Atg8.107 Since Atg8 is selectively enclosed into autophago-
somes, its breakdown allows measurement of the rate of
macroautophagy. Mammals have several Atg8 homologs that
are members of the LC3 and GABARAP subfamilies, which are
also involved in autophagosome formation.142,148,600 The C. ele-
gans homologs are LGG-1 and LGG-2.

Atg9: A transmembrane protein that may act as a lipid carrier
for expansion of the phagophore. In mammalian cells, ATG9A
localizes to the trans-Golgi network and endosomes, whereas
in fungi this protein localizes in part to peripheral sites (termed
Atg9 reservoirs or tubulovesicular clusters) that are localized
near the mitochondria, and to the PAS.536,1580 Whereas mam-
malian ATG9A is ubiquitously expressed, ATG9B is almost
exclusively expressed in the placenta and pituitary gland.1581

Atg9 peripheral sites/structures: In yeast, these are peri-mito-
chondrial sites where Atg9 localizes, which are distinct from
the phagophore assembly site.536,537 The Atg9 peripheral sites
may be the precursors of the phagophore.
Atg10: A ubiquitin conjugating (E2) enzyme analog that con-
jugates Atg12 to Atg5.1582
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Atg11: A scaffold protein that acts in selective types of
macroautophagy including the Cvt pathway, mitophagy and
pexophagy. Atg11 binds Atg19, Pichia pastoris Atg30
(PpAtg30) and Atg32 as part of its role in specific cargo recog-
nition. It also binds Atg9 and is needed for its movement to the
PAS.1583 Atg11 in conjunction with receptor-bound targets
may activate Atg1 kinase activity during selective macroauto-
phagy.1584 Homologs of Atg11 include RB1CC1 in mammals
(although RB1CC1 does not appear to function as an Atg11
ortholog), ATG-11/EPG-7 in C. elegans,1585 and ATG11 in
Arabidopsis.1586

Atg12: A ubiquitin-like protein that modifies an internal
lysine of Atg5 by covalently binding via its C-terminal gly-
cine.1577 In mouse and human cells, ATG12 also forms a
covalent bond with ATG3, and this conjugation event plays
a role in mitochondrial homeostasis.1536 The C. elegans
homolog is LGG-3.
Atg13: A component of the Atg1 complex that is needed
for Atg1 kinase activity. Atg13 is highly phosphorylated in
a PKA- and TOR-dependent manner in rich medium con-
ditions. During starvation-induced macroautophagy in
yeast, Atg13 is partially dephosphorylated. In mammalian
cells, at least MTOR and ULK1 phosphorylate ATG13. The
decreased phosphorylation of Atg13/ATG13 that results
from TOR/MTOR inhibition is partly offset in terms of the
change in molecular mass by the ULK1-dependent phos-
phorylation that occurs upon ULK1 activation.505,1587 The
C. elegans ortholog is ATG-13/EPG-1.
Atg14: A component of the class III PtdIns3K complex that is
necessary for the complex to function in macroautophagy.1588

Also known as ATG14/ATG14L/BARKOR in mammals,548 or
EPG-8 in C. elegans.1269

Atg15: A yeast vacuolar protein that contains a lipase/esterase
active site motif and is needed for the breakdown of autophagic
and Cvt bodies within the vacuole lumen (as well as MVB-
derived and other subvacuolar vesicles) and the turnover of
lipid droplets.1589-1591

Atg16: A component of the Atg12-Atg5-Atg16 complex.
Atg16 dimerizes to form a large complex.1592 There are 2 mam-
malian homologs, ATG16L1 and ATG16L2; mutations in either
of the corresponding genes correspond to risk alleles associated
with Crohn disease.1593,1594

Atg17: A yeast protein that is part of the Atg1 kinase com-
plex. Atg17 is not essential for macroautophagy, but modu-
lates the magnitude of the response; smaller
autophagosomes are formed in the absence of Atg17.106,503

In yeast, Atg17 exists as part of a stable ternary complex
that includes Atg31 and Atg29; this complex functions as a
dimer.1595-1597 The functional counterpart of this complex
in mammalian cells may be RB1CC1.

Atg18: A yeast protein that binds to PtdIns3P (and PtdIns[3,5]
P2) via its WD40 b-propeller domain. Atg18 interacts with
Atg2, and in atg18D cells Atg9 accumulates primarily at the
PAS. Atg18 has additional nonautophagic functions, such as in
retrograde transport from the vacuole to the Golgi complex,
and in the regulation of PtdIns(3,5)P2 synthesis; the latter func-
tion affects the vacuole’s role in osmoregulation.553 See also
WIPI.
Atg19: A receptor for the Cvt pathway that binds Atg11, Atg8
and the propeptide of precursor aminopeptidase I. Atg19 is
also a receptor for Ams1/a-mannosidase, another Cvt pathway
cargo.1598,1599

Atg20/Snx42: A yeast PtdIns3P-binding sorting nexin that
is part of the Atg1 kinase complex and associates with
Snx4/Atg24.1600 Atg20 is a PX-BAR domain-containing pro-
tein involved in pexophagy. M. oryzae Snx41 (MoSnx41) is
homologous to both yeast Atg20 and Snx41, and carries out
functions in both pexophagy and nonautophagy vesicular
trafficking.1601

Atg21: A yeast PtdIns3P binding protein that is a homolog of,
and partially redundant with, Atg18.335 See also WIPI.
Atg22: A yeast vacuolar amino acid permease that is required
for efflux after autophagic breakdown of proteins.1602,1603

Atg23: A yeast peripheral membrane protein that associates
and transits with Atg9.538,1604,1605

Atg24: See Snx4.
Atg25: A coiled-coil protein required for macropexophagy in
H. polymorpha.1606

Atg26: A sterol glucosyltransferase that is required for micro-
and macropexophagy in P. pastoris, but not in S.
cerevisiae.1607,1608

Atg27: A yeast integral membrane protein that is required for
the movement of Atg9 to the PAS; the absence of Atg27 results
in a reduced number of autophagosomes under autophagy-
inducing conditions.1609

Atg28: A coiled-coil protein involved in micro- and macro-
pexophagy in P. pastoris.1610

Atg29: A yeast protein required for efficient nonselective
macroautophagy in fungi. Part of the yeast Atg17-Atg31-Atg29
complex that functions at the PAS for protein recruitment and
initiation of phagophore formation.1595-1597,1611

Atg30: A protein required for the recognition of peroxisomes
during micro- and macropexophagy in P. pastoris. It binds the
peroxin PpPex14 and the selective autophagy receptor protein
PpAtg11.708

Atg31: A yeast protein required for nonselective macroauto-
phagy in fungi. Part of the yeast Atg17-Atg31-Atg29 complex
that functions at the PAS for protein recruitment and initiation
of phagophore formation.1595-1597,1612

Atg32: A mitochondrial outer membrane protein that is
required for mitophagy in yeast. Atg32 binds Atg8 and Atg11
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preferentially during mitophagy-inducing conditions.687,688 See
also BCL2L13.
Atg33: A mitochondrial outer membrane protein that is
required for mitophagy in yeast.686

Atg34: A protein that functions as a receptor for import of
Ams1/a-mannosidase during macroautophagy (i.e., under starva-
tion conditions) in yeast.1613 This protein was initially referred to
as Atg19-B based on predictions from in silico studies.1614

Atg35: The Atg35 protein relocates to the peri-nuclear struc-
ture and specifically regulates MIPA formation during micro-
pexophagy; the atg35D mutant is able to form
pexophagosomes during macropexophagy.1615

Atg36: Atg36 is a pexophagy receptor, which localizes to the
membrane of peroxisomes in S. cerevisiae. Atg36 binds Atg8
and the scaffold protein Atg11 that links receptors for selective
types of autophagy to the core autophagy machinery.1616

Atg37: Atg37 is a conserved acyl-CoA-binding protein that is
required specifically for pexophagy in P. pastoris at the stage of
phagophore formation.345 See also ACBD5.
Atg38: Atg38 physically interacts with Atg14 and Vps34 via its
N terminus. Atg38 is required for macroautophagy as an inte-
gral component of the PtdIns3K complex I in yeast, and Atg38
functions as a linker connecting the Vps15-Vps34 and Vps30/
Atg6-Atg14 subcomplexes to facilitate complex I formation.1617

Atg39: A receptor for selective macroautophagic degradation
of nuclear membrane in yeast.839

Atg40: A receptor that functions in yeast reticulophagy.839 See
also FAM134B.
Atg41: A protein that interacts with Atg9 and is needed for
efficient Atg9 movement to the PAS in yeast.1955

ATG101: An ATG13-binding protein conserved in various
eukaryotes but not in S. cerevisiae. Forms a stable complex with
ULK1/2-ATG13-RB1CC1 (i.e., not nutrient-dependent)
required for macroautophagy and localizes to the phago-
phore.1618,1619 The C. elegans homolog is EPG-9.
ATI1/2 (ATG8-interacting protein 1/2): Two closely related
ATG8-binding proteins in Arabidopsis, which are unique to
plants and define a stress-induced and ER-associated compart-
ment that may function in a direct, Golgi-independent, ER-to-
vacuole trafficking pathway.1620 ATI1 is also found in plastids
following abiotic stress where it interacts with both ATG8 and
plastid-localized proteins to act in their delivery to the central
vacuole in an ATG5-dependent manner.801

ATM (ATM serine/threonine kinase): A protein kinase that
activates TSC2 via the STK11/LKB1-AMPK cascade in
response to elevated ROS, resulting in inhibition of MTOR and
activation of macroautophagy.774

ATP13A2 (ATPase type 13A2): A transmembrane lysosomal
type 5 P-type ATPase that is mutated in recessive familial atypi-
cal parkinsonism, with effects on lysosomal function.1621 Loss
of ATP13A2 function inhibits the clearance of dysfunctional
mitochondria.1622

ats-1 (Anaplasma translocated substrate-1): A type IV secre-
tion effector of the obligatory intracellular bacterium Ana-
plasma phagocytophilum that binds BECN1 and induces
autophagosome formation; the autophagosomes traffic to, and
fuse with, A. phagocytophilum-containing vacuoles, delivering
macroautophagic cargoes into the vacuole, which can serve as
nutrients for bacterial growth.1623,1624

ATRA (all-trans retinoic acid): A signaling molecule derived
from vitamin A that actives macroautophagy and cell differen-
tiation as demonstrated in leukemia cells.413,1625,1626

AtTSPO (Arabidopsis thaliana TSPO-related): An ER- and
Golgi-localized polytopic membrane protein transiently
induced by abiotic stresses. AtTSPO binds ATG8 and heme in
vivo and may be involved in scavenging of cytosolic porphyrins
through selective macroautophagy.1627

AUTEN-67 (autophagy enhancer-67): An inhibitor of
MTMR14, which enhances macroautophagy.1628

Autophagic lysosome reformation (ALR): A self-regulating
tubulation process in which the macroautophagic generation of
nutrients reactivates MTOR, suppresses macroautophagy and
allows for the regeneration of lysosomes that were consumed as
autolysosomes.527 See also autolysosome.
Autolysosome (AL): A degradative compartment formed by
the fusion of an autophagosome (or initial autophagic vacu-
ole/AVi) or amphisome with a lysosome (also called degra-
dative autophagic vacuole/AVd). Upon completion of
degradation the autolysosome can become a residual
body,1559,1629 or the autolysosomal membrane can be
recycled to generate mature lysosomes during macroauto-
phagic flux. This regenerative process, referred to as auto-
phagic lysosome reformation, relies on the scission of
extruded autolysosomal membrane tubules by the mecha-
noenzyme DNM2 (dynamin 2).527,1630

Autophagic body (AB): The inner membrane-bound struc-
ture of the autophagosome that is released into the vacuolar
lumen following fusion of the autophagosome with the vacuole
limiting membrane. In S. cerevisiae, autophagic bodies can be
stabilized by the addition of the proteinase B inhibitor PMSF to
the medium or by the deletion of the PEP4 or ATG15 genes.
Visualization of the accumulating autophagic bodies by differ-
ential interference contrast using light microscopy is a conve-
nient, but not easily quantified, method to follow
macroautophagy.93

Autophagic cell death: A historically ambiguous term describ-
ing cell death with morphological features of increased auto-
phagic vacuoles. This term is best reserved for cell death
contexts in which specific molecular methods, rather than only
pharmacological or correlative methods, are used to demon-
strate increased cell survival following inhibition of
macroautophagy.
Autophagic stress: A pathological situation in which induc-
tion of autophagy exceeds the cellular capacity to complete
lysosomal degradation and recycling of constituents; may
involve a combination of bioenergetics, acidification and
microtubule-dependent trafficking deficits, to which neurons
may be particularly vulnerable.15

Autophagic vacuole: A term typically used for mammalian
cells that collectively refers to autophagic structures at all stages
of maturation. We recommend using this term when the spe-
cific identity of autophagosomes, amphisomes and autolyso-
somes are not distinguished.
AutophagamiR: A term to describe miRNAs that function in
the regulation of macroautophagy.1631

Autophagist: A researcher working in the field of autophagy.
Autophagolysosome (APL): A degradative compartment
formed by the fusion of an LC3-containing phagosome (see
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LAP) or an autophagosome that has sequestered a partial
or complete phagosome with a lysosome. In contrast to a
phagolysosome, formation of the autophagolysosome involves
components of the macroautophagic machinery. Note that this
term is not interchangeable with “autophagosome” or
“autolysosome”.884

Autophagoproteasome (APP): A cytosolic membrane-bound
compartment denoted by a limiting single, double or multiple
membrane, which contains both LC3 and UPS antigens. The
autophagoproteasome may be derived from the inclusion of
ubiquitin-proteasome structures within either early or late
autophagosomes containing cytoplasmic material at various
stages of degradation.73

Autophagosome (AP): A cytosolic membrane-bound com-
partment denoted by a limiting double membrane (also
referred to as initial autophagic vacuole, AVi, or early autopha-
gosome). The early autophagosome contains cytoplasmic inclu-
sions and organelles that are morphologically unchanged
because the compartment has not fused with a lysosome and
lacks proteolytic enzymes. Notably, the double-membrane
structure may not be apparent with certain types of fixatives.
Although in most cases the term autophagosome refers to a
double-membrane compartment, the late autophagosome may
also appear to have a single membrane (also referred to as an
intermediate or intermediate/degradative autophagic vacuole,
AVi/d).1559,1629

Autophagy: This term summarizes all processes in which
intracellular material is degraded within the lysosome/vacuole
and where the macromolecular constituents are recycled.
Autophagy: A journal devoted to research in the field of auto-
phagy (http://www.tandfonline.com/toc/kaup20/current#.
VdzKoHjN5xu).
Autophagy adaptor: A LIR-containing protein that is not
itself a cargo for macroautophagy.
Autophagy receptor: A LIR/AIM-containing protein that
targets specific cargo for degradation and itself becomes
degraded by macroautophagy (e.g., SQSTM1, NBR1, OPTN,
Atg19).1632

Autophagy-like vesicles (ALVs): Double-membraned vesicles
(70–400 nm) that accumulate in cells infected by a number of
different viruses. These vesicles also have been referred to as
compound membrane vesicles (CMVs) or as double-mem-
braned vesicles (DMVs).
Autosis: A form of macroautophagy-dependent cell death that
requires NaC,KC-ATPase activity (in addition to the
macroautophagy machinery).1080 Morphologically, autosis has
increased numbers of autophagosomes and autolysosomes, and
nuclear convolution during its early stages, followed by focal
swelling of the perinuclear space. Autosis occurs in response to
various types of stress including starvation and hypoxia-
ischemia.
Ayr1: A triacylglycerol lipase involved in macroautophagy in
yeast.1633 Enzymes that participate in the metabolism of lipid
droplets including Dga1 and Lro1 (acyltransferases involved in
triacylglycerol synthesis) and Are1/2 (Acyl-CoA:sterol acyl-
transferases) that generate the major components of lipid drop-
lets, triacylglycerols and steryl esters, are required for efficient
macroautophagy. Deletion of the genes encoding Yeh1 (a steryl
ester hydrolase), Ayr1 or Ldh1 (an enzyme with esterase and

triacylglycerol lipase activities) also partially blocks macroauto-
phagy. Finally, Ice2 and Ldb16, integral membrane proteins
that participate in formation of ER-lipid droplet contact sites
that may be involved in lipid transfer between these sites are
also needed for efficient macroautophagy.
AZD8055: A novel ATP-competitive inhibitor of MTOR
kinase activity. AZD8055 shows excellent selectivity against all
class I PI3K isoforms and other members of the PI3K-like
kinase family. Treatment with AZD8055 inhibits MTORC1
and MTORC2 and prevents feedback to AKT.1195

Bafilomycin A1 (BAFA1/BAF): An inhibitor of the V-type
ATPase as well as certain P-type ATPases that prevents acidifi-
cation and alters the membrane potential of certain compart-
ments; treatment with bafilomycin A1 ultimately results in a
block in fusion of autophagosomes with lysosomes, thus pre-
venting the maturation of autophagosomes into autolyso-
somes.156,157,226 Note that the abbreviation for bafilomycin A1

is not “BFA,” as the latter is the standard abbreviation for bre-
feldin A; nor should BAF be confused with the abbreviation for
the caspase inhibitor boc-asp(o-methyl)fluoremethylketone.
BAG3 (BCL2-associated athanogene 3): A stress-induced
co-chaperone that utilizes the specificity of HSP70 molecu-
lar chaperones toward non-native proteins as the basis for
targeted, ubiquitin-independent macroautophagic degradation in
mammalian cells (“BAG3-mediated selective macroautophagy”);
BAG3 is induced by stress and during cell aging, and interacts
with HSP70 and dynein to target misfolded protein substrates to
aggresomes, leading to their selective degradation.1559,1634 BAG3
also interacts with HSPB6 and HSPB8 to target substrates for
chaperone-assisted selective autophagy via a ubiquitin-dependent
mechanism.1116

BAG6/BAT3 (BCL2-associated athanogene 6): BAG6 tightly
controls macroautophagy by modulating EP300 intracellular
localization, affecting the accessibility of EP300 to its substrates,
TP53 and ATG7. In the absence of BAG6 or when this protein
is located exclusively in the cytosol, macroautophagy is abro-
gated, ATG7 is hyperacetylated, TP53 acetylation is abolished,
and EP300 accumulates in the cytosol, indicating that BAG6
regulates the nuclear localization of EP300.1635

BARA (b-a repeated, autophagy-specific): A domain at the C
terminus of Vps30/Atg6 that is required for targeting PtdIns3K
complex I to the PAS.1636 The BARA domain is also found at
the C terminus of BECN1 and in UVRAG.
Barkor: See ATG14.
Basal autophagy: Constitutive autophagic degradation that
proceeds in the absence of any overt stress or stimulus. Basal
autophagy is important for the clearance of damaged proteins
and organelles in normal cells (especially fully differentiated,
nondividing cells).
BATS (Barkor/Atg14[L] autophagosome targeting sequence)
domain: A protein domain within ATG14 that is required for
the recruitment of the class III PtdIns3K to LC3-containing
puncta during macroautophagy induction; the predicted struc-
ture of the BATS domain suggests that it senses membrane
curvature.550

Bck1: A MAPKKK downstream of Pkc1 and upstream of
Mkk1/2 and Slt2 that controls cell integrity in response to cell
wall stress; Bck1 is required for pexophagy683 and mito-
phagy.508 See also Slt2 and Hog1.
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BCL2 family of proteins: There are 3 general classes of BCL2
proteins; anti-apoptotic proteins include BCL2, BCL2L1/
Bcl-XL, BCL2L2/BCL-W and MCL1 that inhibit macroauto-
phagy, the pro-apoptotic BH3-only proteins include BNIP3,
BAD, BIK, PMAIP1/NOXA, BBC3/PUMA and BCL2L11/Bim/
BimEL that induce macroautophagy, and the pro-apoptotic
effector proteins BAX and BAK1. Interaction of BCL2 with
BECN1 prevents the association of the latter with the class III
PtdIns3K; however, anti-apoptotic BCL2 proteins require BAX
and BAK1 to modulate macroautophagy.1637

BCL2L13/BCL-RAMBO (BCL2-like 13 [apoptosis facilita-
tor]): BCL2L13 is a mammalian holomog of Atg32, which is
located in the mitochondrial outer membrane and has an LC3-
interacting region. BCL2L13 induces mitochondrial fission and
mitophagy.1638 See also Atg32.
BCL10 (B-cell CLL/lymphoma 10): The adaptor protein
BCL10 is a critically important mediator of T cell receptor
(TCR)-to-NFKB signaling. After association with the receptor
SQSTM1, BCL10 is degraded upon TCR engagement. Selective
macroautophagy of BCL10 is a pathway-intrinsic homeostatic
mechanism that modulates TCR signaling to NFKB in effector
T cells.1639

BEC-1: The C. elegans ortholog of BECN1.
Beclin 1: See BECN1.
BECN1/Beclin 1 (beclin 1, autophagy related): A mamma-
lian homolog of yeast Vps30/Atg6 that forms part of the class
III PtdIns3K complex involved in activating macroauto-
phagy.1640 BECN1 interacts with many proteins including
BCL2, VMP1, ATG14, UVRAG, PIK3C3 and RUBCN/Rubicon
through its BH3, coiled-coil and BARA domains, the latter
including the evolutionarily conserved domain (ECD).1641 The
C. elegans ortholog is BEC-1.
BECN1s (BECN1 short isoform): A splice variant of BECN1
that lacks the sequence corresponding to exons 10 and 11;
BECN1s associates with the mitochondrial outer membrane
and is required for mitophagy.1642 BECN1s can bind ATG14
and activate PIK3C3/VPS34, but does not bind UVRAG.
BECN2/Beclin 2 (beclin 2): A mammalian-specific homolog
of yeast Vps30/Atg6 that forms part of the class III PtdIns 3K
complex involved in activating macroautophagy and that also
functions in the endolysosomal degradation of G protein-cou-
pled receptors (independently of the class III PtdIns3K
complex).1643

Betulinic acid: Betulinic acid and its derivatives activate
macroautophagy as a rescue mechanism to deal with damaged
mitochondria;235,1167,1168,1644 however, betulinic acid impairs
lysosomal integrity and converts macroautophagy into a detri-
mental process, leading to accumulation of nonfunctional auto-
lysosomes that can be detected over a long time frame.235

BH domain: BCL2 homology domain. There are 4 domains of
homology, consisting of BH1, BH2, BH3 and BH4.
BH3 domain: A BCL2 homology (BH) domain that is found
in all BCL2 family proteins, whether they are pro-apoptotic or
anti-apoptotic. A BH3 domain is also present in BECN1 and
mediates the interaction with anti-apoptotic proteins possess-
ing a BH3 receptor domain (i.e., BCL2, BCL2L1/bcl-xL,
BCL2L2/BCL-W and MCL1).
BH3-only proteins: A series of proteins that contain a BH3
domain (but not any other BCL2 homology domains). Several

BH3-only proteins (BNIP3, BAD, BIK, PMAIP1/NOXA,
BBC3/PUMA and BCL2L11/Bim/BimEL) can competitively
disrupt the inhibitory interaction between BCL2 and BECN1 to
allow the latter to act as an allosteric activator of PtdIns3K and
to activate macroautophagy.
Bif-1: See SH3GLB1.
BIPASS (BAG-instructed proteasomal to autophagosomal
switch and sorting): Upon proteasomal impairment, cells
switch to autophagy to ensure proper clearance of substrates
(the proteasome-to-autophagy switch). Following this protea-
some impairment, increasing the BAG3:BAG1 ratio ensures
the initiation of BIPASS.1645

BNIP3 (BCL2/adenovirus E1B 19kDa interacting protein
3): Identified in a yeast two-hybrid screen as interacting through
its amino terminal 40 amino acids with BCL2 and adenovirus
E1B.1646 Originally classified as a pro-apoptotic protein, BNIP3
promotes mitophagy through direct interaction with LC3B-II
mediated by a conserved LIR motif that overlaps with its BCL2
interacting region.1647,1648 BNIP3 also modulates mitochondrial
fusion through inhibitory interactions with OPA1 via its carboxy
terminal 10 amino acids.1649 BNIP3 is transcriptionally regulated
by HIF1A,1650 E2Fs,1651 FOXO3,468 TP531652 and NFKB1653 and is
most highly expressed in adult heart and liver.1654,1655

BNIP3L/NIX (BCL2/adenovirus E1B 19kDa interacting pro-
tein 3-like): Identified as a BNIP3 homolog, BNIP3L is
required for mitophagy in red blood cells.1299,1300 Like BNIP3,
BNIP3L is hypoxia-inducible and also interacts with LC3B-II
and GABARAP through a conserved LIR motif in its amino
terminus.210 BNIP3L also interacts with RHEB at the mito-
chondria and the LC3-BNIP3L-RHEB complex promotes mito-
chondrial turnover and efficient mitochondrial function.1656

Bre5: A cofactor for the deubiquitinase Ubp3. See also Ubp3.
C/EBPb: See CEBPB.
C9orf72/ALSFTD: C9orf72 plays an important role in the
regulation of endosomal trafficking, and interacts with RAB
proteins involved in macroautophagy and endocytic trans-
port. C9orf72 contains a DENN (differentially expressed in
normal and neoplasia)-like domain, suggesting that it may
function as a GDP-GTP exchange factor for a RAB GTPase,
similar to other DENN proteins. The normal function of
C9orf72 remains unknown but it is highly conserved and
expressed in many tissues, including the cerebellum and
cortex. Hexanucleotide (GGGGCC) repeat expansions in a
noncoding region of the C9orf72 gene are the major cause
of familial ALS and frontotemporal dementia.1657

C12orf5: See TIGAR.
C12orf44: See ATG101
Ca-P60A/dSERCA: The Drosophila ER Ca2C-translocating
ATPase. Inhibition of Ca-P60A with bafilomycin A1 blocks
autophagosome-lysosome fusion.226
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Cad96Ca/Stit/Stitcher (Cadherin 96Ca): A Drosophila recep-
tor tyrosine kinase that is orthologous to the human proto-
oncogene RET. Cad96Ca suppresses macroautophagy in epi-
thelial tissues through Akt1-TORC1 signaling in parallel to InR
(Insulin-like receptor). This endows epithelial tissues with star-
vation resistance and anabolic development during nutritional
stress.1658

Caf4: A component of the mitochondrial fission complex that
is recruited to degrading mitochondria to facilitate mitophagy-
specific fission.705

CAL-101: A small molecule inhibitor of the PIK3CD/p110d
subunit of class 1A phosphoinositide 3-kinase; treatment of
multiple myeloma cells results in macroautophagy
induction.1659

Calcineurin: See PPP3R1.
CALCOCO2/NDP52 (calcium binding and coiled-coil
domain 2): A receptor that binds to the bacterial ubiquitin
coat and Atg8/LC3 to target invasive bacteria, including S.
typhimurium and Streptococcus pyogenes for autophagosomal
sequestration.878

Calpains: A class of calcium-dependent, non-lysosomal cyste-
ine proteases that cleaves and inactivates ATG5 and the
ATG12–ATG5 conjugate, hence establishing a link between
reduced Ca2C concentrations and induction of
macroautophagy.1660

CALR (calreticulin): A chaperone that is mainly associated
with the ER lumen, where it performs important functions
such as Ca2C buffering, and participates in protein folding and
maturation of, as well as antigen loading on, MHC mole-
cules.1661 An extracellular role for CALR has emerged where it
acts as an “eat me” signal on the surface of cancer cells.1662

Importantly, in the context of Hyp-PDT, macroautophagy sup-
presses CALR surface exposure by reducing ER-associated pro-
teotoxicity.1053,1058,1663 Disruption of LAMP2A also affects
CALR surface exposure.1058

CaMKKb: See CAMKK2.
CAMKK2 (calcium/calmodulin-dependent protein kinase
kinase 2, beta): Activates AMPK in response to an increase in
the cytosolic calcium concentration,1664 resulting in the induc-
tion of macroautophagy.1223

CAPNS1 (calpain, small subunit 1): The regulatory subunit
of micro- and millicalpain; CAPNS1-deficient cells are
macroautophagy defective and display a substantial increase in
apoptotic cell death.1665

CASA (chaperone-assisted selective autophagy): A degrada-
tive process that utilizes the Drosophila co-chaperone Starvin
or its mammalian homolog BAG3 to direct the degradation of
aggregated substrates through the action of HSPA8, HSPB8,
the STUB1/CHIP ubiquitin ligase and SQSTM1.1116 The
requirement for ubiquitination of the substrates (and the
absence of a requirement for the KFERQ motif) along with the
involvement of the ATG proteins differentiate this process
from CMA, which also uses chaperones for lysosome-depen-
dent degradation.
Caspases (cysteine-dependent aspartate-directed proteases):
A class of proteases that play essential roles in apoptosis (for-
merly called programmed cell death type I) and inflammation.
Several pro-apoptotic caspases cleave essential macroautophagy
proteins, resulting in the inhibition of macroautophagy.438 For

example, CASP3 and CASP8 cleave BECN1 and inhibit
macroautophagy.1666,1667

CCCP (carbonyl cyanide m-chlorophenylhydrazone): Proto-
nophore and uncoupler of oxidative phosphorylation in mito-
chondria; stimulates mitochondrial degradation inducing
mitophagic activity.250

CCDC88A/GIV (coiled-coil domain containing 88A): A
guanine nucleotide exchange factor for GNAI3 that acts to
downregulate macroautophagy.1668 CCDC88A disrupts the
GPSM1-GNAI3 complex in response to growth factors, releas-
ing the G protein from the phagophore or autophagosome
membrane; GNAI3-GTP also activates the class I PI3K, thus
inhibiting macroautophagy. See also GNAI3.
CCI-779 (temsirolimus): A water-soluble rapamycin ester
that induces macroautophagy.
Cdc48: Yeast homolog of VCP that is a type II AAAC-ATPase
that extracts ubiquitinated proteins from the membrane as part
of the ER-associated protein degradation pathway and during
ER homeotypic fusion,1669 but is also required for nonselective
macroautophagy.1670 See also Shp1 and VCP.
CD46: A cell-surface glycoprotein that interacts with the scaf-
fold protein GOPC to mediate an immune response to invasive
pathogens including Neisseria and Group A Streptococcus.
Interaction of pathogens via the Cyt1 cytosolic tail induces
macroautophagy, which involves GOPC binding to BECN1.
CD46 is also used as a cellular receptor by several
pathogens.1671

CDKN1A/p21 (cyclin-dependent kinase inhibitor 1A [p21,
Cip1]): A cyclin-dependent kinase inhibitor that is associated
with the induction of macroautophagy in melanoma cells upon
exposure to a telomeric G-quadruplex stabilizing agent.1672

CDKN1B/p27 (cyclin-dependent kinase inhibitor 1B [p27,
Kip1]): A cyclin-dependent kinase inhibitor that is phosphor-
ylated and stabilized by an AMPK-dependent process and stim-
ulates macroautophagy.1673

CDKN2A (cyclin-dependent kinase inhibitor 2A): The
CDKN2A locus encodes 2 overlapping tumor suppressors that
do not share reading frame: p16INK4a and p14ARF. The p14ARF

tumor suppressor protein (p19ARF in mouse) can localize to
mitochondria and induce macroautophagy. Tumor-derived
mutant forms of p14ARF that do not affect the p16INK4a coding
region are impaired for macroautophagy induction, thus impli-
cating this activity in tumor suppression by this commonly
mutated locus.1674 This gene also encodes a smaller molecular
weight variant called smARF. See also smARF.
CEBPB/C/EBPb (CCAAT/enhancer binding protein [C/
EBP], beta): A transcription factor that regulates several auto-
phagy genes; CEBPB is induced in response to starvation, and
the protein levels display a diurnal rhythm.1000

Cell differentiation: This is a process through which a cell
commits to becoming a more specialized cell type having a dis-
tinct form and a specific function(s). Autophagy is activated
during the differentiation of various normal and cancerous
cells, as revealed, for example, in adipocytes, erythrocytes, lym-
phocytes and leukemia cells.452

CEP-1 (C. elegans P-53-like protein): See TP53.
Ceramide: Ceramide is a bioactive sphingolipid, which plays a
mitochondrial receptor role to recruit LC3-II-associated phago-
phores to mitochondria for degradation in response to
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ceramide stress and DNM1L-mediated mitochondrial fission;
the direct binding between ceramide and LC3-II involves F52
and I35 residues of LC3B.591

Chaperone-mediated autophagy (CMA): An autophagic pro-
cess in mammalian cells by which proteins containing a partic-
ular pentapeptide motif related to KFERQ are transported
across the lysosomal membrane and degraded.1675,1676 The
translocation process requires the action of the integral mem-
brane protein LAMP2A and both cytosolic and lumenal
HSPA8.1677,1678

CHKB (choline kinase beta): A kinase involved in phosphati-
dylcholine synthesis; mutations in CHKB cause mitochondrial
dysfunction leading to mitophagy and megaconial congenital
muscular dystrophy.1679

Chloroquine (CQ): Chloroquine and its derivatives (such as 3-
hydroxychloroquine) raise the lysosomal pH and ultimately
inhibit the fusion between autophagosomes and lysosomes,
thus preventing the maturation of autophagosomes into autoly-
sosomes, and blocking a late step of macroautophagy.1680

CHMP1A (charged multivesicular body protein 1A):
CHMP1A is a member of the CHMP family of proteins that
are involved in multivesicular body sorting of proteins to the
interiors of lysosomes. CHMP1A regulates the macroautopha-
gic turnover of plastid constituents in Arabidopsis thaliana.802

Chromatophagy: A form of macroautophagy that involves
nuclear chromatin/DNA leakage captured by autophagosomes
or autolysosomes.803

Ciliophagy: Degradation by macroautophagy of proteins
involved in the process of ciliogenesis (formation of primary
cilia). Ciliophagy can modulate ciliogenesis positively or nega-
tively depending on whether the subset of proteins degraded in
autophagosomes are activators or inhibitors of the formation of
primary cilia.
CISD2/NAF-1 (CDGSH iron sulfur domain 2): An integral
membrane component that associates with the ITPR complex;
CISD2 binds BCL2 at the ER, and is required for BCL2 to bind
BECN1, resulting in the inhibition of macroautophagy.1681

CISD2 was reported to be associated with the ER, but the
majority of the protein is localized at mitochondria, and muta-
tions in CISD2 are associated with Wolfram syndrome 2; accel-
erated macroautophagy in cisd2-/- mice may cause
mitochondrial degradation, leading to neuron and muscle
degeneration.1682

CLEAR (coordinated lysosomal expression and regulation)
gene network: A regulatory pathway involving TFEB, which
regulates the biogenesis and function of the lysosome and
associated pathways including macroautophagy.636 See also
PPP3R1 and TFEB.
CLEC16A (C-type lectin domain family 16, member A): See
Ema.
Clg1: A yeast cyclin-like protein that interacts with Pho85 to
induce macroautophagy by inhibiting Sic1.1683

CLN3 (ceroid-lipofuscinosis, neuronal 3): An endosomal/
lysosomal protein whose deficiency causes inefficient autoly-
sosome clearance and accumulation of autofluorescent lyso-
somal storage material and ATP5G/subunit c (ATP
synthase, H+ transporting, mitochondrial Fo complex,
subunit C [subunit 9]).1684,1685 In human, recessive CLN3
mutations cause juvenile neuronal ceroid lipofuscinosis

(JNCL; Batten disease). Recessive CLN3 mutations have also
been reported in cases of autophagic vacuolar myopathy
and non-syndromic retinal disease.1686,1687

COG (conserved oligomeric Golgi) complex: A cytosolic
tethering complex that functions in the fusion of vesicles within
the Golgi complex, but also participates in macroautophagy
and facilitates the delivery of Atg8 and Atg9 to the PAS.1688

Connexins: See gap junction protein.
CORM (CO-releasing molecule): Carbon monoxide, partly
through activation of macroautophagy, exerts cardioprotective
effects in a mouse model of metabolic syndrome-induced myo-
cardial dysfunction.1689

Corynoxine/Cory: An oxindole alkaloid isolated from
Uncaria rhynchophylla (Miq.) Jacks (Gouteng in Chinese)
that is a Chinese herb that acts as a MTOR-dependent
macroautophagy inducer.1690

Corynoxine B/Cory B: An isomer of corynoxine, also iso-
lated from the Chinese herb Uncaria rhynchophylla (Miq.)
Jacks that acts as a BECN1-dependent macroautophagy
inducer.1691

Crinophagy: Selective degradation of secretory granules by
fusion with the lysosome, independent of macroautophagy.1692

See also zymophagy.
Cryptides: Peptides with a cryptic biological function that are
released from cytoplasmic proteins by partial degradation or
processing through macroautophagy (e.g., neoantimocrobial
peptide released from ribosomal protein FAU/RPS30).1693

CSNK2 (casein kinase 2): A serine/threonine protein kinase
that disrupts the BECN1-BCL2 complex to induce macroauto-
phagy.1694 CSNK2 also phosphorylates ATG16L1, in particular
on Ser139, to positively regulate macroautophagy. See also
PPP1.
Ctl1: A multi-transmembrane protein in the fission yeast
Schizosaccharomyces pombe that binds to Atg9 and is required
for autophagosome formation.1695

Cue5: A yeast receptor similar to mammalian SQSTM1 that
binds ubiquitin through its CUE domain and Atg8 via its C-ter-
minal AIM.451 Some Cue5-dependent substrates are ubiquiti-
nated by Rsp5. See also CUET.
CUET (Cue5/TOLLIP): A family of macroautophagy receptor
proteins containing a CUE domain that are involved in macro-
autophagic clearance of protein aggregates. See also Cue5.451

CUP-5 (coelomocyte uptake defective mutant-5): The ortho-
log of human MCOLN1 (mucolipin 1), in C. elegans CUP-5
localizes to lysosomes, and is required for endo-lysosomal
transport, lysosomal degradation,1696-1698 and proteolytic deg-
radation in autolysosomes.1699

CUPS (compartment for unconventional protein secretion):
A compartment located near ER exit sites that is involved in
the secretion of Acb1; Grh1 is localized to the CUPS mem-
brane, and Atg8 and Atg9 are subsequently recruited under
starvation conditions.1700 Atg8 and Atg9 function in Acb1
secretion, but rapamycin-induced macroautophagy does not
result in CUPS formation.
Cvt body: The single-membrane vesicle present inside the vac-
uole lumen that results from the fusion of a Cvt vesicle with the
vacuole.131

Cvt complex: A cytosolic protein complex consisting primarily
of prApe1 dodecamers in the form of an Ape1 complex that are

194 D. J. KLIONSKY ET AL.



bound to the Atg19 reeptor. This complex may also contain
Ams1 and Ape4, but prApe1 is the predominant component.131

Cvt vesicle: The double-membrane sequestering vesicle of the
Cvt pathway.131

Cysmethynil: A small-molecule inhibitor of ICMT (isoprenyl-
cysteine carboxyl methyltransferase); treatment of PC3 cells
causes an increase in LC3-II and cell death with macroautopha-
gic features.1701

Cytoplasm-to-vacuole targeting (Cvt) pathway: A constitu-
tive, biosynthetic pathway in yeast that transports resident
hydrolases to the vacuole through a selective macroautophagy-
like process.1702 See also Ams1, Ape1, Ape4 and Atg19.
DAF-2 (abnormal dauer formation): Encodes the C. elegans
insulin/IGF1-like receptor homolog that acts through a con-
served PI3K pathway to negatively regulate the activity of
DAF-16/FOXO and limit life span. DAF-2 inhibits macroauto-
phagy by a mechanism that remains to be elucidated.271,1703,1704

DAF-16: A C. elegans FOXO transcription factor ortholog.
DALIS (dendritic cell aggresome-like induced structures):
Large poly-ubiquitinated protein aggregates formed in den-
dritic cells. These are similar to aggresomes, but they do not
localize to the microtubule-organizing center. DALIS are tran-
sient in nature and small DALIS have the ability to move and
form larger aggregates; they require proteasome activity to clear
them.318 See also ALIS.
DAMP (danger/damage-associated molecular pattern):
DAMPs are recognized by receptors (DDX58/RIG-I-like recep-
tors [RLRs] or TLRs) of the innate surveillance response sys-
tem. DAMPs include “non-self” molecules such as viral RNA,
or products of necroptosis such as HMGB1.295 Response
includes activation of macroautophagy to clear the DAMP mol-
ecule(s).1705

DAP (death-associated protein): A conserved phosphopro-
tein that is a substrate of MTOR and inhibits macroautophagy;
inhibition of MTOR results in dephosphorylation of DAP and
inhibition of macroautophagy, thus limiting the magnitude of
the autophagic response.1706

DAPK1 (death-associated protein kinase 1): A kinase that
phosphorylates Thr119 of BECN1 to activate it by causing dis-
sociation from BCL2L1/Bcl-xL and BCL2, thus activating
macroautophagy.1707

DAPK3 (death-associated protein kinase 3): See Sqa.
DCN (decorin): An archetypical member of the small leucine
rich proteoglycans that functions as a soluble pro-autophagic
and pro-mitophagic signal. DCN acts as a partial agonist for
KDR/VEGFR2 and MET for endothelial cell macroautophagy
and tumor cell mitophagy, respectively. DCN elicits these pro-
cesses in a PEG3-dependent manner to induce endothelial cell
macroautophagy, and in a TCHP/mitostatin-dependent man-
ner for tumor cell mitophagy. It is postulated that induction of
these fundamental cellular programs underlies the oncostatic
and angiostatic properties of DCN.1708

Dcp-1 (death caspase-1): A Drosophila caspase that localizes
to mitochondria and positively regulates macroautophagic
flux.1709

Dcp2/DCP2 (decapping mRNA 2): A decapping enzyme
involved in the downregulation of ATG transcripts.1710 See also
Dhh1.

DCT-1: The C. elegans homolog of BNIP3 and BNIP3L, which
functions downstream of PINK-1 and PDR-1 to regulate mito-
phagy under conditions of oxidative stress.1275

DDIT4/DIG2/RTP801/REDD1 (DNA-damage-inducible
transcript 4): The DDIT4 protein is notably synthesized in
response to glucocorticoids or hypoxia and inhibits MTOR,
resulting in the induction of macroautophagy and enhanced
cell survival.1711

Deconjugation: The Atg4/ATG4-dependent cleavage of Atg8–
PE/LC3-II that releases the protein from PE (illustrated for the
nascent yeast protein that contains a C-terminal arginine). The
liberated Atg8/LC3 can subsequently go through another round
of conjugation. Atg8�, activated Atg8.

Decorin: See DCN.
Decoupled signaling: When limited for an auxotrophic
requirement, yeast cells fail to induce the expression of auto-
phagy genes even when growing slowly, which contributes to
decreased cell viability.1712

Desat1: A Drosophila lipid desaturase that localizes to auto-
phagosomes under starvation conditions; the Desat mutant is
defective in macroautophagy induction.1713

DFCP1: See ZFYVE1.
Dga1: See Ayr1.
Dhh1: An RCK member of the RNA-binding DExD/H-box
proteins involved in mRNA decapping; Dhh1 in S. cerevisiae
and Vad1 in Cryptococcus neoformans bind certain ATG tran-
scripts, leading to the recruitment of the Dcp2 decapping
enzyme and mRNA degradation.1710 See also Dcp2.
Diacylglycerol: A lipid second messenger that contributes to
macroautophagic targeting of Salmonella-containing
vacuoles.1714

DIG2: See DDIT4.
DIRAS3 (DIRAS family, GTP-binding RAS-like 3): A pro-
tein that interacts with BECN1, displacing BCL2 and blocking
BECN1 dimer formation, thus promoting the interaction of
BECN1 with PIK3C3 and ATG14, resulting in macroautophagy
induction.1715

Dnm1: A dynamin-related GTPase that is required for both
mitochondrial and peroxisomal fission. Dnm1 is recruited
to degrading mitochondria by Atg11, or to degrading perox-
isomes by both Atg11 and Atg36 (or PpAtg30), to mediate
mitophagy- or pexophagy-specific fission.705,1716 See also
DNM1L.
DNM1L/Drp1 (dynamin 1-like): The mammalian homolog of
yeast Dnm1. PRKA-mediated phosphorylation of rat DNM1L
on Ser656 (Ser637 in humans) prevents both mitochondrial fis-
sion and some forms of mitophagy in neurons.1717 See also
Dnm1.
DNM2 (dynamin 2): DNM2 is recruited to extruded autolyso-
somal membranes during the process of autophagic lysosome
reformation and catalyzes their scission, promoting the
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regeneration of nascent protolysosomes during macroautopha-
gic flux.1630 See also autophagic lysosome reformation.
dom (domino): A Drosophila SWI2/SNF2 chromatin remod-
eling protein. A loss-of-function mutation at the dom locus
synergizes with genotypes depressed in macroautophagy path-
way activity.1718

Dopamine: A neurotransmitter whose accumulation outside
vesicles induces macroautophagy and cell degeneration.1719

DOR: See TP53INP2.
DRAM1 (damage-regulated autophagy modulator
1): DRAM1 gene expression is induced by TP53 in response to
DNA damage that results in cell death by macroautophagy.580

DRAM1 is an endosomal-lysosomal membrane protein that is
required for the induction of macroautophagy. The knockdown
of DRAM1 causes downregulation of VRK1 by macroauto-
phagy, similar to the effect of knocking down BECN1.
Draper: A Drosophila homolog of the Caenorhabditis elegans
engulfment receptor CED-1 that is required for macroauto-
phagy associated with cell death during salivary gland degrada-
tion, but not for starvation-induced macroautophagy in the fat
body.1720

Drs: See SRPX.
E2F1: A mammalian transcription factor that upregulates the
expression of BNIP3, LC3, ULK1 and DRAM1 directly, and
ATG5 indirectly.614 E2F1 plays a role during DNA damage-
and hypoxia-induced macroautophagy.
EAT (early autophagy targeting/tethering) domain: The C-
terminal domain of Atg1, which is able to tether vesicles.1721

This part of the protein also contains the binding site for Atg13.
EAT-2 (eating abnormal): A ligand-gated ion channel subunit
closely related to the non-alpha subunit of nicotinic acetylcho-
line receptors, which functions to regulate the rate of pharyn-
geal pumping. eat-2 loss-of-function mutants are dietary
restricted and require macroautophagy for the extension of life
span.1703,1722,1723

EDTP: See MTMR14.
EEA1 (early endosome antigen 1): A RAB5 effector used as a
common marker for early endosome vesicles.
EEF1A1/EF1A/eF1a (eukaryotic translation elongation fac-
tor 1 alpha 1): Multifunctional member of the family of G-
proteins with different cellular variants. The lysosomal variant
of this protein acts coordinately with GFAP at the lysosomal
membrane to modulate the stability of the CMA translocation
complex. Release of membrane bound EEF1A1 in a GTP-
dependent manner promotes disassembly of the translocation
complex and consequently reduces CMA activity.1724

eF1a: See EEF1A1.
EGFR (epidermal growth factor receptor): A tyrosine kinase
receptor that negatively regulates macroautophagy through
PI3K, AKT, and MTOR modulation.523

EGO complex: The Ego1, Ego3 and Gtr2 proteins form a com-
plex that positively regulates yeast microautophagy.1725

eIF2a kinase: See EIF2S1 kinase.
EIF2AK2/PKR (eukaryotic translation initiation factor 2-
alpha kinase 2): A mammalian EIF2S1/EIF2 alpha kinase that
induces macroautophagy in response to viral infection.558

EIF2AK3/PERK (eukaryotic translation initiation factor 2-
alpha kinase 3): A mammalian EIF2S1/EIF2 alpha kinase that
may induce macroautophagy in response to ER stress.602

EIF2S1 (eukaryotic translation initiation factor 2, subunit 1,
alpha, 35kDa): An initiation factor that is involved in stress-
induced translational regulation of macroautophagy.
EIF2S1/eIF2a kinase: There are 4 mammalian EIF2S1/EIF2
alpha kinases that respond to different types of stress. EIF2AK2
and EIF2AK3 induce macroautophagy in response to virus
infection and ER stress, respectively.602,1726 See also Gcn2,
EIF2AK2 and EIF2AK3.
Elaiophylin: A natural compound late-stage macroautophagy
inhibitor that results in lysosomal membrane permeabilization
and decreased cell viability.1727 See also LMP.
Ema (endosomal maturation defective): Ema is required for
phagophore expansion and for efficient mitophagy in Dro-
sophila fat body cells. It is a transmembrane protein that
relocalizes from the Golgi to phagophores following starva-
tion.1728 The vertebrate ortholog CLEC16A regulates mito-
phagy and is a susceptibility locus for many autoimmune
disorders.1729,1730

Embryoid bodies/EBs: Three-dimensional aggregates of plu-
ripotent stem cells including embryonic stem cells and induced
pluripotent stem cells.
EMC6/TMEM93 (ER membrane protein complex subunit
6): A novel ER-localized transmembrane protein, which inter-
acts with both RAB5A and BECN1 and colocalizes with the
omegasome marker ZFYVE1/DFCP1.1731 EMC6 enhances
autophagosome formation when overexpressed.
Endorepellin: The anti-angiogenic C-terminal cleavage prod-
uct of HSPG2/perlecan. Endorepellin engages KDR/VEGFR2
and ITGA2/a2b1 integrin in a novel mechanism termed dual
receptor antagonism for achieving endothelial cell specificity
and function. Endorepellin evokes endothelial cell macroauto-
phagy downstream of KDR and in a PEG3-dependent
manner.1732

Endosomal microautophagy (e-MI): A form of autophagy in
which cytosolic proteins are sequestered into late endosomes/
MVBs through a microautophagy-like process. Sequestration
can be nonselective or can occur in a selective manner medi-
ated by HSPA8. This process differs from chaperone-mediated
autophagy as it does not require substrate unfolding and it is
independent of the CMA receptor LAMP2A.1115 This process
occurs during MVB formation and requires the ESCRT-I and
ESCRT-III protein machinery. See also endosome and multive-
sicular body.
Endosome: The endosomal compartments receive mole-
cules engulfed from the extracellular space and are also in
communication with the Golgi apparatus. The endosomal
system can be viewed as a series of compartments starting
with the early endosome. From there, cargos can be
recycled back to the plasma membrane; however, more
typically, internalized cargo is transported to the late endo-
some/MVB. These latter compartments can fuse with lyso-
somes. Ensosomal maturation from early endosomes is a
dynamic process that involves a progressive reduction in
lumenal pH. In mammalian cells, early and/or multivesicu-
lar endosomes fuse with autophagosomes to generate
amphisomes.
EP300/p300 (E1A binding protein p300): An acetyltransfer-
ase that inhibits macroautophagy by acetylating ATG5, ATG7,
ATG12 and/or LC3.656 EP300 is also involved in the GLI3-
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dependent transcriptional activation of VMP1 in cancer
cells.634 See also GLI3.
EPAS1/HIF2A/Hif-2a (endothelial PAS domain protein
1): Part of a dimeric transcription factor in which the a

subunit is regulated by oxygen; the hydroxylated protein is
degraded by the proteasome. EPAS1 activation in mouse
liver augments peroxisome turnover by pexophagy, and the
ensuing deficiency in peroxisomal function encompass
major changes in the lipid profile that are reminiscent of
peroxisomal disorders.773

epg (ectopic PGL granules) mutants: C. elegans mutants that
are defective in the macroautophagic degradation of PGL-1,
SEPA-1 and/or SQST-1.633 The EPG-3, ATG-11/EPG-7, EPG-
8 and EPG-9 proteins are homologs of VMP1, Atg11/RB1CC1,
ATG14 and ATG101, respectively, whereas ATG-13/EPG-1
may be a homolog of ATG13.1733

EPG-1: See ATG-13.
EPG-2: A nematode-specific coiled-coil protein that functions
as a scaffold protein mediating the macroautophagic degrada-
tion of PGL granule in C. elegans. EPG-2 directly interacts with
SEPA-1 and LGG-1. EPG-2 itself is also degraded by
macroautophagy.633

EPG-3: A metazoan-specific macroautophagy protein that is
the homolog of human VMP1. EPG-3/VMP1 are involved in
an early step of autophagosome formation.633

EPG-4: An ER-localized transmembrane protein that is the
homolog of human EI24/PIG8. EPG-4 is conserved in multicel-
lular organisms, but not in yeast. EPG-4 functions in the pro-
gression of omegasomes to autophagosomes.633

EPG-5: A novel macroautophagy protein that is conserved in
multicellular organisms. EPG-5 regulates lysosome degradative
capacity and thus could be involved in other pathways that ter-
minate at this organelle.633 Mutations in the human EPG5 gene
lead to Vici syndrome.1734

EPG-6: AWD40 repeat PtdIns3P-binding protein that directly
interacts with ATG-2.563 EPG-6 is the C. elegans functional
homolog of yeast Atg18 and probably of mammalian WDR45/
WIPI4. EPG-6 is required for the progression of omegasomes
to autophagosomes. See also Atg18.
EPG-7: See ATG-11.
EPG-8: An essential macroautophagy protein that functions
as the homolog of yeast Atg14 in C. elegans.1269 EPG-8 is a
coiled-coil protein and directly interacts with the C. elegans
BECN1 homolog BEC-1. See also Atg14.
EPG-9: A protein with significant homology to mammalian
ATG101 in C. elegans.1268 EPG-9 directly interacts with
ATG-13/EPG-1. See also ATG101.
EPG-11: See PRMT-1.
EPM2A/laforin (epilepsy, progressive myoclonus type 2A,
Lafora disease [laforin]): A member of the dual specificity
protein phosphatase family that acts as a positive regulator of
macroautophagy probably by inhibiting MTOR, as EPM2A
deficiency causes increased MTOR activity.1736 Mutations in
the genes encoding EPM2A or the putative E3-ubiquitin ligase
NHLRC1/malin, which form a complex, are associated with the
majority of defects causing Lafora disease, a type of progressive
neurodegeneration. See also NHLRC1.

ER-phagy: See reticulophagy.
ERK1: See MAPK3.
ERK2: See MAPK1.
ERMES (ER-mitochondria encounter structure): A complex
connecting the endoplasmic reticulum and the mitochon-
drial outer membrane in yeast. The core components of
ERMES are the mitochondrial outer membrane proteins
Mdm10 and Mdm34, the ER membrane protein Mmm1,
and the peripheral membrane protein Mdm12. ERMES
plays an important role in yeast mitophagy presumably by
supporting the membrane lipid supply for the growing
phagophore membrane.1737

Everolimus (RAD-001): An MTOR inhibitor similar to rapa-
mycin that induces macroautophagy.
ESC8: A macroautophagy inducer that bears a cationic estra-
diol moiety and causes downregulation of p-MTOR and its
downstream effectors including p-RPS6KB.1738

EVA1A/FAM176A/TMEM166 (eva-1 homolog A [C. ele-
gans]): An integral membrane protein that induces
macroautophagy and cell death when overexpressed.1739,1740

See also TMEM166.
EXOC2/SEC5L1 (exocyst complex component 2): A compo-
nent of the exocyst complex; EXOC2 binds RALB, BECN1,
MTORC1, ULK1 and PIK3C3 under nutrient-rich conditions
and prevents these components from interacting with EXOC8/
EXO84, thus inhibiting macroautophagy.1741 See also RALB
and EXOC8.
EXOC8/EXO84 (exocyst complex component 8): A compo-
nent of the exocyst complex, and an effector of RALB that
is involved in nucleation and/or expansion of the phago-
phore; EXOC8 binds RALB under nutrient-poor conditions,
and stimulates the formation of a complex that includes
ULK1 and the class III PtdIns3K.1741 See also RALB and
EXOC2.
Exophagy: A process in yeast and mammalian cells that is
used for protein secretion that is independent of the secretory
pathway (i.e., unconventional secretion), and dependent on
Atg proteins and the Golgi protein Grh1; Acb1 (acyl-coenzyme
A-binding protein) uses this route for delivery to the cell sur-
face.1742-1744 See also secretory autophagy.
FAM48A: See SUPT20H.
FAM134B (family with sequence similarity 134, member
B): ER-resident receptors that function in reticulophagy
through interaction with LC3 and GABARAP.845

FAM176A: See EVA1A.
Fasudil: A ROCK (Rho-associated, coiled-coil containing pro-
tein kinase) inhibitor that enhances macroautophagy.1745

Far11: A MAP kinase target that is involved in the dephos-
phosphorylation of Atg13 and the induction of macroauto-
phagy.1746 Far11 interacts with Pph21, Pph22 and Pph3 and
may coordinate different cellular stress responses by regulating
phosphatase activity.
Ferritinophagy: The selective degradation of ferritin through a
macroautophagy-like process.804 This process involves a speci-
ficity receptor, NCOA4.
FEZ1 (fasciculation and elongation protein zeta 1 [zygin
I]): FEZ1 interacts with ULK1 or with UVRAG, and forms a
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trimeric complex with either component by also binding
SCOC.1747 FEZ1 appears to be a negative regulator of
macroautophagy when it is bound only to ULK1, and this inhi-
bition is relieved upon formation of the trimeric complex con-
taining SCOC. Similarly, the SCOC-FEZ1-UVRAG complex is
inhibitory; dissociation of UVRAG under starvation conditions
allows the activation of the class III PtdIns3K complex. See also
SCOC.
FIP200: See RB1CC1.
FIG4 (FIG4 phosphoinositide 5-phosphatase): A phospho-
lipid phosphatase that controls the generation and turnover of
the PtdIns(3,5)P2 phosphoinositide. Loss of FIG4 causes a
decrease of PtdIns(3,5)P2 levels, enlargement of late endosomes
and lysosomes and cytosolic vacuolization.1748 In human, reces-
sive mutations in FIG4 are responsible for the neurodegenera-
tive Yunis-Var�on syndrome, familial epilepsy with
polymicrogyria, and Charcot-Marie-Tooth type 4J neuropathy.
Haploinsufficiency of FIG4 may also be a risk factor for amyo-
trophic lateral sclerosis.
Fis1: A component of the mitochondrial fission complex. Fis1
also plays a role in peroxisomal fission by recruiting Dnm1 to
peroxisomes; it interacts with Atg11 to facilitate mitophagy-
and pexophagy-specific fission.705,1716 See also Dnm1.
FKBP1A (FK506 binding protein 1A, 12kDa): An immuno-
philin that forms a complex with rapamycin and inhibits
MTOR.
FKBP5/FKBP51 (FK506 binding protein 5): An immuno-
philin that forms a complex with FK506 and rapamycin;
FKBP5 promotes macroautophagy in irradiated melanoma
cells, thus enhancing resistance to radiation therapy.1749 FKBP5
also associates with BECN1 and shows synergistic effects with
antidepressants on macroautophagy in cells, mice and humans,
possibly explaining its requirement in antidepressant action.1750

FKBP12: See FKBP1A.
FKBP51: See FKBP5.
FLCN (folliculin): A tumor suppressor mutated in Birt-Hogg-
Dub�e syndrome.1751 FLCN interacts with GABARAP and this
association is modulated by the presence of either FNIP1 (folli-
culin interacting protein 1) or FNIP2. ULK1 can induce FLCN
phosphorylation, which modulates the FLCN-FNIP-
GABARAP interaction.1752 FLCN is also linked to MTOR mod-
ulation through its interaction with the RRAG GTPases on
lysosomes.1753,1754

FM 4–64: A lipophilic dye that primarily stains endocytic
compartments and the yeast vacuole limiting membrane.
FNBP1L (formin binding protein 1-like): An F-BAR-con-
taining protein that interacts with ATG3 and is required for the
macroautophagy-dependent clearance of S. typhimurium, but
not other types of autophagy.1755

FNIP1 (folliculin interacting protein 1): An interactor with
the tumor suppressor FLCN. FNIP1464 and its homolog
FNIP21752 can also interact with GABARAP.
FOXO1 (forkhead box O1): A mammalian transcription
factor that regulates macroautophagy independent of tran-
scriptional control; the cytosolic form of FOXO1 is acety-
lated after dissociation from SIRT2, and binds ATG7 to
allow induction of macroautophagy in response to oxidative

stress or starvation.1756 FOXO1 can also be deacetylated by
SIRT1, which leads to upregulation of RAB7 and increased
autophagic flux.1757 The C. elegans ortholog is DAF-16. See
also SIRT1.
FOXO3 (forkhead box O3): A transcription factor that stimu-
lates macroautophagy through transcriptional control of auto-
phagy-related genes.642,1758 The C. elegans ortholog is DAF-16.
Frataxin: See FXN.
Fsc1: A type I transmembrane protein localizing to the vacuole
membrane in the fission yeast S. pombe; required for the fusion
of autophagosomes with vacuoles.1695

FUNDC1 (FUN14 domain containing 1): A mitochondrial
outer membrane protein that functions as a receptor for hyp-
oxia-induced mitophagy.1759 FUNDC1 contains a LIR and
binds LC3.
FUS (FUS RNA binding protein): A DNA/RNA binding
protein involved in DNA repair, gene transcription, and
RNA splicing. FUS has also been implicated in tumorigene-
sis and RNA metabolism, and multiple missense and non-
sense mutations in FUS are associated with amyotrophic
lateral sclerosis. Macroautophagy reduces FUS-positive
stress granules.1760

FXN (frataxin): A nuclear-encoded protein involved in iron-
sulfur cluster protein biogenesis. Reduced expression of the C.
elegans homolog, FRH-1, activates autophagy in an evolution-
arily conserved manner.1274

FYCO1 (FYVE and coiled-coil domain containing 1): A pro-
tein that interacts with LC3, PtdIns3P and RAB7 to move auto-
phagosomes toward the lysosome through microtubule plus
end-directed transport.1761

Gai3: See GNAI3.
GABA (g-aminobutyric acid): GABA inhibits the selective
autophagy pathways mitophagy and pexophagy through Sch9,
leading to oxidative stress, which can be mitigated by the Tor1
inhibitor rapamycin.1762

GNAI3 (guanine nucleotide binding protein [G protein],
alpha inhibiting activity polypeptide 3): A heterotrimeric G
protein that activates macroautophagy in the GDP-bound
(inactive) form, and inhibits it when bound to GTP (active
state).1763,1764 See also GPSM1, RGS19, MAPK1/3 and
CCDC88A.
GABARAP [GABA(A) receptor-associated protein]: A
homolog of LC3.534,1765 The GABARAP family includes
GABARAP, GABARAPL1/Atg8L/GEC1, and GABARAPL2/
GATE-16/GEF2. The GABARAP proteins are involved in auto-
phagosome formation and cargo recruitment.142

GADD34: See PPP1R15A.
GAIP: See RGS19.
Gap junction proteins/connexins: Multispan membrane pro-
teins that mediate intercellular communication through the
formation of hemi-channels or gap junctions at the plasma
membrane. These proteins act as endogenous inhibitors of
autophagosome formation by directly interacting and seques-
tering at the plasma membrane essential ATG proteins
required for autophagosome biogenesis.
GATA1: A hematopoietic GATA transcription factor,
expressed in erythroid precursors, megakaryocytes, eosinophils,
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and mast cells, that provides the differentiating cells with the
requisite macroautophagy machinery and lysosomal compo-
nents to ensure high-fidelity generation of erythrocytes.641 See
also ZFPM1/FOG1.
GATE-16: See GABARAP.
Gaucher disease (GD): Caused by mutations in the gene
encoding GBA/glucocerebrosidase (glucosidase, beta, acid),
Gaucher disease is the most common of the lysosomal storage
disorders and can increase susceptibility to Parkinson dis-
ease.1766-1768

GBA/glucocerbrosidase (glucosidase, beta acid): A lysosomal
enzyme that breaks down glucosylceramide to glucose and cer-
amide. Mutations cause Gaucher disease and are associated
with increased risk of Parkinson disease. Loss of GBA is also
associated with impaired autophagy and failure to clear dys-
functional mitochondria, which accumulate in the cell.1769

Gcn2: A mammalian and yeast EIF2S1/eIF2a serine/threonine
kinase that causes the activation of Gcn4 in response to amino
acid depletion, thus positively regulating macroautophagy.1726

Gcn4: A yeast transcriptional activator that controls the syn-
thesis of amino acid biosynthetic genes and positively regulates
macroautophagy in response to amino acid depletion.1726

GCN5L1: A component of the mitochondrial acetyltransferase
activity that modulates mitophagy and mitochondrial
biogenesis.1770

GEEC (GPI-enriched endocytic compartments) pathway: A
form of clathrin-independent endocytosis that contributes
membrane for phagophore expansion.1771

GFAP (glial fibrilary acid protein): intermediate filament
protein ubiquitously distributed in all cell types that bears func-
tions beyond filament formation. Monomeric and dimeric
forms of this protein associate with the cytosolic side of the
lysosomal membrane and contribute to modulating the stability
of the CMA translocation complex in a GTP-dependent man-
ner coordinated with EEF1A/eF1a also at the lysosomal
membrane.1724

GFER/ERV1 (growth factor, augmenter of liver regenera-
tion): A flavin adenine dinucleotide-dependent sulfhydryl oxi-
dase that is part of a disulfide redox system in the
mitochondrial intermembrane space, and is also present in the
cysosol and nucleus. Downregulation of GFER results in ele-
vated levels of the mitochondrial fission GTPase DNM1L/
DRP1, and decreased mitophagy.1772

GILT: See IFI30.
GIV/Girdin: See CCDC88A.
GLI3 (GLI family zinc finger 3): A C2H2 type of zinc finger
transcription factor that plays a role in the transcriptional acti-
vation of VMP1 during the induction of autophagy by the
oncogene KRAS.634 See also EP300.
Glycophagy (glycogen autophagy): The selective sequestration
of glycogen and its subsequent vacuolar hydrolysis to produce
glucose; this can occur by a micro- or macroautophagic process
and has been reported in mammalian newborns and adult car-
diac tissues as well as filamentous fungi.46,1308,1309,1773-1775

GOPC/PIST/FIG/CAL (Golgi-associated PDZ and coiled-coil
motif-containing protein): Interacts with BECN1, and the
SNARE protein STX6 (syntaxin 6). GOPC can induce auto-
phagy via a CD46-Cyt-1 domain-dependent pathway following
pathogen invasion.1671

Gp78: See AMFR.
GPNMB (glycoprotein [transmembrane] nmb): A protein
involved in kidney repair that controls the degradation of phag-
osomes through macroautophagy.1776

GPSM1/AGS3 (G-protein signaling modulator 1): A guanine
nucleotide dissociation inhibitor for GNAI3 that promotes
macroautophagy by keeping GNAI3 in an inactive state.1668

GPSM1 directly binds LC3 and recruits GNAI3 to phago-
phores or autophagosomes under starvation conditions to
promote autophagosome biogenesis and/or maturation. See
also GNAI3.
Granulophagy: The process of bulk autophagic degradation of
mRNP granules. The process has been characterized in S. cere-
visiae and mammalian cells and is dependent on Cdc48/VCP
in addition to the core autophagic machinery. The process is
partially impaired by disease-causing mutations in VCP.1777

GSK3B/GSK-3b (glycogen synthase kinase 3 beta): A regula-
tor of macroautophagy. GSK3B may act positively by inhibiting
MTOR through the activation of TSC1/2 and by activating
ULK1 through KAT5.1778 GSK3B modulates protein aggrega-
tion through the phosphorylation of the macroautophagy
receptor NBR1.1529 GSK3B, however, it is also reported to be a
negative regulator of macroautophagy. See also KAT5.
HDAC6 (histone deacetylase 6): A microtubule-associated
deacetylase that interacts with ubiquitinated proteins. HDAC6
stimulates autophagosome-lysosome fusion by promoting the
remodeling of F actin, and the quality control function of
macroautophagy.665,666,1779 HDAC is also a biomarker of
aggresomes.1780

HIF1A/HIF-1a (hypoxia-inducible factor 1, alpha subunit
[basic helix-loop-helix transcription factor]): A dimeric tran-
scription factor in which the a subunit is regulated by oxygen;
the hydroxylated protein is degraded by the proteasome.
HIF1A-mediated expression of BNIP3 results in the disruption
of the BCL2-BECN1 interaction, thus inducing macroauto-
phagy.1781,1782 HIF1A also regulates xenophagic degradation of
intracellular E. coli.1783

HK2 (hexokinase 2): The enzyme responsible for phosphory-
lation of glucose at the beginning of glycolysis; during glucose
starvation, HK2 switches from a glycolytic role and directly
binds to and inhibits MTORC1 to induce macroautophagy.1784

HLH-30: C. elegans ortholog of the helix-loop-helix transcrip-
tion factor TFEB.
HMGB1 (high mobility group box 1): A chromatin-associ-
ated nuclear protein that translocates out of the nucleus in
response to stress such as ROS; HMGB1 binds to BECN1, dis-
placing BCL2, thus promoting macroautophagy and inhibiting
apoptosis.295 In addition, macroautophagy promotes the release
of HMGB1 from the nucleus and the cell, and extracellular
HMGB1 can further induce macroautophagy through binding
AGER.1785,1786 See also AGER.
Hog1: A yeast MAPK involved in hyperosmotic stress, which
is a homolog of mammalian MAPK/p38; Hog1 is required for
mitophagy, but not other types of selective autophagy or nonse-
lective autophagy.1787 See also Pbs2, Slt2 and MAPK.
Hrr25: A casein kinase d/e homologous protein kinase regulat-
ing diverse cellular processes such as DNA repair and vesicular
trafficking. Hrr25 phosphorylates the C terminus of Atg19,
which is essential for Atg19 binding to Atg11 and subsequent
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Cvt vesicle formation.1788 Hrr25 also phosphorylates Atg36,
and this phosphorylation is required for the interaction of
Atg36 with Atg11 and subsequent pexophagy.1789

HSC70: See HSPA8.
HSP70 (heat shock protein 70): The major cytosolic heat
shock-inducible member of the HSP70 family. This form accu-
mulates in the lysosomal lumen in cancer cells. HSP70 is also a
biomarker of aggresomes.1794 See also HSPA1A.
HSP90: See HSP90AA1.
HSP90AA1/HSP90/HSPC1 (heat shock protein 90kDa alpha
[cytosolic], class A member 1): A cytosolic chaperone that is
also located in the lysosome lumen. The cytosolic form helps to
stabilize BECN1, and promotes macroautophagy.1795 The lyso-
somal form of HSP90AA1 contributes to the stabilization of
LAMP2A during its lateral mobility in the lysosomal mem-
brane.1796

HSPA1A (heat shock protein family A [Hsp70] member
1A): The major cytosolic stress-inducible version of the
HSP70 family. This protein localizes to the lysosomal lumen in
cancer cells, and pharmacological inhibition leads to lysosome
dysfunction and inhibition of autophagy.1790

HSPA5/GRP78/BiP (heat shock protein 5 family A [Hsp70]
member 5): A master regulator of the UPR. This chaperone,
maintaining ER structure and homeostasis, can also facilitate
macroautophagy.1791

HSPA8/HSC70 (heat shock protein family A [Hsp70] mem-
ber 8): This multifunctional cytosolic chaperone is the consti-
tutive member of the HSP70 family of chaperones and
participates in targeting of cytosolic proteins to lysosomes for
their degradation via chaperone-mediated autophagy.1792 The
cytosolic form of the protein also regulates the dynamics of the
CMA receptor, whereas the lumenal form (lys-HSPA8) is
required for substrate translocation across the membrane.1793

This chaperone plays a role in the targeting of aggregated pro-
teins (in a KFERQ-independent manner) for degradation
through chaperone-assisted selective autophagy,1116 and in
KFERQ-dependent targeting of cytosolic proteins to late endo-
somes for microautophagy.1115 See also chaperone-assisted
selective autophagy, chaperone-mediated autophagy, and endo-
somal microautophagy.
HSPC1: See HSP90AA1.
HTRA2/Omi (HtrA serine peptidase 2): A nuclear-encoded
mitochondrial serine protease that was reported to degrade
HAX1, a BCL2 family-related protein, to allow macroauto-
phagy induction.1797 In this study, knockdown of HTRA2, or
the presence of a protease-defective mutant form, results in
decreased basal macroautophagy that may lead to neurodegen-
eration. Separate studies, however, indicate that mitochondrial
HTRA2 plays a role in mitochondrial quality control; in this
case loss of the protein leads to increased macroautophagy and
in particular mitophagy.1798-1800

Hypersensitive response: A rapid and locally restricted form
of programmed cell death as part of the plant immune response
to pathogen attack. The hypersensitive response is activated by
different immune receptors upon recognition of pathogen-
derived effector proteins, and can be positively regulated by
macroautophagy.1092,1096,1801

IAPP (islet amyloid polypeptide): A 37 amino acid polypep-
tide derived from processing of an 89 amino acid precursor,

which is coexpressed with INS/insulin by pancreatic b-cells.
IAPP aggregation is implicated in the pathogenesis of type 2
diabetes. Macroautophagy regulates IAPP levels through
SQSTM1-dependent lysosomal degradation.1802-1804

iC-MA (immune cell-mediated autophagy): IL2-activated
natural killer cell- and T cell-induced macroautophagy.1805

Ice2: See Ayr1.
ICP34.5: A neurovirulence gene product encoded by the her-
pes simplex virus type 1 (nns) that blocks EIF2S1-EIF2AK2
induction of autophagy.1726 ICP34.5-dependent inhibition of
autophagy depends upon its ability to bind to BECN1.892

IDP (Intrinsically disordered protein): A protein that does
not possess unique structure and exists as a highly dynamic
ensemble of interconverting conformations.1806-1809 IDPs are
very common in nature1810 and have numerous biological func-
tions that complement the functional repertoire of ordered pro-
teins.1811-1814 Many proteins involved in autophagy are
IDPs.1815,1816

IDPR (intrinsically disordered protein region): A protein
region without unique structure that may be biologically
important. IDPRs are considered as a source of functional nov-
elty,1817 and they are common sites of protein-protein interac-
tions1818 and posttranslational modifications.1819

IFI30/GILT (interferon, gamma-inducible protein 30): A
thiol reductase that controls ROS levels; in the absence of IFI30
there is an increase in oxidative stress that results in the upre-
gulation of macroautophagy.1820

IKK (IkB kinase): An activator of the classical NFKB pathway
composed of 3 subunits (CHUK/IKKa/IKK1, IKBKB/IKKb/
IKK2, IKBKG/IKKg/NEMO) that are required for optimal
induction of macroautophagy in human and mouse cells.1821

iLIR: A web resource for prediction of Atg8 family interacting
proteins (http://repeat.biol.ucy.ac.cy/iLIR).1482

Iml1 complex: A protein complex containing Iml1, Npr2 and
Npr3 that regulates non-nitrogen-starvation-induced autopha-
gosome formation; the complex partially localizes to the
PAS.1822 See also non-nitrogen-starvation (NNS)-induced
autophagy.
Immunoamphisomes: An organelle derived from the fusion
of endosomes/phagosomes with autophagosomes that regulate
dendritic cell-mediated innate and adaptive immune
responses.1823

Immunophagy: A sum of diverse immunological functions of
autophagy.1824

InlK: An internalin family protein on the surface of L. mono-
cytogenes that recruits vault ribonucleoprotein particles to
escape xenophagy.1825

Innate immune surveillance: Recognition and response sys-
tem for the sensing of DAMPs, including pathogens and prod-
ucts of somatically mutated genes. Innate surveillance
responses include activation of macroautophagy to degrade
DAMPs.1705 See also DAMP.
IMPA/inositol monophosphatase: An enzyme that regulates
the level of inositol 1,4,5-triphosphate (IP3) levels. Inhibition of
IMPA stimulates macroautophagy independent of MTOR.1220

IP3R: See ITPR.
IRGM (immunity-related GTPase family, M): Involved in
the macroautophagic control of intracellular pathogens.1826 In
mouse, this protein is named IRGM1.
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Irs4: Irs4 and Tax4 localize to the PAS under autophagy-
inducing conditions in yeast and play a role in the recruitment
of Atg17.1827 These proteins have partially overlapping func-
tions and are required for efficient nonselective macroauto-
phagy and pexophagy.
Isolation membrane: See phagophore.
ITM2A (integral membrane protein 2A): A target of PRKA/
PKA-CREB that interacts with the V-ATPase and interferes
with macroautophagic flux.1828

ITPR1/2/3 (inositol 1,4,5-trisphosphate receptor, type 1/2/
3): A large tetrameric intracellular Ca2C-release channel
present in the ER that is responsible for the initiation/prop-
agation of intracellular Ca2C signals that can target the
cytosol and/or organelles. The ITPR is activated by inositol
1,4,5-trisphosphate produced in response to extracellular
agonists. Many proteins regulate the ITPR including anti-
apoptotic BCL2-family proteins and BECN1. The ITPR can
inhibit autophagy by scaffolding BECN1 as well as by driv-
ing Ca2C-dependent ATP production,1220,1244,1246 whereas
BECN1-dependent sensitization of ITPR-mediated Ca2C

release (e.g., in response to starvation) can promote macro-
autophagic flux.297

JNK1: See MAPK8.
Jumpy: See MTMR14.
JUN/c-Jun/JunB (jun proto-oncogene): A mammalian tran-
scription factor that inhibits starvation-induced
macroautophagy.1829

KAT5/TIP60 (K[lysine] acetyltransferase 5): In response to
growth factor deprivation, KAT5 is phosphorylated and acti-
vated by GSK3 and then acetylates and activates ULK1.1778

Kcs1: A yeast inositol hexakisphosphate/heptakisposphate
kinase; the kcs1D strain has a decrease in macroautophagy that
may be associated with an incorrect localization of the PAS.1830

KDM4A (lysine [K]-specific demethylase 4A): A mammalian
demethylase that regulates the expression of a subset of ATG
genes.597,598 See also Rph1.
KEAP1 (kelch-like ECH-associated protein 1): An E3 ubiqui-
tin ligase responsible for the degradation of transcription factor
NFE2L2/NRF2 and the NFKB activator IKBKB/IKKb. KEAP1
is a substrate for SQSTM1-dependent sequestration. SQSTM1
influences oxidative stress-related gene transcription and regu-
lates the NFKB pathway via its interaction with
KEAP1.428,1831,1832

KIAA0226: See RUBCN.
KIAA1524/CIP2A/cancerous inhibitor of protein phospha-
tase 2A: KIAA1524/CIP2A suppresses MTORC1-associated
PPP2/PP2A activity in an allosteric manner thereby stabilizing
the phosphorylation of MTORC1 substrates and inhibiting
autophagy. KIAA1524/CIP2A can be degraded by autophagy
in an SQSTM1-dependent manner.1833

KillerRed: A red fluorescent protein that produces a high
amount of superoxide upon excitation. The construct with a
mitochondria targeting sequence (mitoKillerRed) can be used to
induce mitochondria damage and subsequent mitophagy.766,767

Knockdown: An experimental technique to reduce protein
expression without altering the endogenous gene encoding that
protein, through the means of short DNA or RNA oligonucleo-
tides (miRNA, RNAi, shRNA, siRNA) that are complementary
to the corresponding mRNA transcript.

Knockout: Targeted inactivation of an endogenous genetic
locus (or multiple loci) via homologous recombination or gene
targeting technology.
Ku-0063794: A catalytic MTOR inhibitor that increases mac-
roautophagic flux to a greater level than allosteric inhibitors
such as rapamycin; short-term treatment with Ku-0063794 can
inhibit both MTORC1 and MTORC2, but the effects on flux
are due to the former.341 See also WYE-354.
KU55933: An inhibitor of the class III PtdIns3K, which inhib-
its autophagosome formation at concentrations not affecting
the class I PI3K.244 Also inhibits ATM.
LACRT (lacritin): A prosecretory mitogen primarily in tears
and saliva that transiently accelerates autophagic flux in
stressed cells.1834 Lacritin targets heparanase-deglycanated
SDC1 (syndecan 1) on the cell surface,1835 and accelerates flux
by stimulating the acetylation of FOXO3 as a novel ligand for
ATG101 and by promoting the coupling of stress acetylated
FOXO1 with ATG7.1836

Laforin: See EPM2A.
LAMP2 (lysosomal-associated membrane protein 2): A
widely expressed and abundant single-span lysosomal mem-
brane protein. Three spliced variants of the LAMP2 gene have
been described. Knockout of the entire gene results in altered
intracellular vesicular trafficking, defective lysosomal biogene-
sis, inefficient autophagosome clearance and alterations in
intracellular cholesterol metabolism.1837-1839 In human, defi-
ciency of LAMP2 causes a cardioskeletal autophagic vacuolar
myopathy, called Danon disease.1840

LAMP2A (lysosomal-associated membrane protein
2A): One of the spliced variants of the LAMP2 gene that func-
tions as a lysosomal membrane receptor for chaperone-medi-
ated autophagy.1108 LAMP2A forms multimeric complexes that
allow translocation of substrates across the lysosome mem-
brane.1796 Regulation of LAMP2A is partly achieved by
dynamic movement into and out of lipid microdomains in the
lysosomal membrane.1793

Late nucleophagy: A process in which bulk nucleoplasm is
delivered to the vacuole after prolonged periods of nitrogen star-
vation and subsequently degraded within the vacuole lumen.720

LC3: See MAP1LC3.
LC3-associated phagocytosis (LAP): Phagocytosis in macro-
phages that involves the conjugation of LC3 to single-mem-
brane phagosomes, a process that promotes phagosome
acidification and fusion with lysosomes.182 TLR signaling is
required for LAP and leads to the recruitment of the BECN1
complex to phagosomes. See also NADPH oxidase.
Ldb16: See Ayr1.
Ldh1: See Ayr1.
LGG-1: A C. elegans homolog of Atg8.
LGG-2: A C. elegans homolog of Atg8.
LGG-3: A C. elegans homolog of Atg12.
Lipophagy: Selective degradation of lipid droplets by lyso-
somes contributing to lipolysis (breakdown of triglycerides into
free fatty acids). In mammals, this selective degradation has
been described to occur via macroautophagy (macrolipo-
phagy),817 whereas in yeast, microlipophagy of cellular lipid
stores has also been described. This process is distinct from the
PNPLA5-dependent mobilization of lipid droplets as contribu-
tors of lipid precursors to phagophore membranes.
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Lipoxygenases: Mycobacterial infection-responsive expression
of these proteins, such as ALOX5 and ALOX15, inhibits IFNG-
induced macroautophagy in macrophages.528

LIR/LRS (LC3-interacting region): This term refers to the
WXXL-like sequences (consensus sequence [W/F/Y]-X-X-[I/L/
V]) found in proteins that bind to the Atg8/LC3/GABARAP
family of proteins (see also AIM and WXXL-motif).364 The
core LIR residues interact with 2 hydrophobic pockets of the
ubiquitin-like domain of the Atg8 homologs.
LITAF (lipopolysaccharide-induced TNF factor): An activa-
tor of inflammatory cytokine secretion in monocytes that has
other functions in different cell types; LITAF is a positive regu-
lator of macroautophagy in B cells.1841 LITAF associates with
autophagosomes, and controls the expression ofMAP1LC3B.
LKB1: See STK11.
LMP (lysosome membrane permeabilization): The process
by which lysosomal membranes become disrupted through the
action of lysosomotropic agents, detergents or toxins.1842 LMP
blocks lysosomal activity and thus autophagy and induces the
release of lysosomal content to the cytoplasm including
cathepsins that can induce cell death.1843,1844

LON2 (LON protease 2): A protease localized to the peroxi-
some matrix that impedes pexophagy in Arabidopsis.1845

Long-lived protein degradation (LLPD): Macroautophagy is
a primary mechanism used by cells to degrade long-lived pro-
teins, and a corresponding assay can be used to monitor auto-
phagic flux;3 a useful abbreviation is LLPD.486

Lro1: See Ayr1.
Lucanthone: An anti-schistosome compound that inhibits a
late stage of macroautophagy; treatment results in deacidifica-
tion of lysosomes and the accumulation of autophagosomes.1846

LRPPRC (leucine-rich pentatricopeptide repeat containing):
A mitochondrion-associated protein that binds BCL2 and
PARK2 to control the initiation of general autophagy and
mitophagy.1847,1848

LRRK2 (leucine-rich repeat kinase 2): A large multidomain,
membrane-associated kinase and GTPase whose Parkinson dis-
ease-associated mutations affect the regulation of
macroautophagy.196,1849

LRS (LC3 recognition sequence): See LIR/LRS.
LRSAM1 (leucine rich repeat and sterile alpha motif contain-
ing 1): A human leucine-rich repeat protein that potentially
interacts with GABARAPL2; knockdown of LRSAM1 results in
a defect in anti-Salmonella autophagy.1850

Ltn1: See Rkr1.
LY294002: An inhibitor of phosphoinositide 3-kinases and
PtdIns3K; it inhibits macroautophagy.1851

LYNUS (lysosomal nutrient sensing): A complex including
MTORC1 and the V-ATPase located on the lysosomal surface
that senses nutrient conditions.825 The LYNUS complex regu-
lates TFEB activity.
Lys05: A dimeric chloroquine derivative that accumulates in
the lysosome and inhibits macroautophagy.1852,1853

Lysophagy: The macroautophagic removal of damaged
lysosomes.829,830

Lysosome: A degradative organelle in higher eukaryotes that
compartmentalizes a range of hydrolytic enzymes and main-
tains a highly acidic pH. A primary lysosome is a relatively
small compartment that has not yet participated in a

degradation process, whereas secondary lysosomes are sites of
present or past digestive activity. The secondary lysosomes
include autolysosomes and telolysosomes. Autolysosomes/early
secondary lysosomes are larger compartments actively engaged
in digestion, whereas telolysosomes/late secondary lysosomes
do not have significant digestive activity and contain residues
of previous digestions. Both may contain material of either
autophagic or heterophagic origin.
Macroautophagy: The largely nonselective autophagic seques-
tration of cytoplasm into a double- or multiple-membrane-
delimited compartment (an autophagosome) of non-lyso-
somal/vacuolar origin and its subsequent degradation by the
lysosomal/vacuolar system. Note that certain proteins and
organelles may be selectively degraded via a macroautophagy-
related process, and, conversely, some cytosolic components
such as cytoskeletal elements are selectively excluded.
MAGEA3 (melanoma antigen family A3): MAGEA3 and
MAGEA6 form a complex with the E3 ligase TRIM28, resulting
in the degradation of AMPK and the subsequent increase in
MTOR activity, which in turn causes a downregulation of
macroautophagy.1854 See also TRIM28.
MAP1LC3/LC3 (microtubule-associated protein 1 light
chain 3): A homolog of yeast Atg8, which is frequently used as
a phagophore or autophagosome marker. Cytosolic LC3-I is
conjugated to phosphatidylethanolamine to become phago-
phore- or autophagosome-associated LC3-II.269 The LC3 fam-
ily includes LC3A, LC3B, LC3B2 and LC3C. These proteins are
involved in the biogenesis of autophagosomes, and in cargo
recruitment.142 Vertebrate LC3 is regulated by phosphorylation
of the N-terminal helical region by PRKA/PKA.343

MAP1S (microtubule-associated protein 1S): A ubiquitiously
distributed homolog of the neuron-specifc MAP1A and MAP1B
with which LC3 was originally copurified. It is required for auto-
phagosome trafficking along microtubular tracks.1855,1856

MAP3K7/MEKK7/TAK1 (mitogen-activated protein kinase
kinase kinase 7): Required for TNFSF10/TRAIL-induced acti-
vation of AMPK and for optimal macroautophagy induction
by multiple stimuli.1857

MAPK1 (mitogen-activated protein kinase 1): A kinase that
along with MAPK3 phosphorylates and stimulate RGS19/Ga-
interacting protein/GAIP, which is a GTPase activating protein
(GAP) for the trimeric GNAI3 protein that activates
macroautophagy,1858 and which may be involved in BECN1-
independent autophagy.83 Constitutively active MAPK1/3 also
traffics to mitochondria to activate mitophagy.758

MAPK3: See MAPK1.
MAPK8/JNK1: A stress-activated kinase that phosphorylates
BCL2 at Thr69, Ser70 and Ser87, causing its dissociation from
BECN1, thus inducing macroautophagy.569

MAPK8IP1/JIP1 (mitogen-activated protein kinase 8 inter-
acting protein 1): A LIR-containing LC3-binding protein that
mediates the retrograde movement of RAB7-positive autophago-
somes in axons.1859 Movement toward the proximal axon involves
activation of dynein, whereas binding of LC3 to MAPK8IP1 pre-
vents activation of kinesin. The DUSP1/MKP1 phosphatase may
dephosphorylate Ser421, promoting binding to dynein.
MAPK9/JNK2: A stress-activated kinase that prevents the
accumulation of acidic compartments in cells undergoing mac-
roautophagic flux, thus keeping stressed cells alive.1860
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MAPK14 (mitogen-activated protein kinase 14): A signaling
component that negatively regulates the interaction of ATG9
and SUPT20H/FAM48A, and thus inhibits macroautophagy.
In addition, MAPK14-mediated phosphorylation of ATG5 at
T75 negatively regulates autophagosome formation.1861 The
widely used pyridinyl imidazole class inhibitors of MAPK14
including SB202190 interfere with macroautophagy in a
MAPK/p38-independent manner and should not be used to
monitor the role of this signaling pathway in macroauto-
phagy.1862,1863 The yeast homolog is Hog1. See also Hog1.
MAPK15/ERK7/ERK8 (mitogen activated protein kinase
15): MAPK15 is a LIR-containing protein that interacts with
LC3B, GABARAP and GABARAPL1.1864 This kinase is local-
ized in the cytoplasm and can be recruited to macroautophagic
membranes through its binding to ATG8-like proteins.
MAPK15 responds to starvation stimuli by self-activating
through phosphorylation on its T-E-Y motif, and its activation
contributes to the regulation of macroautophagy.
MAPKAPK2 (mitogen-activated protein kinase-activated
protein kinase 2): MAPKAPK2 is a Ser/Thr protein kinase
downstream of MAPK/p38. Its activation contributes to starva-
tion-induced macroautophagy by phosphorylating BECN1.1525

See also BECN1.
MAPKAPK3 (mitogen-activated protein kinase-activated
protein kinase 3): MAPKAPK3 shares a similar function with
MAPKAPK2 in macroautophagy.1525 See also MAPKAPK2
and BECN1.
Matrine: A natural compound extract from traditional Chi-
nese medicine that inhibits autophagy by elevating lysosomal
pH and interfering with the maturation of lysosomal
proteases.1865

MB21D1/cGAS (Mab-21 domain containing 1): A cytosolic
sensor that produces cGAMP to initiate IFN production via
TMEM173/STING upon binding microbial DNA.1866 MB21D1
also binds to BECN1, releasing RUBCN, resulting in the induc-
tion of macroautophagy to eliminate cytosolic pathogens and
cytosolic DNA; the latter serves to downregulate the immune
response to prevent overactivation.
MDC (monodansylcadaverine): A lysosomotropic autofluor-
escent compound that accumulates in acidic compartments
such as autolysosomes, and also labels (but is not specific for)
autophagosomes.1,1134

MDK-ALK axis: MDK (midkine [neurite growth-promoting
factor 2]) is a growth factor for which increased levels are asso-
ciated with a poor prognosis in malignant tumors. MDK pro-
motes resistance to cannabinoid-evoked autophagy-mediated
cell death via stimulation of ALK (anaplastic lymphoma recep-
tor tyrosine kinase). Targeting of the MDK-ALK axis could
help to improve the efficacy of antitumoral therapies based on
the stimulation of macroautophagy-mediated cancer cell
death.1867,1868

Mdm10: A component of the ERMES complex in yeast that is
required for mitophagy. See also ERMES.1737

Mdm12: A component of the ERMES complex in yeast.
Mdm12 colocalizes with Atg32-Atg11 and is required for mito-
phagy. See also Atg11, Atg32, and ERMES.705,1737

Mdm34: A component of the ERMES complex in yeast.
Mdm34 colocalizes with Atg32-Atg11 and is required for mito-
phagy. See also Atg11, Atg32, and ERMES.705,1737

Mdv1: A component of the mitochondrial fission complex. It
plays a role in mediating mitophagy-specific fission.705 See also
Dnm1.
MEFV/TRIM20/pyrin (Mediterannean fever): The gene
encoding MEFV is a site of polymorphisms associated with
familial Mediterranean fever; MEFV/TRIM20 acts as a receptor
for selective macroautophagy of several inflammasome
components.1869

Mega-autophagy: The final lytic process during developmen-
tal programmed cell death in plants that involves tonoplast per-
meabilization and rupture, resulting in the release of hydrolases
from the vacuole, followed by rapid disintegration of the proto-
plast at the time of cell death.1398,1870,1871 This term has also
been used to refer to the rupture of the yeast vacuole during
sporulation, which results in the destruction of cellular mate-
rial, including nuclei that are not used to form spores.1872

Megaphagosomes: Very large (5–10 mm) double-membraned,
autophagy-related vesicles that accumulate in cells infected by
coxsackievirus and, possibly, influenza virus.194

MGEA5/NCOAT/O-GlcNAcase/oga-1 (meningioma
expressed antigen 5 [hyaluronidase]): MGEA5 removes the
O-GlcNAc modification and regulates the macroautophagy
machinery by countering the action of OGT.1873 See also OGT.
Microautophagy: An autophagic process involving direct
uptake of cytosol, inclusions (e.g., glycogen) and organelles
(e.g., ribosomes, peroxisomes) at the lysosome/vacuole by pro-
trusion, invagination or septation of the sequestering organelle
membrane.
MIPA (micropexophagic apparatus): A curved double-mem-
brane structure formed by the PAS that may serve as a scaffold
for completion of the sequestration of peroxisomes during
micropexophagy; fusion with the vacuolar sequestering mem-
branes encloses the organelles within an intralumenal vesi-
cle.1874 See also vacuolar sequestering membranes.
Mitochondrial spheroid: A mitochondrial structure formed in
PARK2-deficient cells treated with a mitochondrial uncoupler
(such as CCCP).1875,1876 Under this condition, mitophagy fails
to occur and a damaged mitochondrion can transform into a
spheroid containing cytosolic components in the newly formed
lumen.
MIR21 (microRNA 21): A miRNA that is overexpressed in
almost all types of solid tumors and is involved in cancer che-
moresistance. MIR21 modulates macroautophagy and the sen-
sitivity of tumor cells toward drugs that induce
macroautophagy.1877

Mir31 (microRNA 31): A mouse miRNA that targets PPP2/
PP2A to inhibit IFNG-induced macroautophagy in macro-
phages during mycobacterial infection.528 See alsoMir155.
MIR95: A human miRNA that inhibits macroautophagy and
blocks lysosome function via repression of SUMF1.247

MIR101: A human miRNA that inhibits macroautophagy and
the expression of STMN1, RAB5A and ATG4D.243

Mir155: A mouse miRNA that targets PPP2/PP2A to inhibit
IFNG-induced macroautophagy in macrophages during myco-
bacterial infection.528 See alsoMir31.
MIR205: A microRNA precursor that impairs the autophagic
flux in castration-resistant prostate cancer cells by downregu-
lating the lysosome-associated proteins RAB27A and
LAMP3.1878
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MITF (microphthalmia-associated transcription factor): A
transcription factor belonging to the microphthalmia/tran-
scription factor E (MiT/TFE) family, along with TFEB and
TFE3; MITF binds to symmetrical DNA sequences (E-boxes;
50-CACGTG-30), and regulates lysosomal biogenesis and
macroautophagy (including the genes BCL2, UVRAG,
ATG16L1, ATG9B, GABARAPL1, and WIPI1). MITF shares a
common mechanism of regulation with TFEB and TFE3; MITF
can partially compensate when TFEB is lost upon specific stim-
uli or in specific cell types.639,1879 See also TFEB.
Mitophagic body: The single-membrane vesicle present inside
the vacuole lumen following the fusion of a mitophagosome
with a vacuole.
Mitophagosome: An autophagosome containing mitochondria
and no more than a small amount of other cytoplasmic compo-
nents, as observed during selective macromitophagy.42,748

Mitophagy: The selective autophagic sequestration and degra-
dation of mitochondria; can occur by a micro- or macroauto-
phagic process.1880

Mitostatin: See TCHP.
Mkk1/2: A MAPKK downstream of Bck1 that is required for
mitophagy and pexophagy in yeast.1787 See also Bck1 and Slt2.
MLN4924: An inhibitor of NAE1 (NEDD8-activating enzyme
E1 subunit 1) that is required for CUL/CULLIN-RING E3
ligase activation; treatment with MLN4924 induces macroauto-
phagy through the accumulation of the MTOR inhibitory pro-
tein DEPTOR.1505

Mmm1: A component of the ERMES complex in yeast that is
required for mitophagy. See also ERMES.1737

MORN2 (MORN repeat containing 2): MORN2 is a mem-
brane occupation and recognition nexus (MORN)-motif pro-
tein that was identified in mouse testis. The gene localizes on
chromosome 17E3, spanning approximately 7 kb; Morn2 con-
tains 669 nucleotides of open reading frame, and encodes 79
amino acids.1881 MORN domains have the sequence
GKYQGQWQ. MORN2 promotes the recruitment of LC3 in
LAP, and MORN2 co-immunopreciptates with LC3.515

MREG (melanoregulin): A cargo sorting protein that associ-
ates with MAP1LC3 in LC3-associated phagocytosis.1882,1883

MTDH/AEG-1 (metadherin): An oncogenic protein that
induces noncanonical (BECN1- and class III PtdIns3K-inde-
pendent) macroautophagy as a cytoprotective mechanism.1884

MTM-3: A C. elegans myotubularin lipid phosphatase that is
an ortholog of human MTMR3 and MTMR4; MTM-3 acts
upsteam of EPG-5 to catalyze the turnover of PtdIns3P and
promote autophagosome maturation.1885

MTM1 (myotubularin 1): A PtdIns3P and PtdIns(3,5)P2 3-
phosphatase.1886 Mutations affecting MTM1 lead to myotubu-
lar myopathy and alteration of macroautophagy.
MTMR3 (myotubularin related protein 3): This protein
localizes to the phagophore and negatively regulates
macroautophagy. See also MTMR14.1887

MTMR6 (myotubularin related protein 6): A PtdIns3P-phos-
phatase; knockdown of MTMR6 increases the level of LC3-II.1888

MTMR7 (myotubularin related protein 7): A PtdIns3P-
phosphatase; knockdown of MTMR7 increases the level of
LC3-II.1888

MTMR8 (myotubularin related protein 8): A phosphoinosi-
tide phosphatase with activity toward PtdIns3P and PtdIns(3,5)

P2; MTMR8 in a complex with MTMR9 inhibits macroauto-
phagy based on the formation of WIPI1 puncta.1889

MTMR9 (myotubularin related protein 9): A catalytically
inactive myotubularin that increases the activity of other mem-
bers of the MTMR family and controls their substrate specific-
ity; MTMR8-MTMR9 preferentially dephosphorylates
PtdIns3P and thus inhibits macroautophagy.1889

MTMR13: See SBF2.
MTMR14/Jumpy (myotubularin related protein 14): A
member of the myotubularin family that is a PtdIns3P-
phosphatase; knockdown increases macroautophagic activ-
ity.1888,1890 MTMR14 regulates the interaction of WIPI1 with
the phagophore. The Drosophila homolog is EDTP.
MTOR (mechanistic target of rapamycin [serine/threonine
kinase]): The mammalian ortholog of TOR. Together with its
binding partners it forms either MTOR complex 1 (MTORC1)
or MTOR complex 2 (MTORC2). See also TORC1 and
TORC2.
MTORC1/2 (MTOR complex 1/2): See TORC1 and TORC2.
Multivesicular body (MVB)/multivesicular endosome: An
endosome containing multiple 50- to 80-nm vesicles that are
derived from invagination of the limiting membrane. Under
some conditions the MVB contains hydrolytic enzymes in
which case it may be considered to be a lysosome or autolyso-
some with ongoing microautophagy.
Multivesicular body sorting pathway: A process in which
proteins are sequestered into vesicles within the endosome
through the invagination of the limiting membrane.
This process is usually, but not always, dependent upon
ubiquitin tags on the cargo and serves as one means of
delivering integral membrane proteins destined for degrada-
tion into the vacuole/lysosome lumen. ESCRT (endosomal
sorting complex required for transport) complexes are
required for the formation of MVBs and for autophagosome
maturation.1891

MYO1C (myosin IC): A class I myosin that functions as an
actin motor protein essential for the trafficking of cholesterol-
rich lipid rafts from intracellular storage compartments to the
plasma membrane; MYO1C is important for efficient autopha-
gosome-lysosome fusion.1892

MYO6 (myosin VI): A unique, minus-end directed actin
motor protein required for autophagosome maturation and
fusion with a lysosome via delivery of early endosomes to auto-
phagosomes; mediated by the interaction of MYO6 with the
alternative ESCRT-0 protein TOM1.879,1893

NAA10/ARD1 (N[alpha]-acetyltransferase 10, NatA catalytic
subunit): A protein that interacts with and stabilizes TSC2 by
acetylation, resulting in repression of MTOR and induction of
macroautophagy.1894

NACC1/NAC1 (nucleus accumbens associated 1, BEN and
BTB [POZ] domain containing): A transcription factor that
increases the expression and cytosolic levels of HMGB1 in
response to stress, thereby increasing macroautophagy
activity.1895

NADPH oxidases: These enzymes contribute to macroauto-
phagic targeting of Salmonella in leukocytes and epithelial cells
through the generation of reactive oxygen species.881 The
CYBB/NOX2 NADPH oxidase in macrophages is required for
LC3-associated phagocytosis.
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NAF-1: See CISD2.
NAMPT/visfatin (nicotinamide phosphoribosyltransferase):
NAMPT is a protein that catalyzes the condensation of nicotin-
amide with 5-phosphoribosyl-1-pyrophosphate to yield nico-
tinamide mononucleotide, one step in the biosynthesis of
nicotinamide adenine dinucleotide. The protein belongs to the
nicotinic acid phosphoribosyltransferase (NAPRTase) family
and is thought to be involved in many important biological
processes, including metabolism, stress response and aging.
NAMPT promotes neuronal survival through inducing
macroautophagy via regulating the TSC2-MTOR-RPS6KB1
signaling pathway in a SIRT1-dependent manner during cere-
bral ischemia.1896

NAPA/aSNAP (N-ethylmaleimide-sensitive factor attach-
ment protein, alpha): A key regulator of SNARE-mediated
vesicle fusion. Loss of NAPA promotes noncanonical
macroautophagy in human epithelial cells by interrupting ER-
Golgi vesicle trafficking and triggering Golgi fragmentation.1897

NBR1 (neighbor of BRCA1 gene 1): A selective substrate of
macroautophagy with structural similarity to SQSTM1. Func-
tions as a receptor that binds ubiquitinated proteins and LC3 to
allow the degradation of the former by a macroautophagy-like
process.364 NBR1 shows specificity for substrates including per-
oxisomes783 and ubiquitinated aggregates.364 Phosphorylation
of NBR1 by GSK3A/B prevents the aggregation of ubiquiti-
nated proteins.1529

NCOA4 (nuclear receptor coactivator 4): A selective cargo
receptor that is involved in iron homeostasis through the recy-
cling of ferritin by macroautophagy.804 See also ferritinophagy.
NDP52: See CALCOCO2.
Necroptosis: A form of programmed necrotic cell death;1898

induction of macroautophagy-dependent necroptosis is
required for childhood acute lymphoblastic leukemia cells to
overcome glucocorticoid resistance.1899

NFKB/NF-kB (nuclear factor of kappa light polypeptide gene
enhancer in B-cells): NFKB activates MTOR to inhibit
macroautophagy.1900

NH4Cl (ammonium chloride): A weak base that is protonated
in acidic compartments and neutralizes them; inhibits the
clearance of autophagosomes and amphisomes.
NHLRC1/EPM2B/malin (NHL repeat containing E3 ubiqui-
tin protein ligase 1): A putative E3-ubiquitin ligase, which
forms a complex with EPM2A/laforin. Recessive mutations in
the genes EPM2A, or NHLRC1/EMP2B are found in the
majority of cases of Lafora disease, a very rare type of
progressive neurodegeneration associated with impaired
macroautophagy.1901

Nitric oxide: A gas and a messenger that has complex regula-
tory roles in macroautophagy, depending on its concentration
and the cell type.344,1902-1904

NID-1 (novel inducer of cell death 1): A small molecule that
induces activation of an ATG5- and CTSL-dependent cell death
process reminiscent of macroautophagy.1450

NIX: See BNIP3L.
NOD (nucleotide-binding oligomerization domain): An
intracellular peptidoglycan (or pattern recognition) receptor
that senses bacteria and induces macroautophagy, involving
ATG16L1 recruitment to the plasma membrane during bacte-
rial cell invasion.1905

Non-nitrogen-starvation (NNS)-induced autophagy: A type
of macroautophagy that is induced when yeast cells are shifted
from rich to minimal medium; this process is controlled in part
by the Iml1, Npr2 and Npr3 proteins.1822

Noncanonical autophagy: A functional macroautophagy
pathway that only uses a subset of the characterized ATG pro-
teins to generate an autophagosome. BECN1-indepen-
dent,83,1463 and ATG5-ATG7-independent27 forms of
macroautophagy have been reported.
NPY (neuropeptide Y): An endogenous neuropeptide pro-
duced mainly by the hypothalamus that mediates caloric
restriction-induced macroautophagy.1906

NR1D1/Rev-erba (nuclear receptor subfamily 1, group D,
member 1): A nuclear receptor that represses macroautophagy
in mouse skeletal muscle. nr1d1-/- mice display increased auto-
phagy gene expression along with consistent changes in auto-
phagy protein levels and macroautophagic flux.611

NRBF2 (nuclear receptor binding factor 2): NRBF2 is the
mammalian homolog of yeast Atg38, and is a binding partner
of the BECN1-PIK3C3 complex; NRBF2 is required for the
assembly of the ATG14-BECN1-PIK3C3/VPS34-PIK3R4/
VPS15 complex and regulates macroautophagy.1907,1908 Nrbf2
knockout mice display impaired ATG14-linked PIK3C3 lipid
kinase activity and impaired macroautophagy.
NSP2: A nonstructural protein of Chikungunya virus that
interacts with human CALCOCO2 (but not the mouse ortho-
log) to promote viral replication. In contrast, binding of
SQSTM1 to ubiquitinated capsid leads to viral degradation
through macroautophagy.1909

Nucleophagy: The selective autophagic degradation of the
nucleus or parts of the nucleus.
Nucleus-vacuole junction (NVJ): Junction formed by the
interaction between Nvj1, a membrane protein of the outer
nuclear membrane, and Vac8 of the vacuole membrane, that
are necessary for micronucleophagy.718 See also piecemeal
microautophagy of the nucleus.
NUPR1/p8 (nuclear protein, transcriptional regulator, 1): A
transcriptional regulator that controls macroautophagy by
repressing the transcriptional activity of FOXO3.1910

NVP-BGT226 (8-[6-methoxy-pyridin-3-yl]-3-methyl-1-[4-
piperazin-1-yl-3-trifl uoromethyl-phenyl]-1,3-dihydroimi-
dazo[4,5-c ]quinolin-2-one maleate): A class I PI3K and
MTOR dual inhibitor that induces macroautophagy.1911

NVT (Nbr1-mediated vacuolar targeting): A pathway used
for the delivery of cytosolic hydrolases (Lap2 and Ape2) into
the vacuole in S. pombe that involves interaction with Nbr1 and
relies on the ESCRT machinery.1912

OATL1: See TBC1D25.
OGT/ogt-1 (O-linked N-acetylglucosamine [GlcNAc] trans-
ferase): OGT is a nutrient-dependent signaling transferase
that regulates the autophagy machinery by adding the O-
GlcNAc modification. Similar to phosphorylation, this modifi-
cation is involved in signaling.1873

Omegasome: ZFYVE1-containing structure located at the ER
that is involved in autophagosome formation during amino
acid starvation.583

Omi: See HTRA2.
Oncophagy: A general term describing cancer-related
autophagy.1913
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OPTN (optineurin): An autophagy receptor that functions in
the elimination of Salmonella; OPTN has a LIR and a ubiqui-
tin-binding domain, allowing it to link tagged bacteria to the
autophagy machinery.880 Phosphorylation of OPTN by TBK1
increases its affinity for LC3. OPTN may function together
with CALCOCO2/NDP52 and TAX1BP1/CALCOCO3. See
also CALCOCO2, TAX1BP1 and TBK1.
Organellophagy: General terminology for autophagic pro-
cesses selective for organelles such as peroxisomes, mitochon-
dria, the nucleus, and ER.704,1914

Oxiapoptophagy: A type of cell death induced by oxysterols
that involves OXIdation C APOPTOsis C autoPHAGY.837,838

Oxidized phospholipids: Oxidized phospholipids induce
macroautophagy, and in ATG7-deficient keratinocytes and mela-
nocytes the levels of phospholipid oxidation are elevated.1915,1916

Oxysterols: Oxysterols are cholesterol oxide derivatives
obtained either from auto-oxidation or by enzymatic oxidation
of cholesterol (http://lipidlibrary.aocs.org/Primer/content.cfm?
ItemNumber=39304). Some of them (7-ketocholesterol, 7b-
hydroxycholesterol, 24[S]-hydroxycholesterol) can induce a
complex type of cell death named oxiapoptophagy.836-838 See
also oxiapoptophagy.
P0: A plant virus-encoded F-box protein that targets AGO1/
ARGONAUTE1 to macroautophagy in order to suppress RNA
silencing.849

p8: See NUPR1.
p14ARF: See CDKN2A.
p27/p27Kip1: See CDKN1B.
p38a: See MAPK14.
p38IP: See SUPT20H.
p53: See TP53.
p62: see SQSTM1.
p97: See VCP.
PARK2/parkin (parkin RBR E3 ubiquitin protein ligase):
An E3 ubiquitin ligase (mutated in autosomal recessive forms
of Parkinson disease) that is recruited from the cytosol to mito-
chondria following mitochondrial depolarization, mitochon-
drial import blockade or accumulation of unfolded proteins in
the mitochondrial matrix, or ablation of the rhomboid protease
PARL, to promote their clearance by mitophagy.250,1917-1920

PINK1-dependent phosphorylation of Ser65 in the ubiquitin-
like domain of PARK2 and in ubiquitin itself (see phosphory-
lated ubiquitin/p-S65-Ub) promotes activation and recruitment
of PARK2 to mitochondria (reviewed in ref. 745),1921 and USP8
deubiquitination of K6-linked ubiquitin on PARK2 to promote
its efficient recruitment.1922

PARK7/DJ-1 (parkinson protein 7): An oncogene product
whose loss of function is associated with Parkinson disease;
overexpression suppresses macroautophagy through the
MAPK8/JNK pathway.1923

Parkin: See PARK2.
PARL (presenilin associated, rhomboid-like): The mamma-
lian ortholog of Drosophila rhomboid-7, a mitochondrial intra-
membrane protease; regulates the stability and localization of
PINK1.1920,1924,1925 A missense mutation in the N terminus has
been identified in some patients with Parkinson disease.1926 See
also PINK1.
PARP1 (poly [ADP-ribose] polymerase 1): A nuclear enzyme
involved in DNA damage repair; doxorubicin-induced DNA

damage elicits a macroautophagic response that is dependent
on PARP1.1927 In conditions of oxidative stress, PARP1 pro-
motes macroautophagy through the STK11/LKB1-AMPK-
MTOR pathway.1928

PAS: See phagophore assembly site.
PAWR/par-4 (PRKC, apoptosis, WT1, regulator): A cancer
selective apoptosis-inducing tumor suppressor protein that
functions as a positive regulator of macroautophagy when
overexpressed.1929,1930

PBPE: A selective and high affinity ligand of the
microsomal antiestrogen-binding site (AEBS). PBPE induces pro-
tective macroautophagy in cancer cells through an AEBS-mediated
accumulation of zymostenol (5a-cholest-8-en-3b-ol).1239,1931

Pbs2: A yeast MAPKK upstream of Hog1 that is required for
mitophagy.1787

Pcl1: A yeast cyclin that activates Pho85 to stimulate
macroautophagy by inhibiting Sic1.1683

Pcl5: A yeast cyclin that activates Pho85 to inhibit macroauto-
phagy through degradation of Gcn4.1683

PDPK1/PDK1 (3-phosphoinositide dependent protein
kinase 1): An activator of AKT. Recruited to the plasma mem-
brane and activated by PtdIns(3,4,5)P3 which is generated by
the class I phosphoinositide 3-kinase.
PEA15/PED (phosphoprotein enriched in astrocytes 15): A
death effector domain-containing protein that modulates
MAPK8 in glioma cells to promote macroautophagy.1932

PDCD6IP (programmed cell death 6 interacting protein):
PDCD6IP is an ESCRT-associated protein that interacts with
the ATG12–ATG3 conjugate to promote basal macroauto-
phagy.1933 See also 12-ylation.
PEG3 (paternally expressed 3): A DCN (decorin)- and endor-
epellin-induced, genomically imprinted tumor suppressor gene
that is required for macroautophagy in endothelial cells.1708

PEG3 colocalizes with and phyiscally binds to canonical macro-
autophagic markers such as BECN1 and LC3. Moreover, loss of
PEG3 ablates the DCN- or endorepellin-mediated induction of
BECN1 or MAP1LC3A; basal expression of BECN1 mRNA and
BECN1 protein requires PEG3. See also DCN and endorepellin.
Peripheral structures: See Atg9 peripheral structures.
PERK: See EIF2AK3.
PES/pifithrin-m (2-phenylethynesulfonamide): A small mol-
ecule inhibitor of HSPA1A/HSP70–1/HSP72; PES interferes
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with lysosomal function, causing a defect in macroautophagy
and chaperone-mediated autophagy.1934

peup (peroxisome unusual positioning): Mutants isolated in
Arabidopsis thaliana that accumulate aggregated peroxi-
somes.1935 The peup1, peup2 and peup4 mutants correspond to
mutations in ATG3, ATG18a and ATG7.
Pexophagic body: The single-membrane vesicle present inside
the vacuole lumen following the fusion of a pexophagosome
with a vacuole.
Pexophagosome: An autophagosome containing peroxisomes,
but largely excluding other cytoplasmic components; a pexo-
phagosome forms during macropexophagy.1936

Pexophagy: A selective type of autophagy involving the seques-
tration and degradation of peroxisomes; it can occur by amicro- or
macroautophagy-like process (micro- ormacropexophagy).130

PGRP (peptidoglycan-recogntion protein): A cytosolic Dro-
sophila protein that induces autophagy in response to invasive
L. monocytogenes.1937

Phagolysosome: The product of a single-membrane phago-
some fusing directly with a lysosome in a process that does not
involve macroautophagy (we include this definition here simply
for clarification relative to autolysosome, autophagosome and
autophagolysosome).884

Phagophore (PG): Membrane cisterna that has been impli-
cated in an initial event during formation of the autophago-
some. Thus, the phagophore may be the initial sequestering
compartment of macroautophagy.1938 The phagophore has pre-
viously been referred to as the “isolation membrane.”5

Phagophore assembly site (PAS): A perivacuolar compartment
or location that is involved in the formation of Cvt vesicles, auto-
phagosomes and other sequestering compartments used in
macroautophagy and related processes in fungi. The PAS may
supply membranes during the formation of the sequestering
vesicles or may be an organizing center where most of the auto-
phagic machinery resides, at least transiently. The PAS or its
equivalent is yet to be defined in mammalian cells.177,1939

Pho8: A yeast vacuolar phosphatase that acts upon 30 nucleotides
generated by Rny1 to generate nucleosides.1940 A modified form of
Pho8, Pho8D60, is used in an enzymatic assay for monitoring
macroautophagy in yeast. See also Rny1 and Pho8D60 assay.
Pho23: A component of the yeast Rpd3L histone deacetylase
complex that negatively regulates the expression of ATG9 and
other ATG genes.601

Pho80: A yeast cyclin that activates Pho85 to inhibit
macroautophagy in response to high phosphate levels.1683

Pho8D60 assay: An enzymatic assay used to monitor
macroautophagy in yeast. Deletion of the N-terminal cytosolic

tail and transmembrane domain of Pho8 prevents the protein
from entering the secretory pathway; the cytosolic mutant form
is delivered to the vacuole via macroautophagy, where proteo-
lytic removal of the C-terminal propeptide by Prb1 generates
the active enzyme.261,262,677

Pho85: A multifunctional cyclin-dependent kinase that inter-
acts with at least 10 different cyclins or cyclin-like proteins to
regulate the cell cycle and responses to nutrient levels. Pho85
acts to negatively and positively regulate macroautophagy,
depending on its binding to specific cyclins.1683 See also Clg1,
Pcl1, Pcl5, Pho80 and Sic1.
Phosphatidylinositol 3-kinase (PtdIns3K): A family of
enzymes that add a phosphate group to the 30 hydroxyl on the
inositol ring of phosphatidylinositol. The 30 phosphorylating
lipid kinase isoforms are subdivided into 3 classes (I-III) and
the class I enzymes are further subdivided into class IA and IB.
The class III phosphatidylinositol 3-kinases (see PIK3C3 and
Vps34) are stimulatory for macroautophagy, whereas class I
enzymes (referred to as phosphoinositide 3-kinases) are inhibi-
tory.1941 The class II PtdIns3K substantially contributes to
PtdIns3P generation and autophagy in Pik3c3 knockout MEFs,
also functioning as a positive factor for macroautophagy induc-
tion.1942 In yeast, Vps34 is the catalytic subunit of the PtdIns3K
complex. There are 2 yeast PtdIns3K complexes, both of which
contain Vps34, Vps15 (a regulatory kinase), and Vps30/Atg6.
Complex I includes Atg14 and Atg38 and is involved in auto-
phagy, whereas complex II contains Vps38 and is involved in
the vacuolar protein sorting (Vps) pathway. See also phosphoi-
nositide 3-kinase.

Phosphatidylinositol 3-phosphate (PtdIns3P): The product
of the PtdIns3K. PtdIns3P is present at the PAS, and is involved
in the recruitment of components of the macroautophagic
machinery. It is important to note that PtdIns3P is also gener-
ated at the endosome (e.g., by the yeast PtdIns3K complex II).
Additionally, FYVE-domain probes block PtdIns3P-dependent
signaling, presumably by sequestering the molecule away from
either interactions with downstream effectors or preventing its
interconversion by additional kinases.1943 Thus, general
PtdIns3P probes such as GFP-tagged FYVE and PX domains
are generally not good markers for the macroautophagy-spe-
cific pool of this phosphoinositide.
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Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P2): This
molecule is generated by PIKFYVE (phosphoinositide kinase,
FYVE finger containing) and is abundant at the membrane of
the late endosome. Its function is relevant for the replication of
intracellular pathogens such as the bacteria Salmonella,1944 and
ASFV.1945 PtdIns(3,5)P2 also plays a role in regulating
macroautophagy.1946

Phosphoinositide 3-kinase/PI3K: The class I family of
enzymes that add a phosphate group to the 30 hydroxyl on the
inositol ring of phosphoinositides. PI3K activity results in the
activation of MTOR and the inhibition of macroautophagy.
Phosphoinositides (PI) or inositol phosphates: These are
membrane phospholipids that control vesicular traffic and
physiology. There are several different phosphoinositides gen-
erated by quick interconversions by phosphorylation/dephos-
phorylation at different positions of their inositol ring by a
number of kinases and phosphatases. The presence of a partic-
ular PI participates in conferring membrane identity to an
organelle.
Phosphorylated ubiquitin/p-S65-Ub: Phosphorylated ubiqui-
tin is essential for PINK1-PARK2-mediated mitophagy and
plays a dual role in the intial activation and recruitment of
PARK2 to damaged mitochondria (reviewed in ref. 745) Spe-
cific antibodies can be used to faithfully detect PINK1-PARK2-
dependent mitophagy at early steps;744 however, the exact func-
tions of p-S65-Ub during the different phases of mitophagy
remain unclear.
Piecemeal microautophagy of the nucleus (PMN)/micronu-
cleophagy: A process in which portions of the yeast nuclear
membrane and nucleoplasm are invaginated into the vacuole,
scissioned off from the remaining nuclear envelope and
degraded within the vacuole lumen.715,716

PI4K2A/PI4KIIa (phosphatidylinositol 4-kinase type 2
alpha): A lipid kinase that generates PtdIns4P, which plays a
role in autophagosome-lysosome fusion.1947 PI4K2A is recruited
to autophagosomes through an interaction with GABARAP or
GABARAPL2 (but the protein does not bind LC3).
PIK3C3 (phosphatidylinositol 3-kinase, catalytic subunit
type 3): The mammalian homolog of yeast Vps34, a class III
PtdIns3K that generates PtdIns3P, which is required for
macroautophagy.1941 In mammalian cells there are at least 3
PtdIns3K complexes that include PIK3C3/VPS34, PIK3R4/
VPS15 and BECN1, and combinations of ATG14, UVRAG,
AMBRA1, SH3GLB1 and/or RUBCN. See also phosphatidyli-
nositol 3-kinase)
PIK3CB/p110b (phosphatidylinositol-4,5-bisphosphate 3-kinase,
catalytic subunit beta): A catalytic subunit of the class IA phos-
phoinositide 3-kinase; this subunit plays a positive role in
macroautophagy induction that is independent of MTOR or
AKT, and instead acts through the generation of PtdIns3P, possi-
bly by acting as a scaffold for the recruitment of phosphatases that
act on PtdIns(3,4,5)P3 or by recruiting and activating PIK3C3.

1948

PIK3R4/p150/VPS15 (phosphoinositide-3-kinase, regulatory
subunit 4): The mammalian homolog of yeast Vps15, PIK3R4
is a core component of all complexes containing PIK3C3 and is
required for macroautophagy.1949 PIK3R4 interacts with the
kinase domain of PIK3C3, to regulate its activity and also func-
tions as a scaffold for binding to NRBF2 and ATG14.1907,1908

While PIK3R4 is classified as a protein serine/threonine kinase,

it possesses an atypical catalytic domain and lacks catalytic
activity, at least in vitro (J. Murray, personal communication).
PIK3R4 also interacts with RAB GTPases, including RAB51950

that may be responsible for recruitment of PIK3C3-PIK3R4-
complexes to sites of autophagosome formation.
PINK1/PARK6 (PTEN induced putative kinase 1): A mito-
chondrial protein kinase (mutated in autosomal recessive forms
of Parkinson disease) that is normally degraded in a membrane
potential-dependent manner to maintain mitochondrial struc-
ture and function,1924,1951 suppressing the need for mito-
phagy.757 Upon mitochondrial depolarization, mitochondrial
import blockade, accumulation of unfolded proteins in the
mitochondrial matrix or ablation of the inner membrane prote-
ase PARL, PINK1 is stabilized and activated, phosphorylating
ubiquitin (see phosphorylated ubiquitin/p-S65-Ub) and
PARK2 for full activation and recruitment of PARK2 (reviewed
in ref. 745) to facilitate mitophagy.1917-1921,1952 See also PARL.
PKA (protein kinase A): A serine/threonine kinase that nega-
tively regulates macroautophagy in yeast;1953 composed of the
Tpk1/2/3 catalytic and Bcy1 regulatory (inhibitory) subunits.
The mammalian PKA homolog, PRKA, directly phosphorylates
LC3.343 Bacterial toxins that activate mammalian PRKA can
also inhibit autophagy.1954 In addition, cAMP inducers, such as
b2-adrenergic agonists (D.A.P. Gonçalves, personal communi-
cation), CALC/calcitonin gene-related peptide (J. Machado,
personal communication) and forskolin plus isobutilmethyl-
xantine (W.A. Silveira, personal communication), block the
conversion of LC3-I to LC3-II in C2C12 myotubes and adult
skeletal muscles. Phosphorylation of the fission modulator
DNM1L by mitochondrially-localized PRKA blocks mitochon-
drial fragmentation and autophagy induced by loss of endoge-
nous PINK1 or by exposure to a neurotoxin in neuronal cell
cultures.1717 See also DNM1L.
PKB: See AKT.
Pkc1: A yeast serine/threonine kinase involved in the cell wall
integrity pathway upstream of Bck1; required for pexophagy
and mitophagy.1787 See also Bck1 and Slt2.
PKCd: See PRKCD.
PKR: See EIF2AK2.
Plastolysome: A plant plastid that transforms into a lytic com-
partment, with acid phosphatase activity, engulfing and digest-
ing cytoplasmic regions in particular cell types and under
particular developmental processes.811-814

PLEKHM1: An autophagic adaptor protein that contains a
LIR motif, which directs binding to all of the LC3/GABARAP
proteins. PLEKHM1 also interacts with GTP-bound RAB7 and
the HOPS (homotypic fusion and protein sorting) complex.
PLEKHM1 is present on the cytosolic face of late endosomes,
autophagosomes, amphisomes and lysosomes, and serves to
coordinate endocytic and macroautophagic pathway conver-
gence at, and fusion with, the lysosome.1956

PMT7: A phloroglucinol derivative used as a chemotherapeu-
tic drug to target glycolytic cancer cells.1957

PND (programmed nuclear destruction): A yeast cell death-
related process that occurs during gametogenesis involving a
noncanonical type of vacuole-dependent degradation.1872

PNPLA5 (patatin-like phospholipase domain containing
5): A lipase that mobilizes neutral lipid stores (e.g., triglycer-
ides in lipid droplets) to enhance macroautophagic capacity of
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the cell by contributing lipid precursors for membrane biogene-
sis (thus enhancing macroautophagic capacity) and signal-
ing.1958 This process should not be confused with the process
of lipophagy, which is uptake of lipid droplets for triglyceride
degradation in autolysosomes.
PNS (peri-nuclear structure): A punctate structure in P. pas-
toris marked by Atg35, which requires Atg17 for recruitment
and is involved in micropexophagy; the PNS may be identical
to the PAS.1615

Polyphenol: A class of plant phytochemicals that have been
described as autophagy regulators in diferent disease models,
such as neurodegenerative disease (reviewed in ref. 1959) includ-
ing Parkinson disease,1960 and cancer (reviewed in ref. 1961).
PP242: A pharmacological catalytic kinase inhibitor of TOR;
inhibits TORC1 and TORC2.
PPARs (peroxisome proliferator-activated receptors):
Ligand-activated transcription factors, members of the nuclear
receptor superfamily, consisting of 3 isotypes: PPARA/PPARa/
NR1C1 (peroxisome proliferator-activated receptor alpha),
PPARD/PPARd/NR1C2, and PPARG/PPARg/NR1C3.772

PPAR-mediated signaling pathways regulate, or are regulated
by, molecules involved in macroautophagy.1962,1963

PPI (protein-protein interaction): Proper biological activity
of many proteins depends on physical interactions with other
proteins. Specific PPI has a functional objective. Therefore,
complete understanding of protein function requires consider-
ation of proteins in the context of their binding part-
ners.1964,1965 Often, interactions beween proteins and protein
complexes are presented in a form of large densely connected
networks (PPI networks). Such network-based representation
of PPIs provide the means for a more complete understanding
of physiological and pathogenic mechanisms.1966

PPM1D/Wip1 (protein phosphatase, Mg2C/Mn2C depen-
dent, 1D): A protein phosphatase that negatively regulates
ATM and macroautophagy.1967

PPP1 (protein phosphatase 1): A serine/threonine protein
phosphatase that regulates ATG16L1 by dephosphorylation of
CSNK2-modified Ser139 to inhibit macroautophagy. See also
CSNK2.1694

PPP1R15A/GADD34 (protein phosphatase 1, regulatory
subunit 15A): A protein that is upregulated by growth arrest
and DNA damage; PPP1R15A binds to and dephosphorylates
TSC2, leading to MTOR suppression and macroautophagy
induction.1968

PPP2 (protein phosphatase 2): A serine/threonine protein
phosphatase that positively regulates macroautophagy via
BECN1.1969

PPP2R5A (protein phosphatase 2, regulatory subunit B0,
alpha): B56 subunit of PPP2/PP2A, a phosphatase that binds
to and dephosphorylates GSK3B at Ser9 to make it active and
thus activate macroautophagy.528

PPP3R1 (protein phosphatase 3, regulatory subunit B,
alpha): A regulatory subunit of the calcium-dependent phos-
phatase PPP3/calcineurin. In response to a calcium pulse via
the lysosomal calcium channel MCOLN1, PPP3 dephosphory-
lates Ser142 and Ser211 of TFEB, leading to nuclear localization
and upregulation of the CLEAR network.1970 See also CLEAR
and TFEB.
prApe1 (precursor Ape1): See Ape1.

Pre-autophagosomal structure (PAS): See phagophore
assembly site.
PRKA (protein kinase, cAMP-dependent): The mammalian
homolog of yeast PKA. See also PKA.
PRKCD/PKCd (protein kinase C, delta): PRKCD regulates
MAPK8 activation. PRKCD also activates NADPH oxidases,
which are required for antibacterial macroautophagy.1714 See
also NADPH oxidases.
PRKD1 (protein kinase D1): A serine/threonine kinase that
activates PIK3C3/VPS34 by phosphorylation; recruited to
phagophore membranes.1971

PRMT-1/EPG-11: An arginine methyltransferase in C. elegans
that is the homolog of PRMT1.1735 PRMT-1/EPG-11 regulates
the association of PGL granules with EPG-2 and LGG-1
puncta. PRMT-1/EPG-11 directly methylates arginine residues
in the RGG domain of PGL-1 and PGL-3.
Programmed cell death (PCD): Regulated self-destruction of
a cell. Type I is associated with apoptosis and is marked by
cytoskeletal breakdown and condensation of cytoplasm and
chromatin followed by fragmentation. Type II is associated
with macroautophagy and is characterized by the presence of
autophagic vacuoles (autophagosomes) that sequester organ-
elles. Type III is marked by the absence of nuclear condensa-
tion, and the presence of a necrotic morphology with swelling
of cytoplasmic organelles (oncosis). These categories of cell
death are based on morphological criteria, and the Nomencla-
ture Committee on Cell Death now recommends the use of
terms that are more precise and refer to different types of regu-
lated cell death (RCD).1091

PROPPINs (b-propellers that bind phosphoinositides): A
WD40-protein family conserved from yeast to human.1972

These proteins fold as 7-bladed b-propellers, and each blade
contains 4 antiparallel b-strands. With 2 lipid binding sites at
the circumference of their propeller they bind PtdIns3P and
PtdIns(3,5)P2.

1973-1975 The S. cerevisiae PROPPINs are Atg18,
Atg21 and Hsv2, and the mammalian counterparts are termed
WIPIs.
Proteaphagy: The selective macroautophagic degradation of
the 26S proteasome.1976 Proteaphagy is stimulated by either
starvation or proteasome activation.
Proto-lysosomes: Vesicles derived from autolysosomes that
mature into lysosomes during autophagic lysosome reforma-
tion.527 See also autophagic lysosome reformation.
Protophagy: Autophagy-like processes in microbial popula-
tions. The term summarizes all self-destructing patterns in pro-
karyotic colonies including bacterial cannibalism, autolysis,
programmed cell death, and other processes, in which a part of
the colony is lysed and consumed by neighboring prokaryotic
cells to recycle matter and energy.1977

PSEN (presenilin): A protease that is part of the g-secretase
complex. Mutations in PSEN1 result in the accumulation of
autophagosomes resulting at least in part from a defect in lyso-
somal acidification; one of the V-ATPase subunits does not tar-
get properly to the lysosome.61,1978

PTEN (phosphatase and tensin homolog): A 30 phosphoino-
sitide phosphatase that dephosphorylates PtdIns(3,4,5)P3,
thereby inhibiting PDPK1/PDK1 and AKT activity.
PTM (posttranslational modification): After biosynthesis,
many proteins undergo covalent modifications that are often
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catalyzed by special enzymes that recognize specific target
sequences in particular proteins. PTMs provide dramatic exten-
sion of the structures, properties, and physico-chemical diver-
sity of amino acids, thereby diversifying structures and
functions of proteins.1979 There are more than 300 physyologi-
cal PTMs.1980 Some PTMs (e.g., phosphorylation, acetylation,
glycosylation, etc.) are reversible by the action of specific
deconjugating enzymes. The interplay between modifying and
demodifying enzymes allows for rapid and economical control
of protein function.1979 PTMs clearly play a role in regulating
the macroautophagy machinery.651,1981

PTP4A3 (protein tyrosine phosphatase type IVA, member
3): A plasma membrane- and endosome-localized prenylated
protein phosphatase that stimulates macroautophagy; PTP4A3
is also an autophagic substrate.1982

PTPRS/PTPs (protein tyrosine phosphatase, receptor type,
S): A dual domain protein tyrosine phosphatase that antag-
onizes the action of the class III PtdIns3K; loss of PTPRS
results in hyperactivation of basal and induced
macroautophagy.1983

PULKA (p-ULK1 assay): This acronym describes the analysis
of Ser317 phosphorylated (activated) ULK1 puncta by fluores-
cence microscopy.1984

RAB1: See Ypt1.
RAB4A: This small GTPase was previously called HRES-1/
Rab4, as it is encoded by the antisense strand of the HRES-1
human endogenous retroviral locus in region q42 of human
chromosome 1.1985 It has been recently designated as RAB4A
to distinguish it from RAB4B on human chromosome 19.
RAB4A regulates the endocytic recycling of surface proteins,
such as CD4, CD247/CD3z, CD2AP, and TFRC/CD71, which
control signal transduction through the immunological synapse
in human T lymphocytes.1985,1986 Among these proteins, CD4
and CD247 are targeted by RAB4A for lysosomal degradation
via macroautophagy.1985-1987 Beyond T lymphocytes, RAB4A
generally promotes the formation of LC3C autophagosomes
and the accumulation of mitochondria during macroauto-
phagy.1988 During accelerated macroautophagy, RAB4A also
promotes the lysosomal degradation of intracellular proteins,
such as DNM1L/Drp1 that initiates the fission and turnover of
mitochondria.971,1989 Thus, RAB4A-mediated depletion of
DNM1L selectively inhibits mitophagy and causes the accumu-
lation of mitochondria in patients and mice with lupus.1987 The
formation of interconnected mitochondrial tubular networks is
enhanced by constitutively active RAB4AQ72L upon starvation,
which may contribute to the retention of mitochondria during
macroautophagy.1988

RAB7: A small GTPase of the RAS oncogene family function-
ing in transport from early to late endosomes and from late
endosomes to lysosomes.1990 RAB7 is also needed for the clear-
ance of autophagic compartments, most likely for the fusion of
amphisomes with lysosomes.1136,1991 The yeast homolog is
Ypt7.
RAB8: A small GTPase of the RAS oncogene family. RAB8A
functions in secretory autophagy,1036 whereas RAB8B plays a
role in degradative autophagy.1992

RAB11: A small GTPase that is required for autophagosome
formation; ULK1 and ATG9 localize in part to RAB11-positive
recycling endosomes.1993 See also TBC1D14.

RAB12: A small GTPase that controls degradation of the
amino acid transporter SLC36A4/PAT4 (solute carrier family
36 [proton/amino acid symporter], member 4) and indirectly
regulates MTORC1 activity and macroautophagy.1994

RAB21: A small GTPase that is required for autophagosome-
lysosome fusion. Starvation induces RAB21 activity that pro-
motes VAMP8 trafficking to the lysosome, where VAMP8 is
needed to mediate fusion. See also SBF2.1995

RAB24: A small GTPase with unusual characteristics that
associates with autophagic vacuoles and is needed for the clear-
ance of autolysosomes under basal conditions.1996,1997

RAB32: A small GTPase that localizes to the ER, and enhances
autophagosome formation under basal conditions.1998

RAB33B: A small GTPase of the medial Golgi complex that
binds ATG16L1 and plays a role in autophagosome maturation
by regulating fusion with lysosomes.1999 RAB33B is a target of
TBC1D25/OATL1, which functions as a GAP.2000

RABG3b: A RAB GTPase that functions in the differentiation
of tracheary elements of the Arabidopsis xylem through its role
in macroautophagy; this protein is a homolog of RAB7/
Ypt7.1094

RAD001 (Everolimus): An orally administered derivative of
rapamycin.
RAG: See RRAG.
RAGE: See AGER.
RAL: A RRAS-like subfamily in the RAS family, RAL small
GTPases typically function downstream of the RRAS effector
RALGDS/RalGEF and are inhibited by RALGAP, a heterodi-
meric GAP structurally analogous to TSC1/2 that functions
as a GAP for RHEB.2001,2002 The RAL subfamily includes
mammalian RALA and RALB, Drosophila Rala, and C. ele-
gans RAL-1. Mammalian RALB regulates exocytosis, the
immune response and an anabolic/catabolic switch. In nutri-
ent-rich conditions RALB-GTP binds EXOC2/Sec5 and
EXOC8/Exo84, and through the latter associates with
MTORC1 to promote anabolic metabolism.2003 Under star-
vation conditions RALB-GTP nucleates phagophore forma-
tion through assembly of a ULK1-BECN1-PIK3C3 complex,
also via interaction with the EXOC8/Exo84 protein.1741

Although RALB direct activation and indirect inactivation
(through MTORC1) of macroautophagy appears contradic-
tory, RALB may function as a critical anabolic/catabolic
switch in response to global and local nutrient contexts.
RALB may be an analog of yeast Sec4.2004 See also EXOC2,
Sec4/RAB40B and EXOC8.
RALGAP: A heterodimeric complex consisting of catalytic alpha
and regulatory beta subunits, RALGAP inactivates RAL small
GTPases. RALGAP is structurally analogous to the TSC1/2 GAP,
and like TSC1/2 is phosphorylated and inhibited by AKT.2001,2005

An additional partner of the RALGAP complex, NKIRAS1/
kappaB-Ras, also inhibits RAL function.2006 See also RAL.
RANS (required for autophagy induced under non-nitrogen-
starvation conditions) domain: Also referred to as domain of
unknown function 3608 (DUF3608; PFAM: PF12257, http://
pfam.xfam.org/family/PF12257), this sequence in Iml1 is
required for non-nitrogen starvation-induced autophagy.1822

This domain is spread throughout the eukaryotes (see for
example, http://pfam.xfam.org/family/PF12257#tabviewDtab7)
and frequently reported in combination with a DEP
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(Dishevelled, Egl-10, and Pleckstrin) domain (PFAM:
PF00610), which is also the case with Iml1.1822 See also non-
nitrogen starvation (NNS)-induced autophagy.
Rapamycin: Allosteric TOR (in particular, TOR complex 1)
inhibitor, which induces autophagy. TOR complex 2 is much
less sensitive to inhibition by rapamycin.
RAPTOR: See RPTOR.
Ras: See RRAS.
RB1-E2F1 (Retinoblastoma 1-E2 transcription factor
1): RB1 is a tumor suppressor that promotes growth arrest,
and protects against apoptosis. E2F1 regulates the transition
from the G1 to the S phase in the cell cycle, and is a pro-apopto-
tic member of the E2F transcription family. In addition to con-
trolling the cell cycle and apoptosis, the interaction between
RB1 and E2F1 regulates macroautophagy; RB1 and E2F1
downregulate and upregulate BCL2, respectively, resulting in
the induction of macroautophagy or apoptosis.615

RB1CC1/FIP200 (RB1-inducible coiled-coil 1): A putative
mammalian functional counterpart of yeast Atg17. RB1CC1 is
a component of the ULK1 complex.1533 In addition, RB1CC1
interacts with other proteins in several signaling pathways, sug-
gesting the possibility of macroautophagy-independent func-
tions, and a potential role in linking other cellular functions
and signaling pathways to macroautophagy.
Reactive oxygen species (ROS): Chemically-reactive mole-
cules that contain oxygen, including hydrogen peroxide, the
hydroxyl radical ¢OH, and the superoxide radical ¢O2

-. Hydro-
gen peroxide transiently inhibits delipidation of LC3 by ATG4,
which is permissive for starvation-induced autophagy.519

Superoxide is essential for triggering injury-induced mitochon-
drial fission and mitophagy.757

Ref(2)P: The Drosophila homolog of SQSTM1.
Residual body: A lysosome that contains indigestible material
such as lipofuscin.2007

Resveratrol: An allosteric activator of SIRT1 and inhibitor
of several other cellular proteins1510 that induces macroauto-
phagy.2008

Reticulophagy: The selective degradation of ER by a
macroautophagy-like process.843 Macroautophagy counterbal-
ances ER expansion during the unfolded protein response.
Activation of the UPR in yeast induces reticulophagy.
RGS19/GAIP (regulator of G-protein signaling 19): A
GTPase activating protein that inactivates GNAI3 (converting
it to the GDP-bound form) and stimulates macroauto-
phagy.2009 See also GNAI3.
RHEB (Ras homolog enriched in brain): A small GTP-bind-
ing protein that activates MTOR when it is in the GTP-bound
form.280

Ribophagy: The selective sequestration and degradation of
ribosomes by a macroautophagy-like process.847

Rim15: A yeast kinase that regulates transcription factors in
response to nutrients. Rim15 positively regulates macroauto-
phagy and is negatively regulated by several upstream kinases
including TOR, PKA, Sch9 and Pho85.1683,2010

RIPK1 (receptor [TNFRSF]-interacting serine-threonine
kinase 1): RIPK1 inhibits basal macroautophagy independent
of its kinase function, through activation of MAPK1/3 and
inhibition of TFEB.2011

Rkr1: A yeast ubiquitin ligase that antagonizes ribophagy.848

RNASET2/RNS2 (ribonuclease T2): A conserved class
II RNase of the T2 family that localizes to the lumen of
the ER (or an ER-related structure) and vacuole in
Arabidopsis, and to lysosomes in zebrafish; RNASET2 is
involved in rRNA turnover, and rns2 mutants display con-
stitutive macroautophagy, likely due to a defect in cellular
homeostasis.2012,2013

RNF216 (ring finger protein 216): An E3 ubiquitin ligase that
mediates the ubiquitination and the subsequent degradation of
BECN1, thus acting as a negative regulator of
macroautophagy.2014

Rny1: A yeast vacuolar RNase that hydrolyzes RNA that has
been delivered to the vacuole via macroautophagy into 30
nucleotides.1940 See also Pho8.
Rpd3: A yeast histone deacetylase that negatively regulates the
expression of ATG8.1233 See also Sin3/SIN3 and Ume6.
Rph1: A histone demethylase that negatively regulates the
expression of ATG7; demethylase activity is not required for
transcriptional repression.597,598

RPN10: A component of the 26S proteasome lid. RPN10 acts
as a receptor that binds ATG8 during proteaphagy in
Arabidopsis.1976

RPS6KB1/p70S6 kinase/S6K1 (ribosomal protein S6 kinase,
70kDa, polypeptide 1): A substrate of MTORC1, in mam-
malian cells RPS6KB1/2 inhibits INSR (insulin receptor),
which in turn causes a reduction in the activity of the class
I PI3K and subsequently MTORC1; this may represent a
feedback loop to help maintain basal levels of macroauto-
phagy.1145,1218 Conversely, under conditions of long-term
starvation RPS6KB1/2 levels may fall sufficiently to
allow reactivation of MTORC1 to prevent excessive
macroautophagy. In Drosophila, the RPS6KB1/2 ortholog
S6k may act in a more direct manner to positively regulate
macroautophagy.280

RPS6KB2: See RPS6KB1.
RPTOR/raptor (regulatory associated protein of MTOR,
complex 1): A component of MTORC1. RPTOR interacts
with ULK1, allowing MTORC1 to phosphorylate both
ULK1 and ATG13, and thus repress ULK1 kinase activity
and autophagy.490,491,2015 This interaction also permits a
negative feedback loop to operate, whereby ULK1 phos-
phorylates RPTOR to inhibit MTORC1 activity.495,2016

RRAG (Ras-related GTP binding): A GTPase that activates
MTORC1 in response to amino acids.2017 There are RRAGA,
B, C and D isoforms.
RRAS/RAS (related RAS viral [r-ras] oncogene homolog):
The small GTPase RRAS is an oncogene involved in the regula-
tion of several cellular signaling pathways. RRAS can
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upregulate or downregulate autophagy through distinct signal-
ing pathways that depend on the cellular contexts.2018

Rsp5: A yeast E3 ubiquitin ligase that is responsible for the
autophagic clearance of certain cytosolic proteins via Cue5.451

See also Cue5.
RUBCN/Rubicon/KIAA0226 (RUN domain and cysteine-
rich domain containing, Beclin 1-interacting protein):
RUBCN is part of a PtdIns3K complex (RUBCN-UVRAG-
BECN1-PIK3C3-PIK3R4) that localizes to the late endosome/
lysosome and inhibits macroautophagy.546,547

SAHA/vorinostat (suberoylanilide hydroxamic acid): An
HDAC inhibitor that induces macroautophagy;2019 however,
SAHA/vorinostat treatment has also been reported to suppress
macroautophagy (e.g., see ref. 2020), suggesting context
dependency.
Saikosaponin d: An ATP2A/SERCA inhibitor that induces
macroautophagy and macroautophagy-dependent cell death in
apoptosis-defective cells.1514

SBF2/MTMR13 (SET binding factor 2): A catalytically inac-
tive myotubularin that is also a RAB21 guanine nucleotide
exchange factor (GEF) required with RAB21 for autophago-
some-lysosome fusion. Starvation induces SBF2 RAB21 GEF
activity that promotes VAMP8 trafficking to the lysosome,
where VAMP8 is needed to mediate fusion. See also
RAB21.1995 The Drosophila homolog is Sbf.
Sch9: A yeast kinase that functions in parallel with PKA to
negatively regulate macroautophagy. Sch9 appears to function
in parallel with TOR, but is also downstream of the TOR
kinase.2010

SCOC (short coiled-coil protein): A protein in the Golgi that
interacts with FEZ1 in a complex with either ULK1 or UVRAG;
the ternary complex with ULK1 promotes macroautophagy,
whereas the complex with UVRAG has a negative effect by
sequestering the latter from the BECN1-containing PtdIns3K
complex.1747 See also FEZ1.
SEA (Seh1-associated) protein complex: A complex found in
yeast that includes the Seh1 nucleoporin and the COPII com-
ponent Sec13 (also a nucleoporin), in addition to Npr2 and
Npr3, and 4 other relatively uncharacterized proteins; the SEA
complex associates with the vacuole, potentially acting as a
membrane coat and is involved in protein trafficking, amino
acid biogenesis, and the starvation response including
macroautophagy.2021

Sec1: Functions with the plasma membrane SNAREs Sso1/
Sso2 and Sec9 to form the site for vesicle-mediated exocytosis;
as with Sso1/Sso2 and Sec9, temperature sensitive sec1 muta-
tions also abrogate macroautophagic delivery of GFP-Atg8.2022

See also Sso1/Sso2.
Sec2: A guanine nucleotide exchange factor for Sec4 that nor-
mally functions in exocytosis. Upon the induction of
macroautophagy, Sec2 function is diverted to promote mem-
brane delivery to the PAS.2004

Sec4: A Rab family GTPase that normally functions in exocy-
tosis; under macroautophagy-inducing conditions yeast Sec4 is
needed for the anterograde movement of Atg9 to the PAS.2004

The mammalian homolog is RAB40B.
SEC5L1: See EXOC2.
Sec9: Plasma membrane SNARE light chain that forms a com-
plex with Sso1/Sso2 to generate the target complex of vesicle

exocytosis; as with Sso1/Sso2, loss of Sec9 function blocks
macroautophagy at an early stage by disrupting targeting of
Atg9 to the Atg9 peripheral sites and PAS.2023 See also Sso1/
Sso2, and Atg9 peripheral sites/structures.
Sec18: Homolog of mammalian NSF, an ATPase globally
responsible for SNARE disassembly. Loss of function inhibits
SNARE-dependent early and late events of macroautophagy
(that is, vesicular delivery of Atg9 to the Atg9 peripheral sites
and PAS2023 and fusion of autophagosomes with the vacu-
ole2024). See also Atg9 peripheral sites/structures.
Sec22: A vesicle SNARE involved in ER and Golgi transport;
mutations in Sec22 also block Atg9 trafficking to the Atg9
peripheral sites and PAS. Crosslinking experiments suggest
Sec22 may be the v-SNARE responsible for the macroauto-
phagy functions of the ordinarily plasma membrane Sso1/Sso2-
Sec9 t-SNARE complex.2023 See also Sso1/Sso2, and Atg9
peripheral sites/structures.
Secretory autophagy: A biosynthetic mode of autophagy that
occurs in mammalian cells.1036,2025 Secretory autophagy
depends on the ATG proteins, RAB8A and the Golgi protein
GORASP2/GRASP55, and is used for the extracellular delivery
(via unconventional secretion) of proteins such as the cytokines
IL1B and IL18, and HMGB1. See also exophagy.
SEPA-1 (suppressor of ectopic P granule in autophagy
mutants-1): A C. elegans protein that is involved in the selec-
tive degradation of P granules through a macroautophagy-like
process.1262 SEPA-1 self-oligomerizes and functions as the
receptor for the accumulation of PGL-1 and PGL-3 aggregates.
SEPA-1 directly binds PGL-3 and LGG-1.
Septin cages: Septins are GTP-binding proteins that assemble
into nonpolar filaments (characterized as unconventional cyto-
skeleton), often acting as scaffolds for the recruitment of other
proteins. Septin cages form in response to infection by Shigella;
the cages surround the bacteria, preventing intercellular spread,
and serve to recruit autophagy components such as SQSTM1
and LC3.2026

SERPINA1/A1AT (serpin peptidase inhibitor, clade A
[alpha-1 antiproteinase, antitrypsin], member 1): SERPINA1
is the must abundant circulating protease inhibitor and is syn-
thesized in the liver. A point mutation in the SERPINA1 gene
alters protein folding of the gene product, making it aggrega-
tion prone; the proteasomal and macroautophagic pathways
mediate degradation of mutant SERPINA1.2027

sesB (stress-sensitive B): A Drosophila mitochondrial adenine
nucleotide translocase that negatively regulates autophagic flux,
possibly by increasing cytosolic ATP levels.1709 See also Dcp-1.
SESN2 (sestrin 2): A stress-inducible protein that reduces oxi-
dative stress, inhibits MTORC1 and induces macroautophagy,
also acting as an AMPK activator.2028 SESN2 physically associ-
ates with ULK1 and SQSTM1, promotes ULK1-dependent
phosphorylation of SQSTM1, and facilitates autophagic degra-
dation of SQSTM1 targets such as KEAP1.1532,2029 SESN2 sup-
presses MTORC1 in response to diverse stresses including
DNA damage,2030 ER stress,2031 nutritional stress,822,2029 or
energetic stress.2032

SH3GLB1/Bif-1 (SH3-domain GRB2-like endophilin B1): A
protein that interacts with BECN1 via UVRAG and is required
for macroautophagy. SH3GLB1 has a BAR domain that may be
involved in deforming the membrane as part of autophagosome
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biogenesis.2033 SH3GLB1 activity is regulated by phosphoryla-
tion at residue T145, which in starved neurons occurs via
CDK5.2034 SH3GLB1 regulates autophagic degradation of
EGFR,2035 NTRK1,2034 and CHRNA1.2036 Turnover of
CHRNA1 is coregulated by TRIM63.2036

SHH (sonic hedgehog): A ligand of the sonic hedgehog path-
way. Activation of this pathway suppresses IFNG-induced
macroautophagy in macrophages during mycobacterial
infection.528

Shp1/Ubx1: A yeast Ubx (ubiquitin regulatory x)-domain pro-
tein that is needed for the formation of autophagosomes during
nonselective macroautophagy; Shp1 binds Cdc48 and Atg8–PE,
and may be involved in extracting the latter during phagophore
expansion.1670

Sic1: A yeast cyclin-dependent kinase inhibitor that blocks the
activity of Cdc28-Clb kinase complexes to control entry into
the S phase of the cell cycle. Sic1 is a negative regulator of
macroautophagy that inhibits Rim15.1683

Signalphagy: A type of macroautophagy that degrades active
signaling proteins.2037

Sin3/SIN3 (SIN3 transcription regulator family member):
Part of the Rpd3L regulatory complex including Rpd3 and
Ume6 in yeast, which downregulates transcription of ATG8 in
growing conditions.1233 In mammalian cells knockdown of
both SIN3A and SIN3B is needed to allow increased expression
of LC3. See also Rpd3 and Ume6.
Sirolimus: An immunosuppressant also referred to as
rapamycin.
SIRT1 (sirtuin 1): A NAD+-dependent protein deacetylase
that is activated by caloric restriction or glucose deprivation;
SIRT1 can induce macroautophagy through the deacetylation
of autophagy-related proteins and/or FOXO transcription fac-
tors.2038 Deacetylation of K49 and K51 of nuclear LC3 leads to
localization in the cytosol and association with phagophores.657

See also SIRT2.
SIRT2 (sirtuin 2): A NAD+-dependent protein deacetylase
sharing homology with SIRT1 that is involved in neurodegen-
eration and might play a role in macroautophagy activation
through regulation of the acetylation state of FOXO1.1756

Under prolonged stress the SIRT2-dependent regulation of
FOXO1 acetylation is impaired, and acetylated FOXO1 can
bind to ATG7 in the cytoplasm and directly affect
macroautophagy.
SIRT3 (sirtuin 3): A mitochondrial NAD+-dependent protein
deacetylase sharing homology with SIRT1, which is responsible
for deacetylation of mitochondrial proteins and modulation of
mitophagy.2039,2040

SIRT5: A mitochondrial SIRT1 homolog with NAD+-depen-
dent protein desuccinylase/demalonylase activity; SIRT5 modu-
lates ammonia-induced macroautophagy.2041

SIRT6: A member of the sirtuin family with nuclear localiza-
tion, that is associated with chromatin and promotes the repair
of DNA. The involvement of SIRT6 in senescence has been
proposed, possibly by the modulation of IGF-AKT signaling; a
role for SIRT6 in macroautophagy linked to senescence has
been determined.2042

SIRT7: A member of the sirtuin family that is highly expressed
in the nucleus/nucleolus where it interacts with POLR1/RNA
polymerase I as well as with histones. Many lines of evidence

point to a role for SIRT7 in oncogenic transformation and
tumor growth. The involvement of SIRT7 in macroautophagy
was recently suggested in a model of acute cardiovascular
injury, where loss of SIRT7 activates autophagy in cardiac
fibroblasts.2043

SLAPs (spacious Listeria-containing phagosomes): SLAPs
can be formed by L. monocytogenes during infection of macro-
phages or fibroblasts if bacteria are not able to escape into the cyto-
sol.2044 SLAPs are thought to be immature autophagosomes in that
they bear LC3 but are not acidic and do not contain lysosomal deg-
radative enzymes. The pore-forming toxin listeriolysin O is essen-
tial for SLAPs formation and is thought to create small pores in the
SLAP membrane that prevent acidification by the v-ATPase.
SLAP-like structures have been observed in a model of chronic
L. monocytogenes infection,2045 suggesting that autophagy may
contribute to the establishment/maintenance of chronic infection.
SLC1A5 (solute carrier family 1 [neutral amino acid trans-
porter], member 5): A high affinity, Na+-dependent trans-
porter for L-glutamine; a block of transport activity leads to
inhibition of MTORC1 signaling and the subsequent activation
of macroautophagy.340 See also SLC7A5.
SLC7A5 (solute carrier family 7 [amino acid transporter
light chain, L system], member 5): A bidirectional transporter
that allows the simultaneous efflux of L-glutamine and influx of
L-leucine; this transporter works in conjunction with SLC1A5
to regulate MTORC1.340

SLC9A3R1 (solute carrier family 9, subfamily A [NHE3, cat-
ion proton antiporter 3], member 3 regulator 1): A scaffold
protein that competes with BCL2 for binding to BECN1, thus
promoting macroautophagy.2046

SLC25A1 (solute carrier family 25 [mitochondrial carrier;
citrate transporter], member 1): This protein maintains mito-
chondrial activity and promotes the movement of citrate from
the mitochondria to the cytoplasm, providing cytosolic acetyl-
coenzyme A. Inhibition of SLC25A1 results in the activation of
macroautophagy and mitophagy.2047

SLC38A9 (solute carrier family 38, member 9): A multi-
spanning membrane protein that localizes to the lysosome as
part of the RRAG-Ragulator complex. SLC38A9 functions as a
transceptor (transporter-receptor) to link amino acid status
with MTORC1 activity.2048-2050

Slg1/Wsc1: A yeast cell surface sensor in the Slt2 MAPK path-
way that is required for mitophagy.508 See also Slt2.
SLR (sequestosome 1/p62-like receptor): A protein that acts
as a macroautophagy receptor, and in proinflammatory or
other types of signaling.2051

Slt2: A yeast MAPK that is required for pexophagy and mito-
phagy.508 See also Pkc1, Bck1 and Mkk1/2.
smARF (short mitochondrial ARF): A small isoform of
CDKN2A/p19ARF that results from the use of an alternate
translation initiation site, which localizes to mitochondria and
disrupts the membrane potential, leading to a massive increase
in macroautophagy and cell death.2052

SNAP29 (synaptosomal-associated protein, 29kDa): A
SNARE protein required for fusion of the completed autopha-
gosome with a lysosome in metazoans.584,585,2053

SNAPIN (SNAP-associated protein): An adaptor protein
involved in dynein-mediated late endocytic transport; SNAPIN
is needed for the delivery of endosomes from distal processes
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to lysosomes in the neuronal soma, allowing maturation of
autolysosomes.149

SNCA/a-synuclein: A presynaptic protein relevant for Parkin-
son disease pathogenesis because of its toxicity resulting from
aggregation. SNCA degradation in neuronal cells involves the
autophagy-lysosomal pathway via macroautophagy and chap-
erone-mediated autophagy.2054 Conversely, SNCA accumula-
tion over time might impair autophagy function, and an
inhibitory interaction of SNCA with HMGB1 has been
reported.2055 This interaction can be reversed by the natural
autophagy inducer corynoxine B. Similarly, in human T lym-
phocytes the aggregated form of SNCA, once generated, can be
degraded by macroautophagy, whereas interfering with this
pathway can result in the abnormal accumulation of SNCA.
Hence, SNCA can be considered as an autophagy-related
marker of peripheral blood lymphocytes.1340

Snx4/Atg24: A yeast PtdIns3P-binding sorting nexin that is part
of the Atg1 kinase complex and binds Atg20.1600 Snx4/Atg24 is
also involved in recycling from early endosomes. In the filamentous
fungusM. oryzae, Atg24 is required for mitophagy.709

SNX18: A PX-BAR domain-containing protein involved in
phagophore elongation.2056

SpeB: A cysteine protease secreted by Streptococcus pyogenes
that degrades macroautophagy components at the bacterial sur-
face, leading to autophagy escape.2057 The lack of SpeB allows
capture and killing of cytoplasmic S. pyogenes by the
macroautophagy system.126,2057

Spautin-1 (specific and potent autophagy inhibitor-1): An
inhibitor of USP10 and USP13, identified in a screen for inhibi-
tors of macroautophagy, which promotes the degradation of
the PIK3C3/VSP34-BECN1 complex.2058

Spermidine: A natural polyamine that induces macroauto-
phagy through the inhibition of histone acetylases such as
EP300.631,2059

Sphingolipids: Sphingolipids are a major class of lipids. Some
metabolites including ceramide, sphingosine and sphingosine
1-phosphate are bioactive signaling molecules. Ceramide and
sphingosine 1-phosphate are positive regulators of
macroautophagy.2060,2061

SPNS/spinster: A putative lysosomal efflux permease required
for autophagic lysosome reformation.2062

Sqa (spaghetti-squash activator): A myosin light chain
kinase-like protein that is a substrate of Atg1 in Drosophila;
required for starvation-induced autophagosome formation,
and the mammalian homolog DAPK3 is also involved in ATG9
trafficking.489

SQST-1: The C. elegans homolog of SQSTM1.
SQSTM1/p62 (sequestosome 1): An autophagy receptor that
links ubiquitinated proteins to LC3. SQSTM1 accumulates in
cells when macroautophagy is inhibited. SQSTM1 interaction
with LC3 requires a WXXL or a LIR motif analogous to the
interaction of Atg8 with Atg19.84 SQSTM1 also interacts with
HDAC6 to regulate microtubule acetylation and autophago-
some turnover.2063 See also HDAC6 and LIR/LRS.
SRPX/Drs (sushi-repeat-containing protein, x-linked): An
apoptosis-inducing tumor suppressor that is involved in the
maturation of autophagosomes.2064

SseL: A Salmonella deubiquitinase secreted by a type III secre-
tion system; deubiquitination of aggregates and ALIS decreases

host macrophage macroautophagic flux and results in an envi-
ronment more favorable to bacterial replication.2065

Ssk1: A yeast component of the Hog1 signaling cascade that is
required for mitophagy.508 See also Hog1.
Sso1/Sso2: Highly homologous plasma membrane syntaxins
(SNAREs) of S. cerevisiae involved in exocytosis; the Sso1/Sso2
proteins also control the movement of Atg9 to the Atg9 periph-
eral sites and PAS during macroautophagy and the Cvt
pathway.2023

STAT3 (signal transducer and activator of transcription 3
[acute-phase response factor]): A transcription factor that
also functions in the cytosol as a suppressor of macroauto-
phagy.2066 STAT3 binds EIF2AK2/PKR and inhibits the phos-
phorylation of EIF2S1.
Stationary phase lipophagy: A type of lipophagy that occurs
in yeast cells entering quiescence.2067,2068

STK3 (serine/threonine kinase 3): The mammalian homolog
of the Hippo/Ste20 kinase, which can phosphorylate LC3 on
Thr50; this modification is needed for the fusion of autophago-
somes with lysosomes.2069

STK4/MST1 (serine/threonine kinase 4): As with STK3,
STK4 can phosphorylate LC3.2069 STK4 also phosphorylates
Thr108 of BECN1, promoting the interaction of BECN1 with
BCL2 or BCL2L1, inhibiting macroautophagy.2070

STK11/LKB1 (serine/threonine kinase 11): A kinase that is
upstream of, and activates, AMPK.1673

STX5 (syntaxin 5): A Golgi-localized SNARE protein involved
in vesicular transport of lysosomal hydrolases, a process that is
critical for lysosome biogenesis; STX5 is needed for the later
stages of autophagy.2071

STX12/STX13/STX14 (syntaxin 12): A genetic modifier of
mutant CHMP2B in frontotemporal dementia that is required
for autophagosome maturation; STX12 interacts with VTI1A.2072

STX17 (syntaxin 17): An autophagosomal SNARE protein
required for fusion of the completed autophagosome with an
endosome or lysosome in metazoans.584,585 STX17 is also
required for recruitment of ATG14 to the ER-mitochondria
contact sites.2073

Sui2: The yeast homolog of EIF2S1/eIF2a.
SUPT20H/FAM48A (suppressor of Ty 20 homolog [S. cere-
visiae]): A protein that interacts with the C-terminal domain
of ATG9; this interaction is negatively regulated by
MAPK14.2074

Sunitinib: An autofluorescent multitarget tyrosine kinase
inhibitor with lysosomotropic properties; sunitinib interferes
with autophagic flux by blocking trafficking to lysosomes.2075

Symbiophagy: A process in which invertebrates such as the
coralline demosponge Astrosclera willeyana degrade part of
their symbiotic bacterial community, as part of a biomineraliza-
tion pathway that generates the sponge skeleton.2076

Syx13 (Syntaxin 13): The Drosophila homolog of human
STX12 that is required for autophagosome maturation.2072

TAB2 (TGF-beta activated kinase 1/MAP3K7 binding pro-
tein 2): MAP3K7-binding protein that consitutively interacts
with TAB3 and inhibits macroautophagy; upon macroauto-
phagy induction these proteins dissociate from BECN1 and
bind MAP3K7.2077,2078

TAB3 (TGF-beta activated kinase 1/MAP3K7 binding pro-
tein 3): See TAB2.
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TAK1: See MAP3K7.
TAKA (transport of Atg9 after knocking out ATG1) assay:
An epistasis analysis that examines the localization of Atg9-
GFP in a double mutant, where one of the mutations is a dele-
tion of ATG1.106 In atg1D mutants, Atg9-GFP is restricted pri-
marily to the PAS; if the second mutation results in a multiple
puncta phenotype, the corresponding protein is presumably
required for anterograde transport of Atg9 to the PAS.728 This
analysis can be combined with localization of RFP-Ape1 to
determine if any of the Atg9-GFP puncta reach the PAS, in
which case that punctum would colocalize with the RFP-Ape1
PAS marker.
Tamoxifen: A triphenylethylenic compound widely used for
the management of estrogen receptor-positive breast cancers.
This drug is a dual modulator of ESR (estrogen receptor) and a
high affinity ligand of the microsomal antiestrogen binding site
(AEBS). Tamoxifen induces protective macroautophagy in can-
cer cells through an AEBS-mediated accumulation of zymoste-
nol (5a-cholest-8-en-3b-ol).1239,1931,2079

TARDBP/TDP-43 (TAR DNA binding protein): A DNA/
RNA binding protein that stabilizes Atg7mRNA.2080

TASCC (TOR-autophagy spatial coupling compartment): A
compartment located at the trans Golgi where autolysosomes
and MTOR accumulate during RRAS-induced senescence to
provide spatial coupling of protein secretion (anabolism) with
degradation (catabolism); for example, amino acids generated
from autophagy would quickly reactivate MTOR, whereas
autophagy would be rapidly induced via MTOR inhibition
when nutrients are again depleted.2081

TAX1BP1/CALCOCO3 (Tax1 [human T-cell leukemia virus
type I] binding protein 1): An autophagy receptor that con-
tains a LIR motif and a double zinc-finger ubiquitin binding
domain. TAX1BP1 interacts with ubiquitinated substrates,
such as S. typhimurium, and recruits LC3-positive autophago-
somal membrane.879,1893,2082

Tax4: See Irs4.1827

TBC1D7 (TBC1 domain family, member 7): This protein is
the third functional subunit of the TSC1-TSC2 complex
upstream of MTORC1. Loss of function of TBC1D7 results in
an increase of MTORC1 signaling, delayed induction of
macroautophagy and enhancement of cell growth under poor
growth conditions.2083 Mutations in TBC1D7 have been associ-
ated with intellectual disability, macrocrania, and delayed
autophagy.2084,2085

TBC1D14 (TBC1 domain family, member 14): TBC1D14
colocalizes and interacts with ULK1 and upon overexpression
causes tubulation of ULK1-positive endosomes, inhibiting auto-
phagosome formation.1993 TBC1D14 binds activated RAB11, but

does not function as a GAP. TBC1D14 localizes to the Golgi
complex during amino acid starvation. See also RAB11.
TBC1D25/OATL1 (TBC1 domain family, member 25): A
Tre2-Bub2-Cdc16 (TBC) domain-containing GAP for
RAB33B; TBC1D25 is recruited to phagophores and autopha-
gosomes via direct interaction with the Atg8 family
proteins (via a LIR/LRS-like sequence), and it regulates the
interaction of autophagosomes with lysosomes by inactivating
RAB33B.2000 Overexpression of TBC1D25 inhibits autophago-
some maturation at a step prior to fusion, suggesting that it
might interfere with a tethering/docking function of RAB33B.
See also RAB33B and LIR/LRS.
TBK1 (TANK-binding kinase 1): A serine/threonine protein
kinase that is similar to IKK involved in the activation of
NFKB.2086 TBK1 binds and directly phosphorylates OPTN at
Ser177 (in humans) within the LIR, increasing the affinity of
the latter for LC3.880

TCHP/mitostatin (trichoplein, keratin filament binding): A
DCN (decorin)-inducible tumor suppressor gene that functions
in, and is required for, tumor cell mitophagy. TCHP/mitostatin
responds to DCN as well as canonical cues (e.g., nutrient depri-
vation and rapamycin) for mitophagic induction. DCN regu-
lates mitostatin in a PPARGC1A/PGC-1a-dependent manner.
Moreover, DCN-induced mitophagy is entirely dependent on
TCHP for angiogenic inhibition.2087

TECPR1 (tectonin beta-propeller repeat containing 1): A
protein that interacts with ATG5 and WIPI2, and localizes to
the phagophore (localization is dependent on WIPI2); TECPR1
is needed for phagophore formation during macroautophagic
elimination of Shigella, but not for starvation-induced auto-
phagy.2088 TECPR1 also localizes to autophagosomes that tar-
get other pathogenic microbes such as group A Streptococcus,
to depolarized mitochondria and to protein aggregates, suggest-
ing a general role in selective macroautophagy. TECPR1 also
plays a role in fusion of the autophagosome with the lysosome
by competing with ATG16L1 to bind ATG5 and PtdIns3P,
recruiting ATG5 to the lysosome membrane.2089

TECPR2: A WD repeat- and TECPR domain-containing pro-
tein that plays a role in macroautophagy; mutation of TECPR2
results in a form of monogenic hereditary spastic
paraparesis.2090,2091

TFE3 (transcription factor binding to IGHM enhancer 3): A
transcription factor belonging to the microphthalmia/tran-
scription factor E (MiT/TFE) family, along with TFEB and
MITF.639,1879 See also TFEB and MITF.
TFEB (transcription factor EB): A transcription factor that
positively regulates the expression of genes involved in lyso-
somal biogenesis (those in the CLEAR network636), and also
several of those involved in macroautophagy (including
UVRAG, WIPI, MAP1LC3B and ATG9B); the use of a common
transcription factor allows the coordinated expression of genes
whose products are involved in the turnover of cytoplasm.625

See also CLEAR and PPP3R1.
TGFB1/TGF-b (transforming growth factor, beta 1): A cyto-
kine that activates macroautophagy through the SMAD and
MAPK8 pathways. TGFB1 induces the expression of several
ATG genes including BECN1.
TGM2/TG2/TGase 2 (transglutaminase 2): An enzyme that
catalyzes the formation of an isopeptide bond between a free
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amine group (e.g., protein- or peptide-bound lysine) and the
acyl group at the end of the side chain of protein- or peptide-
bound glutamine (protein crosslinking); TGM2 interacts with
SQSTM1 and is involved in the macroautophagic clearance of
ubiquitinated proteins.780,2092

THC (D9-tetrahydrocannabinol): The main active compo-
nent of the hemp plant Cannabis sativa. The anticancer activity
of THC in several animal models of cancer relies on its ability
to stimulate autophagy-mediated cancer cell death. This effect
occurs via THC binding to cannabinoid receptors, and the sub-
sequent triggering of an ER stress-related response, which leads
in turn to the inhibition of the AKT-MTORC1 axis.2093-2095

TIGAR/C12orf5 (TP53 induced glycolysis regulatory phos-
phatase): A protein that modulates glycolysis, causing an
increase in NADPH, which results in a lower ROS level; this
reduces the sensitivity to oxidative stress and apoptosis, but
also has the effect of lowering the level of macroautophagy.2096

Timosaponin A-III: A medicinal saponin that induces a type
of macroautophagy with some features that are distinct from
rapamycin-induced macroautophagy.2097

Tlg2: A yeast endocytic SNARE light chain involved in early
stages of the Cvt pathway729 and in autophagosome membrane
formation.2023 Deletion of TLG2 results in a modest
impairment in Atg9 delivery to the PAS.
TLR (toll-like receptor): A family of receptors that induces
macroautophagy following binding to a corresponding PAMP.
TM9SF1 (transmembrane 9 superfamily member 1): A pro-
tein with 9 transmembrane domains that induces macroauto-
phagy when overexpressed.2098

TMEM59 (transmembrane protein 59): A type-I transmem-
brane protein able to induce an unconventional autophagic
process involving LC3 labeling of single-membrane endosomes
through direct interaction with ATG16L1.2099

TMEM74 (transmembrane protein 74): An integral mem-
brane protein that induces macroautophagy when
overexpressed.1739,1740

TMEM166: See EVA1A.
TNFAIP3/A20 (tumor necrosis factor, alpha-induced pro-
tein 3): An E3 ubiquitin ligase that also functions as a deubi-
quitinating enzyme that removes K63-linked ubiquitin from
BECN1, thus limiting macroautophagy induction in response
to TLR signaling.2100 In contrast, TNFAIP3 restricts MTOR sig-
naling, acting as a positive factor to promote macroautophagy
in CD4 T cells.2101

TNFSF10/TRAIL (tumor necrosis factor superfamily, mem-
ber 10): Induces macroautophagy by activating AMPK, thus
inhibiting MTORC1 during lumen formation.
TOLLIP (toll interacting protein): A mammalian ubiquitin-
binding receptor protein similar to yeast Cue5 that contains a
CUE domain and plays a role in the macroautophagic removal
of protein aggregates.451 See also Cue5 and CUET.
TOR (target of rapamycin): A serine/threonine protein kinase
that negatively regulates yeast macroautophagy. Present in 2
complexes, TORC1 and TORC2. TORC1 is particularly sensi-
tive to inhibition by rapamycin. TORC1 regulates macroauto-
phagy in part through Tap42-protein phosphatase 2A, and also
by phosphorylating Atg13 and Atg1.
TORC1 (TOR complex I): A rapamycin-sensitive protein
complex of TOR that includes at least Tor1 or Tor2 (MTOR),

Kog1 (RPTOR), Lst8 (MLST8), and Tco89.2102 MTORC1 also
includes DEPTOR and AKT1S1/PRAS40.2103 In mammalian
cells, sensitivity to rapamycin is conferred by RPTOR. TORC1
directly regulates macroautophagy.
TORC2 (TOR complex II): A relatively rapamycin-insensitive
protein complex of TOR that includes at least Tor2 (MTOR),
Avo1 (MAPKAP1/SIN1), Avo2, Avo3 (RICTOR), Bit61, Lst8
(MLST8) and Tsc11; MTORC2 also includes FKBP8/FKBP38,
and PRR5/Protor-1.2102-2104 A critical difference in terms of
components relative to TORC1 is the replacement of RPTOR
by RICTOR. TORC2 is primarily involved with regulation of
the cytoskeleton, but this complex functions to positively regu-
late macroautophagy during amino acid starvation.2105 Finally,
studies also support the idea that TORC2 activity is required to
sustain autophagosome biogenesis,2106 whereas it exerts an
inhibitory effect on CMA,2107 suggesting that a switch in
TORC2 substrates may contribute to coordinating the activity
of these 2 types of autophagy.
Torin1: A selective catalytic ATP-competitive MTOR inhibi-
tor that directly inhibits both TORC1 and TORC2.1193

TP53/p53 (tumor protein 53): A tumor suppressor. Nuclear
TP53 activates macroautophagy, at least in part, by stimulating
AMPK and DRAM1, whereas cytoplasmic TP53 inhibits
macroautophagy.1273 Note that the official name for this pro-
tein in rodents is TRP53. The TP53 C. elegans ortholog, cep-1,
also regulates macroautophagy.1272,1274

TP53INP1 (tumor protein p53 inducible nuclear protein
1): A stress-response protein that promotes TP53 transcrip-
tional activity; cells lacking TP53INP1 display reduced basal
and stress-induced autophagy,2108 whereas its overexpres-
sion enhances autophagic flux.2109 TP53INP1 interacts
directly with LC3 via a functional LIR and stimulates auto-
phagosome formation.2110 Cells lacking TP53INP1 display
reduced mitophagy; TP53INP1 interacts with PARK2 and
PINK1, and thus could be a recognition molecule involved
in mitophagy.2111

TP53INP2/DOR (tumor protein p53 inducible nuclear pro-
tein 2): A mammalian and Drosophila regulatory protein that
shuttles between the nucleus and the cytosol; the nuclear pro-
tein interacts with deacetylated LC3657 and GABARAPL2 and
stimulates autophagosome formation.2112 TP53INP2 also inter-
acts with GABARAP and VMP1 and is needed for the recruit-
ment of BECN1 and LC3 to autophagosomes. TP53INP2
translocates from the nucleus to phagophores during
macroautophagy induction and binds VMP1 and LC3
directly.2113 In addition, TP53INP2 modulates muscle mass in
mice through the regulation of macroautophagy.2114

TPCN/two-pore channel (two pore segment channel):
TPCNs are endolysosomal cation channels that maintain the
proton gradient and membrane potential of endosomal and
lysosomal membranes. TPCN2 physically interacts with
MTOR and regulates MTOR reactivation and macroautophagic
flux.2115,2116

TPR (translocated promoter region, nuclear basket protein):
TPR is a component of the nuclear pore complex that presum-
ably localizes at intranuclear filaments or nuclear baskets.
Nuclear pore complex components, including TPR, are jointly
referred to as nucleoporins. TPR was originally identified as the
oncogenic activator of the MET and NTRK1/trk proto-
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oncogenes. Knockdown of TPR facilitates macroautophagy.
TPR depletion is not only responsible for TP53 nuclear accu-
mulation, which also activates the TP53-induced macroauto-
phagy modulator DRAM, but also contributes to HSF1 and
HSP70 mRNA trafficking, and transcriptional regulation of
ATG7 and ATG12.2117

TRAF2 (TNF receptor-associated factor 2): An E3 ubiquitin
ligase that plays an essential role in mitophagy in unstressed
cardiac myocytes, as well as those treated with TNF or
CCCP.786

TRAF6 (TNF receptor-associated factor 6, E3 ubiquitin pro-
tein ligase): An E3 ubiquitin ligase that ubiquitinates BECN1
to induce TLR4-triggered macroautophagy in macrophages.2100

TRAIL: See TNFSF10.
Transgenic: Harboring genetic material of another species/
organism or extra copies of an endogenous gene, usually gained
through transfer by genetic engineering.
Transmitophagy/transcellular mitophagy: A process in
which axonal mitochondria are degraded in a cell-nonautono-
mous mechanism within neighboring cells.796

TRAPPII (transport protein particle II): A guanine nucleo-
tide exchange factor for Ypt1 and perhaps Ypt31/32 that func-
tions in macroautophagy in yeast.2118 TRAPPII is composed of
Bet3, Bet5, Trs20, Trs23, Trs31, Trs33 and the unique subunits
Trs65, Trs120 and Trs130.
TRAPPIII (transport protein particle III): A guanine nucleo-
tide exchange factor for Ypt1 that functions in macroautophagy
in yeast.1321 TRAPPIII is composed of Bet3, Bet5, Trs20, Trs23,
Trs31, Trs33 and a unique subunit, Trs85.
TRIB3 (tribbles pseudokinase 3): A pseudokinase that plays
a crucial role in the mechanism by which various anticancer
agents (and specifically cannabinoids, the active components
of marijuana and their derived products) activate
macroautophagy in cancer cells. Cannabinoids elicit an ER
stress-related response that leads to the upregulation of
TRIB3 whose interaction with AKT impedes the activation
of this kinase, thus leading to a decreased phosphorylation
of TSC2 and AKT1S1/PRAS40. These events trigger the
inhibition of MTORC1 and the induction of macroauto-
phagy.2094 Conversely, TRIB3 binding to SQSTM1 via its
UBA and LIR motifs interferes with autophagic flux, in par-
ticular of ubiquitinated proteins, and also reduces the effi-
ciency of the UPS, promoting tumor progression due to the
accumulation of tumor-promoting factors.2093,2119,2120

Trichostatin A: An inhibitor of class I and class II HDACs
that induces autophagy.2121

TRIM5/TRIM5a (tripartite motif containing 5): A selective
macroautophagy receptor for xenophagy; TRIM5 binds the
HIV-1 capsid.1984

TRIM20: See MEFV.
TRIM21: An antigen in autoimmune diseases such as systemic
lupus erythematosus, and Sj€ogren syndrome, TRIM21 is a
receptor for selective autophagy of IRF3 dimers, a key tran-
scriptional activator of type I interferon responses.1869

TRIM28 (tripartite motif containing 28): TRIM28 is an E3
ligase that is part of a ubiquitin ligase complex that targets
PRKAA1, leading to ubiquitination and proteasomal degrada-
tion in part through the upregulation of MTOR activity.1854 See
also MAGEA3.

TRIM50 (tripartite motif containing 50): TRIM50 is a cyto-
plasmic E3-ubiquitin ligase,2122 which interacts and colocalizes
with SQSTM1 and promotes the formation and clearance of
aggresome-associated polyubiquitinated proteins through
HDAC6-mediated interaction and acetylation.2123,2124

TRIM63/MURF-1 (tripartite motif containing 63, E3 ubiqui-
tin protein ligase): Muscle-specific atrophy-related E3 ubiqui-
tin ligase2125,2126 that cooperates with SH3GLB1 to regulate
autophagic degradation of CHRNA1 in skeletal muscle, partic-
ularly upon muscle-atrophy induction.2036

TRPC4 (transient receptor potential cation channel, subfam-
ily C, member 4): A cation channel in human umbilical vascu-
lar endothelial cells; upregulation of TRPC4 increases the
intracellular Ca2+ concentration resulting in activation of
CAMKK2, which leads to MTOR inhibition and the induction
of macroautophagy.1517

Trs85: A component of the TRAPPIII complex that is required
specifically for macroautophagy.699

Trs130: A component of the TRAPPII complex that is
required for the transport of Atg8 and Atg9 to the PAS.2118

TSC1/2 (tuberous sclerosis 1/2): A stable heterodimer (com-
posed of TSC1/hamartin and TSC2/tuberin) inhibited by AKT
and MAPK1/3 (phosphorylation causes dissociation of the
dimer), and activated by AMPK. TSC1/2 acts as a GAP for
RHEB, thus inhibiting MTOR.
TSPO (translocator protein [18kDa]): TSPO is a mitochon-
drial protein that interacts with VDAC1 to modulate the effi-
ciency of mitophagy.2127

Tubulovesicular autophagosome (TVA): Cationic lipoplex
and polyplex carriers used for nonviral gene delivery enter
mammalian cells by endocytosis and fuse with autophago-
somes, generating large tubulovesicular structures (tubulovesic-
ular autophagosomes) that immunostain for LC3; these
structures do not fuse efficiently with lysosomes and interfere
with gene expression.220

Tubulovesicular cluster (TVC): A structure identified mor-
phologically in yeast that corresponds to the Atg9 peripheral
sites.537 See also Atg9 peripheral sites/structures.
UBE2N (ubiquitin-conjugating enzyme E2N): A ubiquitin-
conjugating enzyme involved in PARK2-mediated mito-
phagy.2128,2129 UBE2N activity may be only partly redundant
with that of UBE2L3, UBE2D2 and UBE2D3, as it is also
involved during later steps of mitophagy.
Ubiquitin: A 76-amino acid protein that is conjugated to
lysine residues. Ubiquitin is traditionally considered part of the
ubiquitin-proteasome system and tags proteins for degradation;
however, ubiquitin is also linked to various types of autophagy
including aggrephagy (see SQSTM1 and NBR1). Lysine link-
age-specific monoclonal antibodies, which are commercially
available, can be used to investigate the degradation pathway
usage.2130 Proteins covalently tagged with polyubiquitin chains
via K48 are destined for proteasomal degradation, whereas pro-
teins tagged with K63-linked ubiquitin are degraded via the
macroautophagy pathway. In addition, phosphorylated forms
of ubiquitin have been identified including p-S65-Ub, which is
specifically generated during PINK1-PARK2-mediated mito-
phagy. Potentially, several PTMs of the modifier ubiquitin may
turn out to be highly relevant and specific for distinct forms of
selective autophagy (reviewed in ref. 745). See also p-S65-Ub.
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Ubp3: A yeast deubiquitinase that forms a complex with Bre5
and is required for ribophagy.847 Conversely, the Ubp3-Bre5
complex inhibits mitophagy.2131

UBQLN/Ubiquilins: Receptor proteins that deliver ubiquiti-
nated substrates to the proteasome. Ubiquilins may aid in the
incorporation of protein aggregates into autophagosomes, and
also promote the maturation of autophagosomes at the stage of
fusion with lysosomes.2132

ULK family (unc-51 like autophagy activating kinase): The
ULK proteins are homologs of yeast Atg1. In mammalian cells
the family consists of 5 members, ULK1, ULK2, ULK3, ULK4,
and STK36/ULK5. ULK1 and ULK2 are required for
macroautophagy, and ULK3 for oncogene-induced senes-
cence.535,2133,2134 See also Atg1. Figure modified from Fig. 2 of
ref. 2135.

Ume6: A component of the Rpd3L complex that binds to the
URS1 sequence in the ATG8 promoter and downregulates tran-
scription in growing conditions.1233 See also Rpd3 and Sin3/
SIN3.
UNC-51: The C. elegans Atg1/ULK1/ULK2 homolog. See also
Atg1.
UPR (unfolded protein response): A coordinated process to
adapt to ER stress, providing a mechanism to buffer fluctua-
tions in the unfolded protein load. The activation of this path-
way is often related with macroautophagy.
USP8 (ubiquitin specific peptidase 8): A deubiquitinase that
removes K6-linked ubiquitin chains from PARK2 to promote
PARK2 recruitment to depolarized mitochondria and
mitophagy.1922

USP15 (ubiquitin specific peptidase 15): A deubiquitinating
enzyme that antagonizes PARK2-mediated mitophagy.2136 See
also USP30.
USP30: A deubiquitinating enzyme that antagonizes PARK2-
mediated mitophagy.2137 USP30 is also a substrate of PARK2
and is subject to proteasome-mediated degradation. See also
USP15.
USP36: A deubiquitinating enzyme that negatively regulates
selective macroautophagy in Drosophila and human cells.2138

UVRAG (UV radiation resistance associated): A Vps38
homolog that can be part of the class III PtdIns3K complex.
UVRAG functions in several ways to regulate macroautophagy:
1) It disrupts BECN1 dimer formation and forms a hetero-
dimer that activates macroautophagy. 2) It binds to SH3GLB1
to allow activation of class III PtdIns3K to stimulate
macroautophagy. 3) It interacts with the class C Vps/HOPS
proteins involved in fusion of autophagosomes or amphisomes
with the lysosome. 4) It competes with ATG14 for binding to
BECN1, thus directing the class III PtdIns3K to function in the
maturation step of macroautophagy.2139 MTORC1 phosphory-
lates UVRAG to inhibit macroautophagy.2140 In contrast,

MTORC1 can also phosphorylate UVRAG to stimulate
PIK3C3 activity and autophagic lysosome reformation.2141

UVRAG also has an autophagy-independent function, interact-
ing with membrane fusion machinery to facilitate the cellular
entry of enveloped viruses.2142

Vacuolar cell death: One of the 2 major types of cell death in
plants (another type is necrosis), wherein the content of the
dying cell is gradually engulfed by growing lytic vacuoles with-
out loss of protoplast turgor, and culminates in vacuolar col-
lapse.1093 Vacuolar cell death is commonly observed during
plant development, for example in the embryo-suspensor and
xylem elements, and critically depends on macroautophagy.1095

A similar type of macroautophagy-dependent vacuolar cell
death is required for Dictyostelium development.2143

Vacuolar-type H+-ATPase (V-ATPase): A ubiquitously
expressed proton pump that is responsible for acidifying lysosomes
and the yeast or plant vacuole, and therefore is important for the
normal progression of autophagy. Inhibitors of the V-ATPase (e.g.,
bafilomycin A1) are efficient macroautophagy inhibitors.156,157

Vacuolar sequestering membranes (VSM): Extensions/pro-
trusions of the vacuole limiting membrane along the surface of
peroxisomes that occurs during micropexophagy.2144

Vacuole: The fungal and plant equivalent of the lysosome; this
organelle also carries out storage and osmoregulatory func-
tions.2145 The bona fide plant equivalent of the lysosome is the
lytic vacuole.
Vacuole import and degradation (Vid): A degradative path-
way in yeast in which a specific protein(s) is sequestered into
small (30- to 50-nm) single-membrane cytosolic vesicles that
fuse with the vacuole allowing the contents to be degraded in
the lumen. This process has been characterized for the catabo-
lite-induced degradation of the gluconeogenic enzyme Fbp1/
fructose-1,6-bisphosphatase in the presence of glucose, and
sequestration is thought to involve translocation into the com-
pleted vesicle. An alternate pathway for degradation of Fbp1 by
the ubiquitin-proteasome system has also been described.2146

Vacuolin-1: A small chemical that potently and reversibly
inhibits the fusion between autophagosomes or endosomes
with lysosomes by activating RAB5A.1521

Valinomycin: A K+ ionophore that destroys the electrochemi-
cal gradient across the mitochondrial membane and is widely
used as a stimulator of mitophagy, similar to CCCP.2147

Vam3: A yeast syntaxin homolog needed for the fusion of
autophagosomes with the vacuole.2148

VAMP3 (vesicle-associated membrane protein 3): A SNARE
protein that facilitates the fusion of MVBs with autophago-
somes to generate amphisomes.2149
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VAMP7 (vesicle-associated membrane protein 7): VAMP7 is
a SNARE protein that colocalizes with ATG16L1 vesicles and
phagophores, and is required, along with STX7 (syntaxin 7),
STX8 and VTI1B, for autophagosome formation.2150 VAMP7
is also involved in the maturation of autophagosomes by facili-
tating fusion with a lysosome.2149

VAMP8 (vesicle-associated membrane protein 8): A SNARE
protein that, in conjunction with VTI1B, is needed for the
fusion of autophagosomes with lysosomes.2151

VCP/p97 (valosin-containing protein): A type II AAA+-
ATPase that is a protein segregase required for autophago-
some maturation under basal conditions or when the pro-
teasomal system is impaired; mutations of VCP result in
the accumulation of immature, acidified autophagic vacuoles
that contain ubiquitinated substrates.2152,2153 See also Cdc48.
Verteporfin: An FDA-approved drug; used in photodynamic
therapy, but it inhibits the formation of autophagosomes in
vivo without light activation.2154

VHL (von Hippel-Lindau tumor suppressor, E3 ubiquitin
protein ligase): VHL serves as the substrate recognition sub-
unit of a ubiquitin ligase that targets the a subunit of the heter-
odimeric transcription factor HIF1 for degradation. This
interaction requires the hydroxylation of HIF1A on one or
both of 2 conserved prolyl residues by members of the EGLN
family of prolyl hydroxylases.2155

VirG: A Shigella protein that is required for intracellular actin-
based motility; VirG binds ATG5, which induces xenophagy;
IcsB, a protein secreted by the type III secretion system, com-
petitively blocks this interaction.2156

VMP1 (vacuole membrane protein 1): A multispanning
membrane protein that is required for macroautophagy.632,2157

VMP1 regulates the levels of PtdIns3P,2158 binding of the
ATG12–ATG5-ATG16L1 complex, and lipidation of LC3.2159

Vps1: A dynamin-like GTPase required for peroxisomal fis-
sion. It interacts with Atg11 and Atg36 on peroxisomes that are
being targeted for degradation by pexophagy.1716 See also
Dnm1.
Vps11: A member of the core subunit of the homotypic fusion
and protein sorting (HOPS) and class C core vacuole/endo-
some tethering (CORVET) complexes, originally found in yeast
but also conserved in higher eukaryotes.2160,2161 These com-
plexes are important for correct endolysosomal trafficking, as
well as the trafficking of black pigment cell organelles, melano-
somes; zebrafish Vps11 is involved in maintaining melanosome
integrity, possibly through an autophagy-dependent
mechanism.2162

Vps30/Atg6: A component of the class III PtdIns3K complex.
Vps30/Atg6 forms part of 2 distinct yeast complexes (I and II)
that are required for the Atg and Vps pathways, respectively.
See also BECN1 and phosphatidylinositol 3-kinase.1588

Vps34: The yeast phosphatidylinositol 3-kinase; the lipid
kinase catalytic component of the PtdIns3K complex I and
II.1941 See also PIK3C3 and phosphatidylinositol 3-kinase.
Vps38: A yeast component of the class III PtdIns3K complex
II, which directs it to function in the vacuolar protein sorting
pathway.
VTC (vacuolar transporter chaperone): A complex composed
of Vtc1, Vtc2, Vtc3 and Vtc4 that is required for microauto-
phagy in yeast.2163

Vti1: A yeast soluble SNARE that, together with Sec18/NSF, is
needed for the fusion of autophagosomes with the vacuole.2024

In mammalian cells, the SNARE proteins VAMP8 and VTI1B
mediate the fusion of antimicrobial and canonical autophago-
somes with lysosomes.2151

WAC (WW domain containing adaptor with coiled-coil): A
positive regulator of macroautophagy that interacts with
BECN1, WAC also negatively regulates the UPS.1747

WDFY3/ALFY (WD repeat and FYVE domain containing
3): A scaffold protein that targets cytosolic protein aggregates
for autophagic degradation.2164 WDFY3 interacts directly with
ATG5,2165 GABARAP proteins,146 and SQSTM1.2166

WDR45/WIPI4 (WD repeat domain 45): See WIPI.
WHAMM: A nucleation-promoting factor that directs the
activity of the Arp2/3 complex to function in autophagosome
formation.2167 WHAMM colocalizes with LC3, ZFYVE1 and
SQSTM1 and acts in autophagosome biogenesis through a
mechanism dependent on actin comet tail formation.
WIPI (WD repeat domain, phosphoinositide interacting):
The WIPI proteins are putative mammalian homologs of yeast
Atg18 and Atg21. There are 4 WIPI proteins in mammalian
cells. WIPI1/WIPI49 and WIPI2 localize with LC3 and bind
PtdIns3P.555 WIPI2 is required for starvation-induced
macroautophagy.559 WDR45/WIPI4 is also involved in
macroautophagy. In humans, WDR45 is localized on the X-
chromosome and so far only de novo loss-of-function muta-
tions are described. Heterozygous and somatic mutations cause
neurodegeneration with brain iron accumulation,2168 while
hemizygous mutations result in early-onset epileptic encepha-
lopathy.2169 Impaired autophagy has been shown in lympho-
blastoid cell lines derived from affected patients, showing
abnormal colocalization of LC3-II and ATG9A. Furthermore,
lymphoblastoid cell lines from affected subjects, show increased
levels of LC3-II, even under normal conditions.2170 Surpris-
ingly, complete Wdr45 knockout mice develop normally, but
show neurodegeneration, as of 9 months of age, thereby indi-
cating overlapping activity of the 4 WIPI proteins in mam-
mals.2171 WDR45/WIPI4 appears to be the member of the
mammalian WIPI protein family that binds ATG2.464,563

WNT (wingless-type MMTV integration site family): Cyste-
ine-rich glycosylated secreted proteins that determine multiple
cellular functions such as neuronal development, angiogenesis,
tumor growth, and stem cell proliferation. Signaling pathways
of WNT such as those that involve CTNNB1/beta-catenin can
suppress macroautophagy.2172,2173

WNT5A: A ligand of the WNT signaling pathway. Activation
of the WNT5A-CTNNB1 pathway suppresses IFNG-induced
autophagy in macrophages during mycobacterial infection.528

Wortmannin (WM): An inhibitor of PI3K and PtdIns3K; it
inhibits macroautophagy due to the downstream effect on
PtdIns3K.1851

WXXL motif: An amino acid sequence present in proteins
that allows an interaction with Atg8/LC3/GABARAP proteins;
the consensus is [W/F/Y]-X-X-[I/L/V]. Also see AIM and LIR/
LRS.1481

WYE-354: A catalytic MTOR inhibitor that increases macro-
autophagic flux to a greater level than allosteric inhibitors such
as rapamycin (and may be used to induce macroautophagy in
cell lines that are resistant to rapamycin and its derivatives);
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short-term treatment with WYE-354 can inhibit both
MTORC1 and MTORC2, but the effects on flux are due to the
former.341 See also Ku-0063794.
XBP1 (X-box binding protein 1): A component of the ER
stress response that activates macroautophagy. The XBP1 yeast
ortholog is Hac1.2174

Xenophagy: Cell-autonomous innate immunity defense,
whereby cells eliminate intracellular microbes (e.g., bacteria,
fungi, parasites and/or viruses) by sequestration into autopha-
gosomes with subsequent delivery to the lysosome.2175

Xestospongin B: An antagonist of the ITPR that dissociates
the inhibitory interaction between ITPR and BECN1 and indu-
ces macroautophagy.2176

Yeh1: See Ayr1.
Ykt6: A prenylated vesicle SNARE involved in Golgi transport
and fusion with the vacuole (including Cvt vesicle delivery to
the vacuole2177); temperature sensitive ykt6 mutations also pre-
vent closure of the phagophore.2023

Ymr1: A yeast PtdIns3P-specific phosphatase involved in
autophagosome maturation.2178,2179

Ypk1: A downstream effector of TORC2
that stimulates macroautophagy under con-
ditions of amino acid depletion.2105 TORC2
activation of Ypk1 results in inhibition of
the PPP3/calcineurin-Cmd1/calmodulin
phosphatase, which otherwise dephosphor-
ylates and inhibits Gcn2, a positive regula-
tor of macroautophagy. See also Gcn2.
Ypt1: A yeast GTPase that functions in
several forms of autophagy.1321 Ypt1 is
needed for correct localization of Atg8 to
the PAS. The mammalian homolog, RAB1,
is required for autophagosome formation
and for autophagic targeting of Salmo-
nella.2180,2181 See also TRAPPIII.
Ypt7: A yeast homolog of mammalian
RAB7, needed for the fusion of autophago-
somes with the vacuole.
YWHAZ/14-3-3/(tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, zeta): A member of the
14-3-3 family of proteins that inhibits macroautophagy; direct
interaction with PIK3C3 negatively regulates kinase activity, and
this interaction is disrupted by starvation or C2-ceramide.2182

ZFPM1/FOG1 (zinc finger protein, FOG family member
1): A cofactor of GATA1, a positive regulator of macroauto-
phagy gene transcription.641 See also GATA1.
ZFYVE1/DFCP1 (zinc finger, FYVE domain containing
1): A PtdIns3P-binding protein that localizes to the omega-
some.583 Knockdown of ZFYVE1 does not result in a
macroautophagy-defective phenotype.
ZFYVE26/spastizin/SPG15 (zinc finger, FYVE domain con-
taining 26): A protein involved in a complicated form of
hereditary spastic paraparesis; it interacts with the macroauto-
phagy complex BECN1-UVRAG-RUBCN and is required for
autosphagosome maturation.2183

ZIPK: See Sqa.
ZKSCAN3/ZNF306 (zinc finger with KRAB and SCAN
domains 3): A zinc finger family transcription factor harboring
Kruppel-associated box and SCAN domains that functions as a

master transcriptional repressor of autophagy and lysosome bio-
genesis. ZKSCAN3 represses the transcription of more than 60
genes integral to, or regulatory for, autophagy and lysosome bio-
genesis and/or function and a subset of these genes, including
MAP1LC3B andWIPI2, are its direct targets. Starvation and torin1
treatment induce translocation of ZKSCAN3 from the nucleus to
the cytoplasm.643

Zoledronic acid: A bisphosphonate that induces macroauto-
phagy and may result in autophagic cell death in prostate and
breast cancer cells.2184

Zymophagy: The selective degradation of activated zymogen
granules by a macroautophagy-like process that is dependent on
VMP1, SQSTM1 and the ubiquitin protease USP9X.909 See also
crinophagy.

Quick guide

1. Whenever possible, use more than one assay to monitor autophagy.
2. Whenever possible, include flux measurements for autophagy (e.g.,

using tandem fluorochrome assays such as RFP-EGFP-LC3 or, prefera-
bly, cargo-specific variations thereof).

3. Whenever possible, use genetic inhibition of autophagy to complement
studies with nonspecific pharmacological inhibitors such as 3-MA.

4. For analysis of genetic inhibition, a minimum of 2 ATG genes (includ-
ing for example BECN1, ATG7 or ULK1) should be targeted to help
ensure the phenotype is due to inhibition of autophagy.

5. When monitoring GFP-LC3 puncta formation, provide quantification,
ideally in the form of number of puncta per cell.

6. For the interpretation of decreased SQSTM1 levels, use a pan-caspase
inhibitor to ensure that the reduced SQSTM1 amount is not due to a
caspase-induced cleavage of the protein.

7. Whenever possible, monitor autophagic responses using both short-
term and long-term assays.
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