
Traceable Complexity Metric from Requirements to code
Gabriela Arévalo

CONICET
Avda. Rivadavia 1917

(1033), Buenos Aires, Argentina
garevalo@austral.edu.ar

Gabriela Robiolo
Universidad Austral

Avda. Juan de Garay 125
(1054), Buenos Aires, Argentina

grobiolo@austral.edu.ar

Miguel Martinez Soler
Universidad Austral

Avda. Juan de Garay 125
(1054), Buenos Aires, Argentina
miguelmsoler@gmail.com

ABSTRACT
Complexity metrics are one of the useful measurements to
determine the quality of a target software. However, the
measurements are only applied and isolated in one specific
development phase and there are no metrics that can show the
quality (and the evolution) of the same software artifact in all
development phases. In this paper, we propose a methodology to
use a traceable metric to measure software artifacts from
requirements to source code. Specifically, we validate our
approach on transactions defined in use cases and implemented in
source code, and some initial results show that our approach is
promising to solve the problem of tracing software artifacts during
the software development process.

Categories and Subject Descriptors
D.2.8 [Metrics]: Complexity measures, Process Metrics.

General Terms
Measurement, Design, Verification.

Keywords
Traceability, Metrics, Transactions, Requirements, Source code

1. INTRODUCTION
UML models provide a useful means to have a controlled (clean)
process from requirements to implementation levels for
developers during software development. The most known models
are Use-Case Model, Analysis Model, Design Model and
Implementation Model [1]. These models are not independent one
from each other, but they keep different relationships between
them. For example, the Use Case Model describes the proposed
functionality of a target system. The Analysis Model describes the
structure of the system or application, describing the logical
implemenation of the functional requirements identified in the
Use Case Model. The Design model builds on the Analysis Model
by describing in detail the structure of the system and how the
system will be implemented. Finally, the Implementation Model
represents the physical composition of the implementation in
terms of subsytems and implementation elements (directories and
files, including source code, data and executable files).

Even when we have described briefly all the models, we observe
that there are (implicit) dependences that tightly link one model to
another one. These dependencies are named traces [2]. They can
be defined through the historical or process relationships between
elements that represent the same concept in the different models.
We consider them as implicit because there are no rules to derive
the dependences from one model to another one.

However, the possibility of tracing different elements and
relationships between the models is important in terms of
understandability and change propagation. It will mainly help
developers to forth and back track any error and improvements in
any development level in a system. But the process of tracing is
not trivial because as we said the dependencies of the different
elements are implicit.

During software development, we apply different metrics to the
software elements and relationships to measure the quality of the
software. Specifically in case of size or complexity metrics, which
provides a measurement to a specific internal product feature in
the target software, we have specific metrics for each specific
model or phase of a system lifecycle. Briefly, Function Points
(FP) [3] are applied to models during modeling/requirements
phase, Use case Points [4], Transactions and Paths [5] are based
on Use case Models, Chidamber-Kemerer’s [6] metrics are
design-oriented, ciclomatic complexity [7] is graph-oriented and
Lines of code is code-oriented. Even when the choice of metrics
models is wide, there are no metrics that could be applied and
traced through the complete process of software development
(from requirements to code).

This feature is a drawback to track the evolution of the software
elements and relationships between them. The developers can
define and measure the requirements during the first stages of an
application development. They can also calculate requirements
size and complexity [5], but these measurements will be only kept
as information of this development phase, because it implies a
particular feature (in our case, requirements) in a specific model.
However, project leaders must have a global view of the system,
and must be able to identify each software element (and its
features) from requirements to implementation phases. It is
important for them to know they were implemented (or not),
decomposed in other software components, integrated in an
existing one, its size and complexity and so on.

To cope with this requirement, we develop an approach based on
two metrics proposed in Robiolo et al. work [5, 8]: Number of
Transactions (nT) and Number of Paths (nP). They are based on
use cases and computed from textual descriptions of use cases and
UML Models. nT is the number of transactions in the use case
identified from the actor stimulus in the text by the verbs, i.e. the
actor actions interacting with the system. nP is the number of
paths of a transaction of the use case textual description.

Summarizing, nT measure the use case size and nP, the
transaction complexity

In this paper, we show how both metrics can be calculated in
source code, and we show how the traceability of the metrics
helps to understand how the different requirements were
implemented in a target application, and which are the explicit
differences between requirements in terms of models and source
code.

This paper is structured as follows: Section 2 details our approach
to analyze the source code to obtain the metrics in the system.
Section 3 presents the case study, the obtained measurements and
analyze the results. Section 4 cites some related work, and finally
Section 5 presents some conclusions and future work.

2. OUR APPROACH
As mentioned previously, we need to calculate two metrics:
Number of Transactions (nT) and Number of Paths (nP) starting
from source code using the concept of complexity metrics.
The starting point is the identification of a transaction in source
code. To map the definition of a transaction based on use cases
into code, the key aspect was to identify the actor’ stimulus in
code, named as access-point. As a transaction is made up of a set
of sequential method calls, the access-point is the method that is
not called but it calls other method. Thus, the complexity of a
transaction would be computed in terms of number of the paths.
Each transaction has a principal path, built with the chain of
method calls from the starting point to the end of the transaction,
and alternatives paths, which are identified by the “if-then”
expressions. This definition of transaction is similar to the one
suggested in [9], which makes cyclomatic complexity easy to
compute, where each alternative path adds one to the complexity
of the principal path whose complexity is also 1. In terms of
formulas, if a transaction T has a chain of methods calls m1,… mk,
then
nP (T) = 1 + ∑1

k CC(mi) – k
where k is the number of methods calls, CC(mi) is the complexity
metric of the method mi.
The identification of transactions in source code is not a trivial
work. Therefore, we developed an approach consisting of 5 steps:
1) Mapping from Source Code to a Metamodel. Our goal is not to
link our approach to a specific programming language. Thus,
instead of analyzing the source code itself, we generate a model of
the source code to keep our analysis independent of the target
source code. Our case study is built with Java, so we chose
Recoder to generate the model of the source code. Recoder is a
Java framework for source code metaprogramming aimed to
deliver a sophisticated infrastructure for many kinds of Java
analysis and transformation tools [10].
2) Computation of Mc Cabe Complexity of Methods. As we base
our computation of the nP on the Mc Cabe Complexity, we
calculate it for each method using the Abstract Syntax Tree (AST)
generated by Recoder.
3) Mapping AST to logical facts. Even when Recoder tool
provides complete information regarding the target source code,
we just need the information regarding method calls (to detect the
access points to build the transactions) of the generated Abstract
Syntax Tree (AST). Thus, we only keep the information of
classes, methods, attributes, method calls (including constructors)

and inheritance relationships, and the corresponding Mc Cabe
complexity of all the methods. The metric is relevant in the
computation of nP.
In a further step, we need to detect access points to determine the
corresponding transactions. The extraction of the information on
the generated AST is not easy to perform. This is the reason that
the reduced model of the source code is mapped as logical facts
using CLIPS [11], which is a productive development and
delivery expert system tool which provides a complete
environment for the construction of rule and/or object based
expert systems. Thus, any reasoning regarding the target model is
simplified to writing logical rules, and we stay still independent of
the source code.
4) Inferring inheritance rules. In previous steps, we just analyzed
the object-oriented model from a syntatic viewpoint. But we have
to consider inheritance relationships that have influence in the
computation of nP. Specifically, we have to consider those
methods that are implemented in a class A, but from the
inheritance viewpoint are inherited by all the (direct and indirect)
subclasses of A.
From the previous step, only direct inheritance relationships are
mapped as logical facts, i.e. if a class A is superclass of class B,
and class B is superclass of class C, we have two logical facts:
superclass(A,B) and superclass (B,C). However, there is no
information regarding indirect (transitive) inheritance
relationships. In our example, A is superclass of C. Firstly, we add
logical rules that show this relationship.
Then, using the information generated for the transitive
inheritance relationship, we now complete the logical model with
new facts that show all possible receivers of a method m
implemented in a class A. This means that if we have a method m
implemented by the class A, each subclass B of A that do not
implement or overwrite the cited method can answer it. Thus, we
add a new logical fact that shows that class B can answer method
m.
4) Detecting access points. The detection of the access points to
build the transactions is designed with logical rules implemented
in CLIPS. The rules are the following ones:
a. Class A has a method m as an access point, if m is defined in
class A, class A implements the interface ActionListener, and the
signature of m is void actionPerformed
(java.awt.event.ActionEvent).
b. Class A which implements main(String[]) as static method.
c. Other rules for the specific implementation environment
5) Building Transactions using access points. The previous step
identified the access points of the target program. We have to use
them to build the transactions on the source code. As a first step,
we identify which are the transactions in the different analyzed
use cases. Once we have identified them, we can have different
mapping strategies:
a. A transaction with a unique access point.
b. A transaction with multiple access points: For example, in a
form with different fields, a piece of code is executed whenever
the user fills in one. However, the transaction ends when all the
fields were filled in.

Table 1. Class, Access point, Use Case and Transaction identified in a Traceability relationship

a. Several transactions with the same access point. A transaction
can be an alternative path inside the code, that is executed starting
from an access point, which is common to several transactions.
6) Computation of the nP of each identified transaction. Once we
have identified the transactions, we compute the complexity of
them based on the number of paths of the method calls, as said
previously in this section.

3. CASE STUDY
To validate our approach, we use a specification of an ATM
System [12] to validate the presented approach. We chose this
case study because it is a middle-sized one, it was developed by
third parties and we have the textual descriptions of the use cases
and the Java source code. Table 1 shows the traceability between
use cases, transactions identified on use case textual descriptions
and the identified access points in code. Table 2 shows the use
case names, the measured paths (nP) based on the use case textual
descriptions and source code.

Table 2. Path measured on UC and Code

Use case name nP (UC) nP (Code)+ k

System Startup Use Case 2 18

System Shutdown Use Case 1 8

Session Use Case 4 81

Transaction Use Case 4 94

Withdrawal Trasaction Use
Case

2 33

Deposit Trasaction Use Case 3 115

Transfer Trasaction Use Case 1 52

Inquiry Trasaction Use Case 1 17

Invalid Pin Extension 3 85

Class Access point UC Actor's actions of UC T

atm.ATM (performShutdown) System Shutdown turns off

atm.ATM (performStartup) System Startup enter (Startup)

atm.Session (performSession) Session insert, enter (Session)

atm.transaction.Deposit (complete Transaction) Deposit Transaction Accept

atm.transaction.Deposit (getSpecificsFromCustomer) Deposit Transaction Choose_D

atm.transaction.Inquiry (complete Transaction) Inquiry Transaction Choose_I

atm.transaction.Inquiry (getSpecificsFromCustomer) Inquiry Transaction Choose_I

atm.transaction.Transaction (performTransaction) Transaction Choose_T

atm.transaction.Transfer (complete Transaction) Transfer Transaction Choose_Tr

atm.transaction.Transfer (getSpecificsFromCustomer) Transfer Transaction Choose_Tr

atm.transaction.Withdrawal (complete Transaction) Withdrawal Transaction Choose_W

atm.transaction.Withdrawal (getSpecificsFromCustomer) Withdrawal Transaction Choose_W

atm.transaction.Transaction (performinvalid PIN) Invalid Pin Extension re-enter

ATMMain… (actionPerformed) Transaction not specified

simulation.ATMPanel.72…09 (actionPerformed) Transaction not specified

simulation.BillsPanel.26… 84 (actionPerformed) System Startup enter (Startup)

simulation.CardPanel.61…43 (actionPerformed) Session Insert

simulation.LogPanel.45… 72 (actionPerformed) Transaction not specified

simulation.LogPanel.45…63 (actionPerformed) Transaction not specified

simulation.SimCardReader… (actionPerformed) Session Insert

simulation.SimEnvelopeAc… (actionPerformed) Deposit Transaction Accept

simulation.SimKeyboard…08 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all)

simulation.SimKeyboard…09 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all)

simulation.SimKeyboard…38 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all)

simulation.SimKeyboard…74 (actionPerformed) Sessio, Deposit Trasa, Transfer Trasa enter(Session),choose (all)

simulation.SimOperatorPanel. (actionPerformed) System Startup, System Shutdown turns on, turns off

simulation.SimReceiptPrinter. (actionPerformed) Transaction not specified

Analysis of the Results: From Table 1, we can observe that our
hypothesis that there is a dependency between transactions at use
case level and source code level is confirmed. Thus, we consider
that the transaction is traceable. However, the traceability
relationship between transactions at use case level and code level
is not one to one, but it is zero to many. This means that a code
transaction may be not defined at the use case level, and that a use
case transaction may be decomposed in more than one transaction
at the code level. But when analyzing the results, we do not keep
traces between paths at use case level and at code level (as we do
in transactions), because an alternative path is not identified as a
requirement unit, but is defined by a principal path. Even when
we could find traces between paths, so far the information is not
relevant in our analysis.

Table 2 shows an important difference between nP (UC) and nP
(Code), the value of nP(Code) are higher than the values of nP
(UC) . There are also differences between use case transaction and
code transactions. This result can be considered normal because
the level of detail of developers is different when they work in
requirements phase and programming phase.

Discussion. Regarding the methodology, the most difficult aspect
was the identification of the access points in the source code to
build the transactions, because it is based on rules that we have
built. In this paper, we limit the number of rules, but analyzing
other case studies, other rules can be added to refine the results.
Even when we have worked with a case study implemented in
Java, we have said previously that our approach is independent of
the target language. In order to analyze an application
implemented in another language, we have to use the
corresponding source code model, other than Recoder, in the step
1, and adapt the rules for the access-point detection in step 4.

4. RELATED WORK
To our knowledge, there are no bibliographic references that deal
with traceability in complexity metrics. However, several works
show interesting aspects of traceability metrics. Due to the
reduced space in the paper, we just mention briefly them

Pfleger et al. [13] cope with processing measurements because
they are more difficult to track, as they often require traceability
from one product or activity to another one. Antoniol et al. [14]
presents a method to maintain traceability links between
subsequent releases of a software system. Shepperd [15]
investigates the various existing metrics for system component
size. An alternative metric is proposed, based upon the traceability
of functional requirements from a specification to design. Paul et
al. [16] present approaches for current software metrics database
environments to achieve efficient execution and management of
large projects. They proposed a combination of critical metrics
and analytical tools that can enable highly efficient and cost
effective management of large and complex software projects.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an approach and our initial
validation to detect and measure the complexity of traceable
transactions from requirements (use cases) to code (source code)
of a target software system. With our initial experiments, we have
shown that our complexity metrics (nP and nT) are useful to
evaluate if the requirements were implemented or not, and how
they were implemented. Thus, we can offer developer a global
view of the system in the complete software development process.

Even when the results are promising, there are still some future
work. We want to analyze if there is a correlation between nP
measured in use cases and in source code. We want also to test
our approach in other object-oriented languages to see the
adaptability issues in these cases.

6. ACKNOWLEDGMENTS
Our thanks to the Research Fund of School of Engineering of
Austral University, which made this study possible.

7. REFERENCES
[1] Jacobson, I., Booch, G.and Rumbaugh J. 2003The Unified

Software Development Process. Addison-Wesley.
[2] Booch, G, Jacobson, I. and Rumbauggh J. 1997 The Unified

Modeling Language User Guide, Addison-Wesley.
[3] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1

Unadjusted functional size measurement method – Counting
Practices Manual, International Organization for
Standardization, Geneva.

[4] Karner, G. 1993. Metrics for Objectory. Diploma thesis,
University of Linköping.

[5] Robiolo, Gabriela; Badano, Cristina; Orosco, Ricardo, 2009
Transactions and Paths: two use case based metrics which
improve the early effort estimation, Empirical Software
Engineering and Measurement (ESEM)

[6] Chidamber, S. and Kemerer, C. 1994. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, Vol. 20, No. 6. IEEE Press.

[7] McCabe, T. 1976. A Complexity measurement, IEEE
Transactions on software Engineering, Vol. SE-2, NO. 4.
IEEE Press

[8] Lavazza, L., Robiolo, G. 2010 Introducing the Evaluation of
Complexity in Functional.Size Measurement: a UML-based
Approach. Symposium on Empirical Software Engineering
and Measurement (ESEM) (accepted).

[9] Watson, A.H. and Mac Cabe, T.J.. 1996. Structured Testing:
Atesting Methodology using the Complejidad Ciclomática
Metric, National Institute of Standards and Technology,
Gaithersburg, http://www.mccabe.com/pdf/nist235r.pdf

[10] http://recoder.sourceforge.net/index.html
[11] http://clipsrules.sourceforge.net/WhatIsCLIPS.html
[12] http://www.cs.gordon.edu/courses/cps122/ATMExample/ind

ex.html
[13] Pfleeger, SL., Jeffery, R., Curtis, B. and Kitchenham, B.

1997. Status report on software measurement. IEEE software
[14] Antoniol, G., Canfora, G., Casazza, G. and De Lucia, A.

2001 Maintaining traceability links during object-oriented
software evolution. Softw. Pract. Exper. 2001; 31:331–355.

[15] Shepperd, M. and Ince D.1990 Multi-dimensional modelling
and measurement of software designs.ACM Annual
Computer Science Conference, ACM annual conference on
Cooperation.

[16] Paul, R., Kunii, T., Shinagawa, Y. and Khan, M. Software
1999 Metrics Knowledge and Databases for Project
Management. IEEE Transactions on Knowledge and Data
Engineering, VOL. 11, NO. 1.

