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ABSTRACT 
Complexity metrics are one of the useful measurements to 
determine the quality of a target software. However, the 
measurements are only applied and isolated in one specific 
development phase and there are no metrics that can show the 
quality (and the evolution) of the same software artifact in all 
development phases. In this paper, we propose a methodology to 
use a traceable metric to measure software artifacts from 
requirements to source code. Specifically, we validate our 
approach on transactions defined in use cases and implemented in 
source code, and some initial results show that our approach is 
promising to solve the problem of tracing software artifacts during 
the software development process. 

Categories and Subject Descriptors 
D.2.8 [Metrics]: Complexity measures, Process Metrics. 

General Terms 
Measurement, Design, Verification. 

Keywords 
Traceability, Metrics, Transactions, Requirements, Source code 

1. INTRODUCTION 
UML models provide a useful means to have a controlled (clean) 
process from requirements to implementation levels for 
developers during software development. The most known models 
are Use-Case Model, Analysis Model, Design Model and 
Implementation Model [1]. These models are not independent one 
from each other, but they keep different relationships between 
them. For example, the Use Case Model describes the proposed 
functionality of a target system. The Analysis Model describes the 
structure of the system or application, describing the logical 
implemenation of the functional requirements identified in the 
Use Case Model. The Design model builds on the Analysis Model 
by describing in detail the structure of the system and how the 
system will be implemented. Finally, the Implementation Model 
represents the physical composition of the implementation in 
terms of subsytems and implementation elements (directories and 
files, including source code, data and executable files). 

Even when we have described briefly all the models, we observe 
that there are (implicit) dependences that tightly link one model to 
another one. These dependencies are named traces [2]. They can 
be defined through the historical or process relationships between 
elements that represent the same concept in the different models. 
We consider them as implicit because there are no rules to derive 
the dependences from one model to another one.  

However, the possibility of tracing different elements and 
relationships between the models is important in terms of 
understandability and change propagation. It will mainly help 
developers to forth and back track any error and improvements in 
any development level in a system. But the process of tracing is 
not trivial because as we said the dependencies of the different 
elements are implicit.  

During software development, we apply different metrics to the 
software elements and relationships to measure the quality of the 
software. Specifically in case of size or complexity metrics, which 
provides a measurement to a specific internal product feature in 
the target software, we have specific metrics for each specific 
model or phase of a system  lifecycle. Briefly, Function Points 
(FP) [3] are applied to models during modeling/requirements 
phase, Use case Points [4], Transactions and Paths [5] are based 
on Use case Models, Chidamber-Kemerer’s [6] metrics are 
design-oriented, ciclomatic complexity [7] is graph-oriented and 
Lines of code is code-oriented. Even when the choice of metrics 
models is wide, there are no metrics that could be applied and 
traced through the complete process of software development 
(from requirements to code). 

This feature is a drawback to track the evolution of the software 
elements and relationships between them. The developers can 
define and measure the requirements during the first stages of an 
application development. They can also calculate requirements 
size and complexity [5], but these measurements will be only kept 
as information of this development phase, because it implies a 
particular feature (in our case, requirements) in a specific model. 
However, project leaders must have a global view of the system, 
and must be able to identify each software element (and its 
features) from requirements to implementation phases. It is 
important for them to know they were implemented (or not), 
decomposed in other software components, integrated in an 
existing one, its size and complexity and so on.  

To cope with this requirement, we develop an approach based on 
two metrics proposed in Robiolo et al. work [5, 8]: Number of 
Transactions (nT) and Number of Paths (nP). They are based on 
use cases and computed from textual descriptions of use cases and 
UML Models. nT is the number of transactions in the use case 
identified from the actor stimulus in the text by the verbs, i.e. the 
actor actions interacting with the system. nP is the number of 
paths of a transaction of the use case textual description. 



Summarizing, nT measure the use case size and nP, the 
transaction complexity 

In this paper, we show how both metrics can be calculated in 
source code, and we show how the traceability of the metrics 
helps to understand how the different requirements were 
implemented in a target application, and which are the explicit 
differences between requirements in terms of models and source 
code. 

This paper is structured as follows: Section 2 details our approach 
to analyze the source code to obtain the metrics in the system. 
Section 3 presents the case study, the obtained measurements and 
analyze the results. Section 4 cites some related work, and finally 
Section 5 presents some conclusions and future work. 

2. OUR APPROACH  
As mentioned previously, we need to calculate two metrics: 
Number of Transactions (nT) and Number of Paths (nP) starting 
from source code using the concept of complexity metrics. 
The starting point is the identification of a transaction in source 
code. To map the definition of a transaction based on use cases 
into code, the key aspect was to identify the actor’ stimulus in 
code, named as access-point. As a transaction is made up of a set 
of sequential method calls, the access-point is the method that is 
not called but it calls other method.  Thus, the complexity of a 
transaction would be computed in terms of number of the paths. 
Each transaction has a principal path, built with the chain of 
method calls from the starting point to the end of the transaction, 
and alternatives paths, which are identified by the “if-then” 
expressions. This definition of transaction is similar to the one 
suggested in [9], which makes cyclomatic complexity easy to 
compute, where each alternative path adds one to the complexity 
of the principal path whose complexity is also 1.  In terms of 
formulas, if a transaction T has a chain of methods calls m1,… mk, 
then  
nP (T) = 1 + ∑1

k CC(mi) – k                          
where k  is the number of methods calls, CC(mi) is the complexity 
metric of the method mi. 
The identification of transactions in source code is not a trivial 
work. Therefore, we developed an approach consisting of 5 steps: 
1) Mapping from Source Code to a Metamodel. Our goal is not to 
link our approach to a specific programming language. Thus, 
instead of analyzing the source code itself, we generate a model of 
the source code to keep our analysis independent of the target 
source code. Our case study is built with Java, so we chose 
Recoder to generate the model of the source code. Recoder is a 
Java framework for source code metaprogramming aimed to 
deliver a sophisticated infrastructure for many kinds of Java 
analysis and transformation tools [10]. 
2) Computation of Mc Cabe Complexity of Methods. As we base 
our computation of the nP on the Mc Cabe Complexity, we 
calculate it for each method using the Abstract Syntax Tree (AST) 
generated by Recoder. 
3) Mapping AST to logical facts.   Even when Recoder tool 
provides complete information regarding the target source code, 
we just need the information regarding method calls (to detect the 
access points to build the transactions) of the generated Abstract 
Syntax Tree (AST). Thus, we only keep the information of 
classes, methods, attributes, method calls (including constructors) 

and inheritance relationships, and the corresponding Mc Cabe 
complexity of all the methods. The metric is relevant in the 
computation of nP.  
In a further step, we need to detect access points to determine the 
corresponding transactions. The extraction of the information on 
the generated AST is not easy to perform. This is the reason that 
the reduced model of the source code is mapped as logical facts 
using CLIPS [11], which is a productive development and 
delivery expert system tool which provides a complete 
environment for the construction of rule and/or object based 
expert systems. Thus, any reasoning regarding the target model is 
simplified to writing logical rules, and we stay still independent of 
the source code. 
4) Inferring inheritance rules. In previous steps, we just analyzed 
the object-oriented model from a syntatic viewpoint. But we have 
to consider inheritance relationships that have influence in the 
computation of nP. Specifically, we have to consider those 
methods that are implemented in a class A, but from the 
inheritance viewpoint are inherited by all the (direct and indirect) 
subclasses of A.  
From the previous step, only direct inheritance relationships are 
mapped as logical facts, i.e. if a class A is superclass of class B, 
and class B is superclass of class C, we have two logical facts: 
superclass(A,B) and superclass (B,C). However, there is no 
information regarding indirect (transitive) inheritance 
relationships. In our example, A is superclass of C. Firstly, we add 
logical rules that show this relationship.  
Then, using the information generated for the transitive 
inheritance relationship, we now complete the logical model with 
new facts that show all possible receivers of a method m 
implemented in a class A. This means that if we have a method m 
implemented by the class A, each subclass B of A that do not 
implement or overwrite the cited method can answer it. Thus, we 
add a new logical fact that shows that class B can answer method 
m. 
4) Detecting access points. The detection of the access points to 
build the transactions is designed with logical rules implemented 
in CLIPS. The rules are the following ones: 
a. Class A has a method m as an access point, if m is defined in 
class A, class A implements the interface ActionListener, and the 
signature of m is void actionPerformed 
(java.awt.event.ActionEvent). 
b. Class A which implements main(String[]) as static method. 
c. Other rules for the specific implementation environment  
5) Building Transactions using access points. The previous step 
identified the access points of the target program. We have to use 
them to build the transactions on the source code. As a first step, 
we identify which are the transactions in the different analyzed 
use cases. Once we have identified them, we can have different 
mapping strategies: 
a. A transaction with a unique access point. 
b. A transaction with multiple access points: For example, in a 
form with different fields, a piece of code is executed whenever 
the user fills in one. However, the transaction ends when all the 
fields were filled in. 



Table 1. Class, Access point, Use Case and Transaction identified in a Traceability relationship 

 
 
a. Several transactions with the same access point. A transaction 
can be an alternative path inside the code, that is executed starting 
from an access point, which is common to several transactions. 
6) Computation of the nP of each identified transaction. Once we 
have identified the transactions, we compute the complexity of 
them based on the number of paths of the method calls, as said 
previously in this section.  

3. CASE STUDY 
To validate our approach, we use a specification of an ATM 
System [12] to validate the presented approach. We chose this 
case study because it is a middle-sized one, it was developed by 
third parties and we have the textual descriptions of the use cases 
and the Java source code. Table 1 shows the traceability between 
use cases, transactions identified on use case textual descriptions 
and the identified access points in code. Table 2 shows the use 
case names, the measured paths (nP) based on the use case textual 
descriptions and source code.  

Table 2. Path measured on UC and Code 

Use case name nP (UC) nP (Code)+ k 

System Startup Use Case 2 18 

System Shutdown Use Case 1 8 

Session Use Case 4 81 

Transaction Use Case 4 94 

Withdrawal Trasaction Use 
Case 

2 33 

Deposit Trasaction Use Case 3 115 

Transfer Trasaction Use Case 1 52 

Inquiry Trasaction Use Case 1 17 

Invalid Pin Extension 3 85 

 

Class Access point UC Actor's actions of UC T 

atm.ATM (performShutdown) System Shutdown turns off 

atm.ATM (performStartup) System Startup enter (Startup) 

atm.Session (performSession) Session insert, enter (Session) 

atm.transaction.Deposit (complete Transaction) Deposit Transaction Accept 

atm.transaction.Deposit (getSpecificsFromCustomer) Deposit Transaction Choose_D 

atm.transaction.Inquiry (complete Transaction) Inquiry Transaction Choose_I 

atm.transaction.Inquiry (getSpecificsFromCustomer) Inquiry Transaction Choose_I 

atm.transaction.Transaction (performTransaction) Transaction Choose_T 

atm.transaction.Transfer (complete Transaction) Transfer Transaction Choose_Tr 

atm.transaction.Transfer (getSpecificsFromCustomer) Transfer Transaction Choose_Tr 

atm.transaction.Withdrawal (complete Transaction) Withdrawal Transaction Choose_W 

atm.transaction.Withdrawal (getSpecificsFromCustomer) Withdrawal Transaction Choose_W 

atm.transaction.Transaction (performinvalid PIN) Invalid Pin Extension re-enter 

ATMMain… (actionPerformed) Transaction not specified  

simulation.ATMPanel.72…09 (actionPerformed) Transaction not specified  

simulation.BillsPanel.26… 84 (actionPerformed) System Startup enter (Startup) 

simulation.CardPanel.61…43 (actionPerformed) Session Insert 

simulation.LogPanel.45… 72 (actionPerformed) Transaction not specified  

simulation.LogPanel.45…63 (actionPerformed) Transaction not specified  

simulation.SimCardReader… (actionPerformed) Session Insert 

simulation.SimEnvelopeAc… (actionPerformed) Deposit Transaction Accept 

simulation.SimKeyboard…08 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) 

simulation.SimKeyboard…09 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) 

simulation.SimKeyboard…38 (actionPerformed) Session, Deposit Trasa, Transfer Trasa enter(Session),choose (all) 

simulation.SimKeyboard…74 (actionPerformed) Sessio, Deposit Trasa, Transfer Trasa enter(Session),choose (all) 

simulation.SimOperatorPanel. (actionPerformed) System Startup, System Shutdown turns on, turns off 

simulation.SimReceiptPrinter. (actionPerformed) Transaction not specified  



Analysis of the Results: From Table 1, we can observe that our 
hypothesis that there is a dependency between transactions at use 
case level and source code level is confirmed. Thus, we consider 
that the transaction is traceable. However, the traceability 
relationship between transactions at use case level and code level 
is not one to one, but it is zero to many. This means that a code 
transaction may be not defined at the use case level, and that a use 
case transaction may be decomposed in more than one transaction 
at the code level. But when analyzing the results, we do not keep 
traces between paths at use case level and at code level (as we do 
in transactions), because an alternative path is not identified as a 
requirement unit, but is defined by a principal path. Even when 
we could find traces between paths, so far the information is not 
relevant in our analysis. 

Table 2 shows an important difference between nP (UC) and nP 
(Code), the value of nP(Code) are higher than the values of nP 
(UC) . There are also differences between use case transaction and 
code transactions. This result can be considered normal because 
the level of detail of developers is different when they work in 
requirements phase and programming phase.  

Discussion. Regarding the methodology, the most difficult aspect 
was the identification of the access points in the source code to 
build the transactions, because it is based on rules that we have 
built. In this paper, we limit the number of rules, but analyzing 
other case studies, other rules can be added to refine the results. 
Even when we have worked with a case study implemented in 
Java, we have said previously that our approach is independent of 
the target language. In order to analyze an application 
implemented in another language, we have to use the 
corresponding source code model, other than Recoder, in the step 
1, and adapt the rules for the access-point detection in step 4.   

4. RELATED WORK 
To our knowledge, there are no bibliographic references that deal 
with traceability in complexity metrics. However, several works 
show interesting aspects of traceability metrics. Due to the 
reduced space in the paper, we just mention briefly them 

Pfleger et al. [13] cope with processing measurements because 
they are more difficult to track, as they often require traceability 
from one product or activity to another one. Antoniol et al. [14] 
presents a method to maintain traceability links between 
subsequent releases of a software system. Shepperd [15] 
investigates the various existing metrics for system component 
size. An alternative metric is proposed, based upon the traceability 
of functional requirements from a specification to design. Paul et 
al. [16] present approaches for current software metrics database 
environments to achieve efficient execution and management of 
large projects. They proposed a combination of critical metrics 
and analytical tools that can enable highly efficient and cost 
effective management of large and complex software projects.  

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have presented an approach and our initial 
validation to detect and measure the complexity of traceable 
transactions from requirements (use cases) to code (source code) 
of a target software system. With our initial experiments, we have 
shown that our complexity metrics (nP and nT) are useful to 
evaluate if the requirements were implemented or not, and how 
they were implemented. Thus, we can offer developer a global 
view of the system in the complete software development process. 

Even when the results are promising, there are still some future 
work. We want to analyze if there is a correlation between nP 
measured in use cases and in source code. We want also to test 
our approach in other object-oriented languages to see the 
adaptability issues in these cases. 
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