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Abstract. The distribution of wall pressures in cross flow through an array of four cylindrical 
tubes inclined at different angles   was experimentally studied using air at 
atmospheric pressure flowing at a maximum flow of 120 g/sec. The experiments show that the 
pressure coefficient is strongly influenced by the inclination angle, and only marginally affected 
by the flow rate (within the tested range). A model based on the curvature of the stream lines in 
the gap between bars agrees very well with the pressure coefficient at the gap. 

oo 9030 ≤≤α
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I. INTRODUCTION 
The separation of the boundary layer is determinant of the cross-flow resistance to the 

presence of solid obstacles. The problem of separation of boundary layer in gas flow received the 
attention of researchers for many years [1], mostly in the development of aviation industry [2]. In 
addition, heat exchanger technology introduced several interesting issues, such as flow around 
tubes and cross flow through tube bundles. Gas flow around different tube configurations has 
also important applications in nuclear industry, specially in advanced gas cooled reactors. 
Actually, a careless fluid dynamic design of fuel elements might lead to flow induced vibrations 
affecting normal behavior of the core structure [3]. Therefore, the generation of experimental 
data to support the design of fuel bundles is an important issue [4]. 

The flow across circular cylinders is a well known problem of fluid dynamics. A good review 
can be found in [5]. The issue was extensively studied in surface flow for its applications in 
support columns of river bridges. For internal flow, the studies were aimed mainly to heat 
exchangers. Fornberg [6] analyzed the incompressible cross-flow past a row of circular 
cylinders. Williamson [7-8] studied the three-dimensional transition of the flow behind a circular 
cylinder. Schewe [9] found that the drag coefficient and the vortex shedding frequency are not 
sensitive to the Reynolds number within the subcritical regime (300 <Re < 3 105). Numerous 
numerical studies of the cross-flow around cylinders were presented in 2D and 3D geometries. 
An updated review of these studies can be found in [10]. 

In several applications, such as the flow past cables, subsea pipelines, and heat exchangers, 
the direction of the flow is generally not perpendicular to the cylinders axis. This kind of flows 
can be ideally represented by a wake flow downstream of a yawed cylinder, which has been 
studied by a number of investigators both experimentally and numerically [10-17]. The 
experimental studies showed that, for an isolated long cylinder, the drag coefficient normalized 
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by the velocity component perpendicular to the cylinder is approximately invariant to the 
inclination angle (independence conjecture). In case of flow past a yawed cylinder of finite 
length, it was shown that the wake vortices far from the upstream end of the cylinder are 
approximately parallel to the cylinder. In turn, the vortices near the upstream end of the cylinder 
are aligned at an angle larger than the cylinder inclination. 

In the present article, an experimental and theoretical study of the distribution of wall pressure 
around a bundle cell with three yawed tubes is presented. Although gas flow around rod bundles 
similar configurations were studied in the past [5, 18], pressure profiles on the wall tube were not 
reported in the open literature for such bundles. 

II. EXPERIMENTAL SETUP AND METHOD 
The experimental setup consists of a rectangular test section that receives an air flow provided 

by an axial air blower. The test section hosts a cell composed of two parallel rods and two half 
rods embedded in the channel walls as shown in Fig. 1. The rods are mounted on a protractor so 
that their angle can be varied between 90º and 30º respect to the flow direction (Fig. 2). All rods 
are made of stainless steel with 10.86mm outer diameter and they have an overall tolerance of 
0.05mm. The gap between rods is (2±0.05)mm. The rods spacing and parallelism was ensured by 
two rod spacers located outside the test section. 

The inlet flow rate to the test section was measured by means of an elliptical Pitot tube (Preso 
Ellipse) located on a 2” stainless steel pipe. The pipe is 1.35 m long, which ensures the flow 
development at the point of measurement. The Pitot tube is connected to a DP Cell Honeywell 
ST 300. A PT100 thermometer is used to measure the fluid temperature at the test section outlet. 
The flow incoming to the test section is forced through three metallic screens in order to produce 
a planar velocity profile and reduce turbulence levels. A settling distance of approximately 4 
hydraulic diameters was taken between the last screen and the rods. The test section outlet has a 
length of 11 hydraulic diameters, which prevents downstream interference on the test section 
flow and provides a convenient location for the measurement of bulk exit conditions. 

To measure the wall pressure, one of the two central rods of the test section has a 0.5mm 
pressure tap about the middle plane of the test section. The pressure tap diameter corresponds to 
5º angular span; hence the angular precision is approximately 2º. The rod was supported so that it 
could be rotated around its axis to measure the different azimuthal positions. The wall pressure 
was measured by means of a differential pressure gauge, using the bulk static pressure at the inlet 
of the test section as reference. For pressure differences higher and lower than 60mbar, the 
Honeywell ST 300 DP Celland and the Siemens Sitrans PDS-III DP Cell are used respectively. 

Measurements were performed for several gas flow rates. Flow rates were kept constant 
within 6% for the lowest and within 2% for the highest values. Once the steady state temperature 
was reached, the differential pressure between the rod wall and the inlet was recorded for 
different angular positions θ (θ = 0 being the flow direction). Measurements were repeated for 
each rods inclination angle and flow rate. 
 

III. EXPERIMENTAL RESULTS 
Figures 3 to 6 show the θ-dependence of the wall pressure coefficient CD defined as: 
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where ρ is the gas density, ( )θwp  is the wall pressure at the polar angle θ, and  and  are 

the inlet pressure and characteristic velocity 
∞p ∞v

∞∞∞ = Amv ρ&  (being  the mass flow rate, and m&

∞ρ  and  are the inlet air density and cross section area. Each graphic corresponds to 
measurements performed at constant flow rate, and the curves are parameterized with the 
inclination angle 

∞A

α . Four flow rates were measured, namely 45, 70, 95 and 120 g/s (± 7%), 
corresponding to inlet velocities 12, 19, 25 and 31 m/s. The hydraulic diameter of the system is 
calculated as ( )112 −− += εhDh , where h is the channel height and ε is the gap between bars. The 

resulting Reynolds numbers, νhDv∞=Re , are 2290, 3560, 4830 and 6100, respectively. 

The sources of uncertainty are the pressure difference and the flow rate measurements (see 
Eq. 1). The former and the latter prevail at lower and higher values of CD, respectively. The 
resulting upper bound for the CD data set is 7.5%. 

In all cases, the lowest pressure is measured at θ = 90o. For θ > 90o there is a slight pressure 
recovery and then the pressure remains constant until θ = 180o, which is an indication of the 
detachment of the boundary layer. At α = 90o the pressure recovery occurs around θ = 110o, 
closer to θ = 90o than in a flow passing around an isolated bar [19]. This suggests that the 
presence of neighbor bars favors the detachment of the boundary layer. 

As the inclination of the array increases, i.e. α decreases, the minimum pressure at 90o and the 
back pressure at 180o increases. Also, the detachment point moves progressively to the rear, 
reaching θ = 140o at α = 30o. These trends are reasonable since the planar cross-section shapes 
tend to ellipses, which are aerodynamically better the longer is the axis parallel to the flow. Fig. 
7 shows the wall pressure coefficient at the gap (θ = 90o) and the rear of the cylinder (θ = 180o), 
averaged over all measured flow rates, for different inclination angles. 

 
IV. THEORETICAL ANALYSIS 

Let us consider the special case of normal cross flow, i.e. α = 90o. The wall pressure at the 
gap between bars (θ = 90o) can be analyzed by considering the balance of forces acting on the 
fluid at a small control volume located at the gap between bars as shown in Fig. 8. Consider the 
curvilinear system of coordinates given by the stream lines (θ) and the lines normal to the them 
(n), the net force normal to the stream lines is [20]: 
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where R is the radius of curvature of the stream lines. The mass of the control volume is 

θρ ddnR  and the centrifugal acceleration is 
R
v 2

, where v is the velocity of the stream line in the 

control volume. Therefore by applying the second Newton law results: 
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Choosing a coordinate  originated at the gap center and passing through the centers of the 

cylinders: 
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From the Bernoulli equation the transversal velocity profile on the gap satisfies: 
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where  is the stagnation pressure: op
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 The Bernoulli equation is valid provided that the thickness of the boundary layer is much 
smaller than the gap width. Mentha et al.[21] correlated the thickness of boundary layers in 
contractions including narrow gaps between cylinders. The corresponding correlations gives in 
our case a maximum thickness of 0.02 mm, which is neglect able compared with the 20 mm gap. 

The curvature radius of the stream lines  is a at the wall )( yR ( )2ε=y  and infinite at the 

center of the gap ( 0)=y . Assuming a linear dependence of , Eqs. ¡Error! No se 
encuentra el origen de la referencia. yields: 
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Integrating Eq. (7) gives: 
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where  is an integration constant that should be determined from mass conservation 
considerations. The corresponding transversal velocity profile is: 

C
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Integrating Eq. (9) across the minimum gap gives: 
 

2

2
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where the average velocity in the gap between cylinders, v , can be calculated directly by mass 
conservation as: 
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where  and  are the cross flow areas of the channel free from obstacles and at the 

minimum cross flow area between bars (in our case, 
∞A gA

43.6=∞ gAA ). 
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resulting 066.1=κ . 
 

Combining Eqs. (1), (8), (10) and (11) leads to: 
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resulting , which is a good approximation to the experimental value 7.51)90( −=o

DC ( )451±− . 

In yawed flow, i.e. , the model can be extended considering that the horizontal 
cross section of the bar is an ellipse with semiminor axis  and semimajor axis 

oo 9030 <≤ α
a αsina . The 

curvature radius of the ellipse at the gap is α2sina . Moreover, the effective transversal area at 

the gap, , is increased a factor . The corresponding pressure coefficient at the gap for 

yawed flow is given by: 
gA α1sin −

 

5 - 17 
 



⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−== ∞ αεαεακαθ 22

2

sin
2

expsin,1),90(
aA

A
a

C
g

o
D

     (13) 
 
where  
 

22/1

2/1

22sinexp,
−

−
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=⎟

⎠
⎞

⎜
⎝
⎛

∫ ξξα
εεακ d
aa        (14)

 

 
is a geometrical correction factor that is approximately 1 within the range of interest. Fig. 9 
depicts the function ( )aεακ , , showing that the function approaches unity as both arguments 
approach 0, and the maximum value is 1.18 for α = 90o and ε/a = 1. 

The solid curve in Fig. 7 shows Eq. (13), which is in excellent agreement with the 
experimental data. In order to test the independence conjecture it is interesting to plot the 
pressure coefficient at the gap, , calculated with the velocity component perpendicular to the 
cylinders axis (Fig. 10). The conjecture states that 

DC′

DC′  is invariant to changes of the inclination 
angle. It can be seen that in the present case the conjecture is valid within 18%, which is a range 
larger than the corresponding in isolated cylinders. The curve in Fig. 10 corresponds to Eq. 13. 
The proposed model agrees with the experiments for inclination angles α ≥ 50o. For lower 
angles, the experimental trend shows a decrease in DC′ , which can be attributed to separation of 
the boundary layer before θ = 90o. To appropriately describe this behavior, a three-dimensional 
model should be introduced. 

 
V. CONCLUSIONS 

 
The polar distribution of wall pressures around a circular tube of a cell bundle in yawed air 

cross flow was measured for different tube inclinations and flow rates. The experiments showed 
that the pressure coefficient is strongly influenced by the inclination angle and only marginally 
affected by the flow rate (at least between 45 and 120 g/s). A model based in the curvature of the 
stream lines in the gap between bars was proposed to assess the lateral pressure coefficient, 
giving excellent results for all the measured inclination angles ( )oo 9030 ≤≤ α . It was found that 
the pressure coefficient normalized by the velocity component perpendicular to the cylinders 
axis is invariant to the inclination angle within 18% tolerance. 
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Figure 1: Cross view of the Test section (Lengths in mm) 
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Figure 1: External view of the test section (Lengths in mm). 
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Figure 3: Polar profile of the pressure coefficient for Re = 2290 (45 g/s). Each curve corresponds to 

inclination angles α = 30, 40, 50, 60, 70, 80 and 90 degrees respect to the incident direction. 
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Figure 4: Polar profile of the pressure coefficient for Re = 3560 (70 g/s). Each curve corresponds to 
inclination angles α = 30, 40, 50, 60, 70, 80 and 90 degrees respect to the incident direction. 
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Figure 5: Polar profile of the pressure coefficient for Re = 4830 (95 g/s). Each curve corresponds to 

inclination angles α = 30, 40, 50, 60, 70, 80 and 90 degrees respect to the incident direction. 
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Figure 6: Polar profile of the pressure coefficient for Re = 6100 (120 g/s). Each curve corresponds 
to inclination angles α = 30, 40, 50, 60, 70, 80 and 90 degrees respect to the incident direction. 
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Figure 7. Dependence of the pressure coefficient at the rear ( ) and at  ( ) with the 
inclination angle. The error bar on the last symbol applies to all points. 
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Figure 8. Control volume ABCD at the gap between bars. The pressure force at A is ( )θdpR− . 

The pressure force at C is ( ) θddnRdn
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Figure 9. Geometrical correction factor given by Eq. (14) 
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Figure 10. Pressure drop coefficient calculated with the velocity component normal to the cylinders 

axis. 
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