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Abstract 
 

Association rules are nowadays regarded as 
robust vehicles for creating Web recommendations. 
We present an induction-based technique for 
creating a compact representation of sets of 
association rules, particularly intended for 
publishing the compact representation in the Web. 
Our technique efficiently induces a defeasible logic 
program from a set of association rules, in a manner 
that the complete set of the given associations can be 
concluded, when integrating the induced compact 
program within a defeasible logic reasoning 
framework.  

 

1. Introduction 
 
E-business and e-commerce portals are mainly 
intended for companies that offer the service of on-
line transactions to clients. Since web-services 
become available to the outside of owner boundaries, 
many companies have started the encapsulation of 
their facilities in the form of web services. Com-
panies are progressively adopting public protocols of 
wide-spread use in order to allow machine-driven 
transactions, in addition to the human-driven 
transactions available through their portals. Since 
business and commerce imply advertising, it has 
become evident that some form of "semantic" 
advertising added to service description is also 
needed for potential "machine" clients to asses the 
potential of the service provided.  

B2B is an area where the knowledge of the state and 
evolution of the market is central. Association rules 
have been recently considered as robust vehicles for 
producing recommendations [27], and mining 
algorithms has been developed specially for the issue 
[20]. In B2B, publishing association rules on the 
history of the transactions of some company may 
result crucial for gaining markets. That is, 
association rules may become data potentially 
appreciated in web-service based B2B.  

Besides, the reader must notice that an association 
rule from an itemset I1 to an itemset I2 implies the 
existence of a logical relation among two conceptual 
classes: the class of transactions that involve itemset 
I1 and the class of transactions that involve both 
itemsets I1 and I2. More specifically, it implies a 
subsumption relation, in the sense that the extension 
of the last class is contained in the extension of the 
first one, with extra quantitative information 
provided on the degree of participation of the 
subsumed class into the more general one 
(confidence) and into the world of analysis (support). 
As subsumption relations thence, association rules 
can be easily encoded in OWL, RDF and RDFS [32, 
33, 34]). Moreover, the implication is important 
regarding the fact that the assembling and filtering of 
association rules through the use of ontologies has 
shown concrete gain in terms of informative power 

[23]. It turns out therefore extremely desirable to 
incorporate association rules to web service 
description documents.  

Example 1: The association rule from class I1 to 
class I2 can be encoded as follows: 

In the fragment above, only a new namespace has 
been added (def-ar), and two attributes are added to 
the property rdfs:subclassOf: def-ar:support, infor-
ming the observed support threshold, and def-
ar:confidence, informing the observed confidence 
threshold. 

<owl:Class rdf:ID="I1"/> 
<owl:Class rdf:ID="I2"/> 
<owl:Class rdf:ID="I1andI2"> 
      <owl:intersectionOf > 

  <owl:Class rdf:resource="#I1"/> 
  <owl:Class rdf:resource="#I2" /> 

      </owl:intersectionOf> 
</owl:Class> 
<rdf:Description rdf:about="#I1andI2"> 
      <rdfs:subclassOf rdf:resource="#I1" 
                                    def-ar:support="5.100" 
                                    def-ar:confidence="93.100"/> 
</rdf:Description> 



1.1. Recommendation and Association Rules 
Mining 

Algorithms for association discovery that scale well 
on large amounts of transaction data have been 
developed and are well-known, as A-Priori [1], DIC 
[9], FPgrowth [15], and more recently [5]. 
Nevertheless, those algorithms are not particularly 
intended to be used for creating recommendation in 
machine-oriented transactions. The algorithms 
available for discovering association rules were 
devised with a purpose in mind: analysis. According 
to the models available for defining analytical rule 
interest – statistically or empirically – [16, 18], 
interesting association rules are those that exhibit 
certain signifying measures (called here generically 
parameters), such as high confidence and good 
support. The actual discovered values of parameters 
are thence of extreme importance for analysts. 
Analysts, however, do not need to attend to all the 
associations that are present in the data, since some 
of the mined rules may show no analytical 
importance. The analysts would rather provide 
thresholds to parameter values to filter the potential 
result according to interest criteria, and normally, the 
thresholds provided are high and the number of rules 
obtained small. Thresholds thus serve as pruning 
devices for analysis.  

Recommendation is a somewhat different matter. 
Informing clients of the applied thresholds instead of 
the actual parameter values of each rule seems 
sufficient for advertising. Moreover, although the 
number of exhibited rules should not be very large 
(as it was the case of analysis) - low time response in 
web interactions is central -, filtering through 
analytical signifying thresholds does not seem 
desirable in this context. It could imply a drastic 
reduction in recommendations that clients would 
appreciate. Other schemes of reduction are thus 
needed. Moreover, whenever possible, all rules 
should be shown, albeit in compact form. 

1.2. Rule Set Compaction 

The compaction problem has received attention from 
the data mining community since the very beginning 
[6, 21]. Several pre, in and post-processing reduction 
techniques have been proposed [7, 8, 11, 23, 30]. In 
those approaches; the rules exhibited are restricted 
only to those that match given patterns; non-matching 
rules are not shown. Because no reasoning 
framework is provided, the user cannot deduce all the 
pruned rules from the exhibited set.  

From a different perspective, different notions of 
closures and minimal covers have also been 
employed for reducing the number of rules to show 
[10, 24, 25, 31]. Those approaches, based on formal 
concept analysis, prune redundant rules and allow 
the inference of all pruned rules. Nonetheless, they 

fail in discovering patterns characterizing the 
singularities present within each particular dataset 
when considering redundancy; the patterns employed 
and the deduction mechanism (closure computation) 
are fixed in the algorithm code.  

More general approaches have also been attempted. 
A series of induction mechanisms were introduced in 
[12, 17, 28], showing techniques for the induction of 
“queries” on itemsets that mine associations from 
frequent itemsets; the queries acting as a compact 
representation of the rules. Those approaches, 
however, fail in real compaction. The presence of all 
itemsets with their respective frequencies is 
necessary for reconstructing the rules from the 
induced queries. 

In this paper, we present a different approach. Since 
the relation among defeasible logic [3] and semantic 
web applications is closer, from the descriptive side 
[26], and from the normative side (particularly when 
e-commerce is involved [13]), we believe that the 
addition of association rules to those settings is worth 
exploring. This is the subject of this work. 

We present therefore an algorithm that produces a 
compact representation of the given set of association 
rules through a defeasible logic program [3, 4], a 
triplet formed upon:  

a) a set of associations, atomic formulae formed 
upon association predicates on pairs of terms 
denoting itemset classes, which represent, 
semantically, association rules that are present in the 
given set;  

b) a set of assumptions, Horn clauses of associations 
with itemset variables, that represent particular 
inference rules that characterise the given set;  

c) a set of defeaters, counter-arguments to asso-
ciations that can be wrongly implied from 
associations and assumptions, and semantically 
represent a set of association rules that are not 
present in the given set.  

A linear-time framework for non-monotonically 
reasoning with programs is defined, in a manner that 
the set of all derived ground instances (associations) 
can be computed, and a PTIME induction algorithm 
is then presented for inducing a compaction from the 
given set of associations, used here as “positive 
examples”, in a machine-learning terminology. All 
and only all the given associations can be inferred 
from the induced program; the program showing 
therefore a compaction principle, in the sense that 
assumptions entail implicit associations. 

Our approach is closer to the spirit of [14, 19]. The 
difference relies in scope. While the cited works have 
the identification of legal (meta-)defeasible rules for 
reasoning on legal argumentation as a goal, our 
approach only aims at producing a compaction. The 
difference is significant, because in the cited 



approaches an association is regarded as a defeasible 
sentence, thus turning the approach more oriented to 
discover nested defeasible rules [29]. Moreover, an 
optimal is searched there, thus leading to intra-
ctability and the consequent use of heuristics, in that 
case on the legal domain which is not ours.  

1.2. Compaction by Induction 

Example 2: Let us have the association rules shown 
in Table 1, mined from a real set provided by the 
branch of a major banking institution, with ≥ 0.6 as 
threshold for confidence and ≥ 0.05 as threshold for 
support.  
1-A⇒B 11-BC⇒G 21-G⇒BC 

2-A⇒C 12-BG⇒C 22-H⇒C 

3-A⇒I 13-C⇒A 23-H⇒I 

4-A⇒CI 14-C⇒I 24-H⇒CI 

5-AB⇒H 15-CG⇒B 25-I⇒A 

6-AC⇒I 16-CI⇒A 26-I⇒C 

7-AI⇒C 17-CI⇒H 27-I⇒AC 

8-B⇒C 18-CH⇒I 28-I⇒H 

9-B⇒G 19-G⇒B 29-I⇒CH 

10-B⇒CG 20-G⇒C 30-IH⇒C 

 

We observe a frequent pattern to hold on the rule-set 
that tells us the following: if this is the case that the 
antecedent (the left side of the association) of some 
rule r (the pattern body to match) is the union of two 
disjoint itemsets i1 and i2, then it is likely to find 
within the set a rule r' (the pattern head to conclude) 
with its antecedent equal to one of the itemsets i1 or i2 
and the consequent (the right side of the association) 
equal to the consequent of rule r. We notice that 12 
rules in the set can be concluded from the pattern 
head once the pattern body has matched another rule 
in the set, and also notice 5 counter-examples. 
Henceforth the pattern can be used here for safely 
pruning the rules concluded from the head; provided 
a deductive mechanism exists that allows the pruned 
rules to be deduced through the application of the 
pattern to the appropriate remaining rules, with 
account of the discovered counter-examples. On this 
basis, we can safely prune, in the order that follows, 
rules 3(6), 14(6), 2(7), 26(7), 9(11), 8(12), 20(12), 
19(15), 13(16), 25(16), 28(17), 23(18) (the rule 
number in parenthesis denoting the rule matching the 
pattern body). On the other hand, we notice that 
rules: A⇒H, B⇒H, C⇒G, C⇒B and C⇒H are not 
members of the set of rules and are although deduced 
from the pattern. The reconstruction mechanism must 
account for them as counter-examples, in order to 
avoid deduction inaccuracies. 
According to Example 2, if we could induce, with an 
appropriate induction mechanism, the meta-rule: 
“For any 3ary-tuple of itemsets X, Y, and Z, 
whenever a rule from X union Y (X and Y disjoint) 
to Z holds with a confidence ≥ 0.6 and a support ≥ 
0.05, conclude that a rule from X to Z also holds 

with the same confidence and support thresholds” we 
could safely prune rules from the set of rules, with no 
information loss; the pruned rules could always be 
inferred, in the classical sense, from the meta-rule 
and the associations remaining in the pruned set. 
Since rules A⇒H, B⇒H, C⇒G, C⇒B and C⇒H 
would be also classically – and wrongly – inferred, 
our induction mechanism should produce counter-
arguments of the form “do not conclude rule r with a 
confidence ≥ 0.6 and a support ≥ 0.05”, for each 
wrongly inferable rule r, in order to defeat its 
classical derivation. The inference mechanism 
needed should thus produce defeasible conclusions; 
they must be abandoned whenever a stronger 
counterargument is present. In addition, the example 
shows that, if we count non-pruned rules, meta-rules 
and defeaters as plain rules, the information 
presented to the client is smaller in number than the 
whole set of the given associations. We have just 
produced a compaction of the set.  

Example 3: The meta-rule encountered in Example 2 
can be encoded in an rdf-style, and added to a 

descriptive document as follows: 

Example 4: The first counter-example can also be 
added as follows: 

Meta-classes in Example 3 are class variables, names 
denoting classes generically. Intersection of meta-

Table 1 Set Example 

<def-ar:metaClass rdf:ID="X"/> 
<def-ar:metaClass rdf:ID="Y"/> 
< def-ar:metaClass rdf:ID="Z"> 
< def-ar:metaClass rdf:ID="XandY"> 
      < def-ar:intersectionOf > 

  < def-ar:metaClass rdf:resource="#X"/> 
  < def-ar:metaClass rdf:resource="#Y"/> 

      </def-ar:intersectionOf> 
</def-ar:metaClass> 
< def-ar:metaRule  def-ar:support="5.100" 
                                def-ar:confidence="60.100"> 
     < def-ar:antecedentRule> 
         <rdf:Description rdf:about="#XandY"> 
               <def-ar:subclassOf rdf:resource="#Z" > 
         </rdf:Description> 
     </def-ar:antecedentRule> 
     < def-ar:consequentRule> 
         <rdf:Description rdf:about="#X"> 
               <def-ar:subclassOf rdf:resource="#Z" > 
         </rdf:Description> 
     </def-ar:consequentRule> 
< def-ar:metaRule> 

<owl:Class rdf:ID="A"/> 
<owl:Class rdf:ID="H"/> 
<def-ar:Defeats  def-ar:support="5.100" 
                            def-ar:confidence="60.100"> 
      <rdf:Description rdf:about="#H"> 
            <def-ar:subclassOf rdf:resource="#A"/ > 
       </rdf:Description> 
</def-ar:Defeats> 



classes corresponds to intersection among the classes 
substituting the variables. The counter-example in 
Example 4 is encoded as defeating a potential 
subsumption with appropriate values for support and 
confidence. It is rather a general claim than a 
particular one. 

The fragment shown in Example 3 together with all 
counter-examples found on Example 2 encoded as in 
Example 4, plus the non-pruned rules from Example 
2 coded as shown in Example 1 constitute a 
document that results a compaction of the set of all 
rules exhibited in Table 1, providing that there exists 
a closure notion from a reasoning device capable of 
reconstruct the entire given set if needed.  

If the induction mechanism is sufficiently aware in 
detecting non-straightforward meta-rules, as the 
meta-rule encoded in Example 3, the pruning 
mechanism could be applied as a complement of the 
reduction mechanism based on cover computation 
defined in [24, 25], and the reduction mechanism of 
redundant rules in the sense of [31], producing more 
reduction. Our reduction mechanism is able to 
identify general inference rules (as those of [24, 25, 
31]) and prune all general redundant rules in 
consequence, and may also identify patterns present 
only within the given particular set, as the meta-rule 
identified in Example 3, not considered in any of the 
reduction schemes from [24, 25, 31], showing 
therefore a stronger compaction power. 
 
1.4. Paper Organization 

The rest of the paper proceeds as follows. In section 
2, we present formally the logic for reasoning on 
association rules. In Section 3, we present an 
algorithm for inducing a program - in the presented 
logic - from a set of association rules mined from 
data. In Section 4, we show experimental results that 
assess the effectiveness of our framework with 
respect to the compaction goal. In Section 5, we 
discuss our approach from an implementation 
perspective, and in Section 6 we conclude. 
 

2. Formal Framework 
 
We have explained in the introduction that our 
approach relies on inducing a theory in some logic of 
formulae with an interpretation on association rules. 
For a formal definition of the semantics of 
association rules, the reader is referred to [1].  

A family of non-monotonic logic formalisms for 
defeasible reasoning on incomplete knowledge with a 
well defined sceptical reasoning process has been 
defined [3]. A defeasible logic theory is a collection 
of rules, formed upon a set of atoms as a body and an 
atom as a head, that allows the reasoning on sets of 

given facts. In defeasible logic, the rules constituting 
a theory represent assertions whose truth is 
indisputable, and assertions whose truth is 
problematic. As a consequence, two sorts of 
conclusions are obtained from the reasoning process: 
indisputable or defeasible.  

More formally, a defeasible logic theory is composed 
of a set of strict rules (rules that are indisputably 
true), defeasible rules (rules whose application is 
considered problematic), defeaters (counter-
arguments to defeasible conclusions), and a 
superiority relation among rules (as a disambiguation 
mechanism).  

It was shown that the problem of deciding if an atom 
is a member of the extension of a defeasible theory 
can be efficiently implemented since it demands 
linear time and space [22]. Besides, it has been 
shown that the absence of a superiority relation does 
not compromise the expressive power of defeasible 
logic [4]. Within our approach, thus, we are 
interested in defeasible rules and defeaters only, and, 
since our targets for reasoning are association rules, 
we incorporate a notion of threshold covering to the 
reasoning process; if an association rule is concluded 
with some threshold values for support and confi-
dence, the same association is concluded for any 
smaller value down to 0, provided there is no 
defeater for the rule with a value in-between. In the 
example above, the association rule 3 (A ⇒ I) is 
concluded upon the association rule 6 (AC ⇒ I) with 
≥ 0.6 as confidence and ≥ 0.05 as support, according 
to the "defeasible rule" pattern encountered in the 
example. Thus, A ⇒ I is also (implicitly) concluded 
with ≥ 0.5 as confidence and ≥ 0.03 as support. 
However, if a defeater for rule A ⇒ I is 
simultaneously asserted with ≥ 0.04 the A ⇒ I would 
not be concluded with ≥ 0.5 as confidence and ≥ 0.03 
as support. 

This choice is important for better understanding of 
the theories obtained. Within our approach, we 
consider defeasible rules that allow us to conclude 
that an association rule defeasibly holds, with 
independence of the conformance with given support 
and confidence thresholds, provided that other 
association rules also hold conforming the 
thresholds. Defeaters are included here to prevent the 
erroneous conclusion of an association not 
conforming the given thresholds.  
 
2.1. Logic for Associations 
 
We want to represent the set of all given association 
rules among itemsets through a defeasible theory. 
Thus, the domain on which formulae in our logic are 
built is founded structurally on the set of all itemsets 
formed upon the set of items involved, with 



exception of the null itemset. This way, terms in our 
logic (constants and variables) represent itemsets 
with a certain number of items. 

Definition 1 (Itemset Term): An itemset term is a 
construct of any of the forms: 

- i1… in, a ground itemset term, where i1…in is a non-
empty list of items. 

- Vm,M, a variable itemset term, where Vm,M is an 
itemset variable, 0 ≤ m ≤ M. The pair m, M indicates 
the class of itemsets involved – with size between m 
and M –.When the pair is absent, the pair (0, ω) is 
assumed. 
- t1 ∪ … ∪ tn, a itemset union term, where t1 ,…, tm is 
a non-empty list of itemset terms, and ∪ is an itemset 
infix function name with set union as fixed 
interpretation. t1 ∪ … ∪ tn implies that all ti, i=1..n, 
are mutually disjoint. 

Definition 2 (Association): Within our logic, an 
association a is an atom of the form: 

a: S  ⇒(σ,δ.) T, 
where ( _ ⇒(σ,δ.) _ ) is an association predicate on 
two itemset terms (that fill the _ positions): S, or 
alternatively Ant(a), the antecedent of a, and T, or 
alternatively Cons(a), the consequent of a.  
Association predicates are parametric. The pair (σ,δ), 
which is a part of the predicate signature, is a pair of 
parameters: σ, the support threshold, and δ, the 
confidence threshold. Both parameters must be 
rational numbers. This way, there would be as many 
association predicates (countable infinite) as pairs of 
(σ,δ) of parameters could be formed in the logic. An 
association S ⇒(σ,δ.)T in our logic always implies that 
the atom S ∩ T = ∅ holds.  

Finally, we call a schema an association with at least 
one itemset variable. 

Definition 3 (Assumption): An assumption α is a 
clause of the form: 

α: B(α) ⊢ H(α)    where: 
• B(α) ( the body of assumption α ) is a non-empty 
list of association schemas with no arithmetic 
operators used in thresholds. 
• H(α) ( the head of the assumption α ) is a non 
empty list of association schema, such that every 
variable appearing in H(α) also appears in B(α). 

An assumption is head-relevant if each atom in the 
body shares at least one non-ground term with the 
head or has a ground itemset term with a non-empty 
intersection with a ground itemset term in the head. 

Example 5: The following assumption α1 

corresponds to the meta-rule induced in Example 2: 
α1:  X1,1 ∪ Y1,1⇒ (0.05, 0.6) Z1,1 ⊢ X1,1  ⇒ (0.05, 0.6) Z1,1  

where X1,1, Y1,1and Z1,1are itemset variables of item-
size = 1.  
Assumption α1 is head-relevant. 

Definition 4 (Defeater): A defeater d is a construct 
of the form: 

d:  X ⇏(s, p) Y  

where X ⇒(s, p) Y is an association. A defeater asserts 
that the association X ⇒(s, p) Y cannot be concluded 
in the logic. In the context of a proof system, a 
defeater has priority over conclusions obtained from 
the application of assumptions. 

Example 6: The defeater d1: A ⇏ (0.05,0.6) H 

corresponds to the first counter-argument introduced 
in relation with Example 2. 
 
2.2 The Reasoning Framework 

In order to reason appropriately with programs made 
of associations, assumptions and defeaters, a non-
monotone inference mechanism is presented, and 
theories are defined on it. Programs in this 
framework are inspired from [3], and can be 
translated in linear-time on the number of their 
ground instances into definite programs of clausal 
logic [4], with a linear-time ground inference 
procedure [15] on the same basis. 

Definition 5 (Compaction Program): A compact-
tion program ρ is a 3ary-tuple (AR, Das, Dft), where 
AR is a set of associations, Das is a set of 
assumptions, and Dft is a set of defeaters. 

Definition 6 (Closure): We say that an association 
a: S ⇒(σ,δ..)T  is derivable from a compaction program 
ρ : (AR, Das, Dft), if and only if there exists a 
sequence of ground associations π, recursively 
satisfying the following:  

 

 

 

 

 

 

 

 

 

and an index k ≥ 1, such that π [k] = S  ⇒(σ,δ.)T. A 
closure Cl(ρ) for a compaction program ρ : (AR, 
Das, Dft) is a set AR+, where AR+ is the set of all 
ground associations derivable from program ρ. 

For all 0 ≤ i ≤ k – 1 
if π [i + 1] = X⇒(σ,δ.)Y then 

1) X ⇒(σ',δ'.)Y ∈ AR, for some σ’≥ σ, δ’≥ δ 
 and ∄ X ⇏ (s,p)Y ∈ Dft,  
          for any p, s | 1 – s ≤ σ, 1 – p ≤ δ;     or 

    2) ∃ some ground instance β of α ∈ Das 
. | H(α) = X ⇒(σ',δ')Y, 

for some σ’≥ σ, δ’≥ δ  
and ∄ X ⇏ (s,p)Y ∈ Dft,  

for any p, s | 1 – s ≤ σ, 1 – p ≤ δ 
and for each V ⇒(σ",δ'")W in B(α), 

∃j, 1 ≤ j ≤ i, π [j] = V ⇒(σ",δ'")W,  
for some σ’≥ σ”, δ’≥ δ”.    (1) 



 

 

 

 

 

 

 

 

 

 

 

3. Inductive Defeasible Compaction  

In this section we present the main result of our 
paper: we present the notion of inductive defeasible 
compaction of a set of association rules and an 
algorithm for finding such compaction of a given set 
of discovered associations. The input is assumed a 
complete set of associations, with maximum values 
for confidence and support thresholds; no holding 
association rule should miss to be interpreted by an 
association atom in the input set, and, for all 
association atom in the input set, no association rule 
holds with support and confidence greater that the 
thresholds given in the atom. 

Definition 7 (Inductive Defeasible Compaction): 
Given a constant k > 0 and a set of ground 
associations AR, complete for a given database D, a 
tuple (σ, δ,...) of parameters, an inductive defeasible 
compaction of the set AR is a program ρ: (ARmin, 
Das, Dftmin), with a set Das of head-relevant 
assumptions, with no more than k atoms in the 
bodies, that  satisfies that:  

i) Cl(ρ) = AR;  
ii)  #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} < 

#AR; and 
iii)  there not exists a program ρ’ : (AR’, Das, 

Dft’ ) such that Cl(ρ’ ) = AR, and AR’ ⊂ AR 
or Dft’ ⊂ Dft.           (2)
  

3.1 The Induction Algorithm. 

A PTIME algorithm that computes a compaction of a 
complete set of ground associations by inducing a set 

Das, and producing appropriate sets ARmin and Dftmin 

for the induced set Das is presented in Figure 1. We 
discuss here the underlying ideas, and details related 
with its correctness and time complexity. 

The algorithm begins with a procedure, detailed in 
Figure 2, that greedily tries to produce all ground 
head-relevant assumptions, increasing the possible 
body size, variable j in the algorithm, from 1 to k. 
Each association in AR is considered there the head 
of a potential ground assumption, and all groups with 
a body size that equals j are considered as potentially 
bodies, provided the union of the itemsets that appear 
in the antecedent and the consequent of all members 
of the group covers the union of the itemsets of the 
antecedent and the consequent of the selected head 
rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, the procedure proceeds to build, for each 
ground assumption, a set of forests of trees of itemset 
terms, with 1) one forest for the head, with one tree 
for the antecedent and one tree for the consequent; 
and 2) one forest for each potential body, with a tree 
for the antecedent and consequent of each atom in 
the body. The leaves of the trees in the forests 
contain the subsets that are produced from the 
complete intersection of the prospective head of the 

Form a graph G with one vertex for each rule a in AR and 
 an edge (a, b) for each pair of vertices  a and b of G, such 

that itemsets(a) intersects itemsets(b). 
Form an ordered list L of all items in vertices of G; 
For each vertex a of G 

Create a pair of indices pointing to the first and the last 
items of vertex a in list L; 

For j=1..k 
  For each vertex a of G 

For each group g of j vertices of G adjacent to a  
s.t. there exist a sequence of vertices b1,…,bj   
 s.t. last(bi, L) ≥ first(bi+1, L), for 1≤i≤j-1, and  
 first(b1, L) ≤ first(a, L) and  
 last(a, L) ≤ last(bj, L) 

Form a disjoint partition P(a, g, j) of the union of all 
 itemsets in a and all itemsets in each rule b in g 
Form a forest head(a, g, j) with two trees,  
 headAnt(a, g, j) and headCons(a, g, j),  
   with itemsets Ant(a) and Cons(a) as roots 
 and each subset of itemsets Ant(a) and Cons(a) 
        in P(a, g, j) as their respective sons 
For each vertex b in g,  
form j forests body(a, g, i), 1≤ i ≤j, with two trees, 
  s.t. bodyAnt(a, g, i) and bodyCons(a, g, i),  
 with itemsets Ant(b) and Cons(b) as roots 
 and each subset of itemsets Ant(b) and Cons(b) 
        in P(a, g, j) as their respective sons 
Assign to each leaf l of trees bodyAnt(a, g, i) and 

bodyCons(a, g, i), 1≤ i ≤j,  
a fresh variable Vm,M, m, M = size(itemset(l)). 

Assign to each leaf l of tree headAnt(a, g, j)  
the variable assigned to itemset l 
in some leaf of some tree bodyCons(a, g, i), 
labelled before. 

Fig. 1: Induction Algorithm 

For 1 ≤ i ≤ k 
Derive forests from all head-relevant ground assumptions 
with body size not > k, forming a dependency graph from 
body rules into head rules of each assumption: 
Find all clases of isomorphic forests generalising 
isomorphic forests into classes of candidate assumptions 
Das, generating a fresh variable per leaf in each forest 
class and a substitution per leaf in each instance of the 
forest class; 

Loop 
Search for a set Dftmin of defeaters for assumptions in 
Das, attaching all substitutions and candidate – conflict-
ting – assumptions used for inferring each defeater; 

Loop  
adjusting the classes by variable sizes and confidence and 
support, reducing the number of defeaters in Dftmin; 

Choose a maximal elimination order for the rule depen-
dency graph; 
Prune rules in the order produced; 
If the compaction criterion is fulfilled  

exit the algorithm returning Das, ARmin and Dftmin; 
If there is no conflicting assumptions  

exit the algorithm returning failure; 
Choose a conflicting assumption to prune from and delete 
it from Das; 

Fig. 2 Forests Derivation 
 



assumption and the prospective bodies, considering 
the antecedent and the consequent of each rule 
separately.  

Then, fresh variables are assigned to leaves; the 
forest becoming a structural representation of an 
assumption, candidate for the set Das.  

Note that the time complexity of the procedure 
detailed in Figure 3 is then O(nk), n the number of the 
given rules.  

The next step consists in finding isomorphisms 
among the forests, with the linear time algorithm of 
[2], leaving one assumption per isomorphic class in 
the set Das; the step demanding O(m2) tests, m the 
number of forests. We preserve all ground instances 
of each class on a list attached to the class, in a 
manner that the substitutions applied to each variable 
can be deduced from them easily. 

The algorithm proceeds next to find defeaters, the set 
Dftmin, from the set of assumptions – forest classes -, 
applying them greedily to the given associations, 
according to the condition in (1). The assumptions 
used in inferring an atom to be defeated are then 
attached to the defeater with the substitutions 
applied. The method employed works satisfying the 
property iii)  in (2) for set Dftmin because a minimal 
set of defeaters can always be obtained using the 
assumptions and the complete given set AR; the 
defeaters inferred from Das is independent of the 
level of pruning applied to AR, provided no 
information loss occurs in that pruning. This step 
takes O(nk), n the number of associations. An 
optimisation is attempted for set Das, with the 
reduction of the number of defeaters in Dftmin as a 
goal. The algorithm loops, trying to find the better set 
of assumptions, by successive adjustments. The 
substitutions applied to form ground assumptions are 
contrasted with the substitutions applied to form 
defeaters. Adjustments in variables’ sizes – hitherto 
unlimited – and in thresholds of the assumptions are 
operated, producing if possible: 1) intervals of sizes 
of variables that exclude the size of variables of 
defeaters; 2) a maximum of confidence and support 
thresholds for bodies in the assumptions that prevent 
the formation of one or more defeaters. It is easy to 
see that the step is polynomial in the size of set AR. 

The pruning of AR is then accomplished. A candidate 
for pruning results any association that appears as 
head of a ground instance of an assumption in Das 
(recall they were attached to assumptions in step 
one). Since the rule dependency graph may have 
cycles, cycles are identified and broken by 
eliminating one node of each cycle. An elimination 
order is therefore produced, by a systematic remove 
of ears in the graph, considering only nodes 
candidate for pruning. Associations are then pruned 
from AR in the elimination order, forming the set 

ARmin. Note that this technique ensures properties i 
and iii to hold for set ARmin. Finding cycles in a 
graph, the hard part of this step is known to have a 
polynomial time complexity in the number of nodes, 
so it is this step in the number of given associations, 
since the nodes in the graph are the associations 
themselves. 

Finally, the test: #ARmin + #Dftmin + #{atoms(α) | 
α ∈ Das} < #AR is made. If the answer is positive 
the algorithm ends successfully – the program 
returned satisfying property ii (in addition to i and 
iii ). If the answer is negative, an assumption among 
those contributing in producing a defeater is chosen 
for elimination (the most employed when producing 
defeaters is chosen first), and the process loops 
finding defeaters for the new set Das. If there are no 
assumptions to prune, the algorithm ends with 
failure. This step has constant time, provided the 
sizes has been stored, and the number of loops, if 
they resulted necessary, cannot exceed O(nk) 
iterations. 

4. Experimental Results 

Our approach has been experimented on three 
different highly correlated transaction database cases: 
case 1: (PtC), case 2: (DSP) and case 3: (Arry), each 
from a different domain of e-commerce companies 
respectively, with a total of 2.9, 3.2 and 0.22 millions 
of records each, a number of 10502, 4135, and 1550 
items.  

Conf. #rules #pruned #dftrs 

 PtC   

0.5 6604 2985 1114 

0.6 2697 2081 25 

0.75 1867 1606 10 

0.8 1266 1176 0 

0.95 892 866 1 

0.98 705 699 1 

  DSP     

0.5 2473 1168 268 

0.6 1696 869 64 

0.75 1509 844 89 

0.8 1290 1030 29 

0.95 1032 889 15 

0.98 759 723 1 

  Arry     

0.5 770 492 82 

0.6 520 353 60 

0.75 472 327 39 

0.8 408 287 22 

0.95 361 255 25 

0.98 314 243 30 

 
 
 

Table 2: Experimental Data 
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The experiments were developed running the 
algorithm A-Priori on each of the sets, varying the 
support down from 0.25 to 0.1, and confidence down 
from 0.7 to 0.99. Our induction algorithm was then 
launched for each combination of thresholds. We 
show in Table 2 the results produced for k=3, support 
0.5 and confidences d between 0.5 and 0.7, and the 
effectiveness of our method when applied to low 
confidences. 

Finally, we note that our scheme eliminates all 
redundant rules in the sense of [25, 31], that is those 
association rules that are not in the covers. All the 
meta-rule deductive schemes implicitly included in 
[25] and [31] are induced by our method. The 
percentage of pruning, thus, outperforms [25], and is 
shown in Figure 3. Notice that the percentage of 
pruning achieved diminishes as the confidence is 
superior to 0.8. Nevertheless, the pruning is effective 
with confidence of 0.99 in the majority of cases. The 
pruning performed by algorithm A-priori is improved 
here. 

5. Discussion and Challenges 

It is important to discuss the technique presented here 
with focus on the purpose the technique pursues:  to 
produce semantic recommendation. 
The reader should have noticed that the algorithm 
presented relies strongly on "choice". For instance, 
the algorithm chooses ears in the graph to form an 
order for elimination, and the choice is arbitrary. 
This strategy is essential to maintain low complexity 
(polynomial), and to turn our approach feasible and 
practical. Nevertheless, a warned reader may 
conclude that this arbitrary choice implies that there 
are many compactions to produce and therefore the 
approach as a whole does not show to produce an 
optimal solution. And the reader is right in this 
conclusion. To complete the whole view, we describe 
how web service descriptions are complemented with 
the association rules as recommendations. In effect, 
under our scheme, the document describing the web 
service is augmented with a set of OWL/RDF/S 

triples that only incorporate the non-pruned rules 
with the format of Example 1, that is, the set ARmin of 
the compaction program obtained by our algorithm, 
together with the thresholds applied to the mining 
process and a registered URI of a registered 
description service. The assumptions and defeaters 
are not added to the web service description. If the 
associations encoded in the triples are not sufficient 
for the client (a search engine, for instance), the 
client may request a widening of the response to the 
description service identified by the given URI, and 
then the assumptions and defeaters are produced. The 
reasoning task to derive all the implicitly published 
rules is the client responsibility. Under this scheme, 
the rules that appear as members of the set ARmin is 
irrelevant, the only important issue is the size of this 
set. The developed scheme also supports an 
extension of the algorithm that admits the assignment 
of priorities to rules and to itemsets, in order to allow 
the user to produce a more controlled program as 
output. Nonetheless, the importance of the extension 
has not been already tested, and therefore it is 
beyond the subject of the present paper. It would be 
also interesting to design a scheme that supports 
queries where the client provides an itemset class and 
values for support and confidence and the engine 
produces a maximal class of inferred associated 
itemsets as a response. This scheme is under 
development, so we have not discussed this aspect 
here.  

6. Conclusion 

In this paper, we have presented a defeasible logic 
framework for managing associations that helps in 
reducing the number of rules found in a set of 
discovered associations. We have presented an 
induction algorithm for inducing programs in our 
logic, made of assumption schemas, a reduced set of 
association rules and a set of counter-arguments to 
conclusions called defeaters, guaranteeing that every 
pruned rule can be effectively inferred from the 
output. Our approach outperform those of [17], 
because all reduction compactions presented there 
can be expressed and induced in our framework, and 
several other patterns, particular to the given 
datasets, can also be found. In addition, since a set of 
definite clauses can be obtained from the induced 
programs, the knowledge obtained can be modularly 
inserted in a richer inference engine. Abduction can 
be also attempted, asking for justifications that 
explain the presence of certain association in the 
dataset. 
The framework presented can be extended in several 
ways: 
- Admitting defeaters to appear in the head of as-
sumption, to define user interest. 

Fig. 3 Pruning experiences at support 0.25 



- Admitting arithmetic expressions within assume-
ptions, for adjustment in pruning. 
- Admitting set formation patterns as itemset cons-
tants. 
- Extending the scope, to cover temporal association 
rules. 
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