
An Induction-based Compaction of Sets of Association Rules among Web
Concepts

Mauricio Minuto Espil

ARBA, Provincia de Buenos Aires, Argentina

Juan M. Ale
Universidad Austral, Argentina

Abstract

Association rules are nowadays regarded as
robust vehicles for creating Web recommendations.
We present an induction-based technique for
creating a compact representation of sets of
association rules, particularly intended for
publishing the compact representation in the Web.
Our technique efficiently induces a defeasible logic
program from a set of association rules, in a manner
that the complete set of the given associations can be
concluded, when integrating the induced compact
program within a defeasible logic reasoning
framework.

1. Introduction

E-business and e-commerce portals are mainly
intended for companies that offer the service of on-
line transactions to clients. Since web-services
become available to the outside of owner boundaries,
many companies have started the encapsulation of
their facilities in the form of web services. Com-
panies are progressively adopting public protocols of
wide-spread use in order to allow machine-driven
transactions, in addition to the human-driven
transactions available through their portals. Since
business and commerce imply advertising, it has
become evident that some form of "semantic"
advertising added to service description is also
needed for potential "machine" clients to asses the
potential of the service provided.

B2B is an area where the knowledge of the state and
evolution of the market is central. Association rules
have been recently considered as robust vehicles for
producing recommendations [27], and mining
algorithms has been developed specially for the issue
[20]. In B2B, publishing association rules on the
history of the transactions of some company may
result crucial for gaining markets. That is,
association rules may become data potentially
appreciated in web-service based B2B.

Besides, the reader must notice that an association
rule from an itemset I1 to an itemset I2 implies the
existence of a logical relation among two conceptual
classes: the class of transactions that involve itemset
I1 and the class of transactions that involve both
itemsets I1 and I2. More specifically, it implies a
subsumption relation, in the sense that the extension
of the last class is contained in the extension of the
first one, with extra quantitative information
provided on the degree of participation of the
subsumed class into the more general one
(confidence) and into the world of analysis (support).
As subsumption relations thence, association rules
can be easily encoded in OWL, RDF and RDFS [32,
33, 34]). Moreover, the implication is important
regarding the fact that the assembling and filtering of
association rules through the use of ontologies has
shown concrete gain in terms of informative power

[23]. It turns out therefore extremely desirable to
incorporate association rules to web service
description documents.

Example 1: The association rule from class I1 to
class I2 can be encoded as follows:

In the fragment above, only a new namespace has
been added (def-ar), and two attributes are added to
the property rdfs:subclassOf: def-ar:support, infor-
ming the observed support threshold, and def-
ar:confidence, informing the observed confidence
threshold.

<owl:Class rdf:ID="I1"/>
<owl:Class rdf:ID="I2"/>
<owl:Class rdf:ID="I1andI2">
 <owl:intersectionOf >

 <owl:Class rdf:resource="#I1"/>
 <owl:Class rdf:resource="#I2" />

 </owl:intersectionOf>
</owl:Class>
<rdf:Description rdf:about="#I1andI2">
 <rdfs:subclassOf rdf:resource="#I1"
 def-ar:support="5.100"
 def-ar:confidence="93.100"/>
</rdf:Description>

1.1. Recommendation and Association Rules
Mining

Algorithms for association discovery that scale well
on large amounts of transaction data have been
developed and are well-known, as A-Priori [1], DIC
[9], FPgrowth [15], and more recently [5].
Nevertheless, those algorithms are not particularly
intended to be used for creating recommendation in
machine-oriented transactions. The algorithms
available for discovering association rules were
devised with a purpose in mind: analysis. According
to the models available for defining analytical rule
interest – statistically or empirically – [16, 18],
interesting association rules are those that exhibit
certain signifying measures (called here generically
parameters), such as high confidence and good
support. The actual discovered values of parameters
are thence of extreme importance for analysts.
Analysts, however, do not need to attend to all the
associations that are present in the data, since some
of the mined rules may show no analytical
importance. The analysts would rather provide
thresholds to parameter values to filter the potential
result according to interest criteria, and normally, the
thresholds provided are high and the number of rules
obtained small. Thresholds thus serve as pruning
devices for analysis.

Recommendation is a somewhat different matter.
Informing clients of the applied thresholds instead of
the actual parameter values of each rule seems
sufficient for advertising. Moreover, although the
number of exhibited rules should not be very large
(as it was the case of analysis) - low time response in
web interactions is central -, filtering through
analytical signifying thresholds does not seem
desirable in this context. It could imply a drastic
reduction in recommendations that clients would
appreciate. Other schemes of reduction are thus
needed. Moreover, whenever possible, all rules
should be shown, albeit in compact form.

1.2. Rule Set Compaction

The compaction problem has received attention from
the data mining community since the very beginning
[6, 21]. Several pre, in and post-processing reduction
techniques have been proposed [7, 8, 11, 23, 30]. In
those approaches; the rules exhibited are restricted
only to those that match given patterns; non-matching
rules are not shown. Because no reasoning
framework is provided, the user cannot deduce all the
pruned rules from the exhibited set.

From a different perspective, different notions of
closures and minimal covers have also been
employed for reducing the number of rules to show
[10, 24, 25, 31]. Those approaches, based on formal
concept analysis, prune redundant rules and allow
the inference of all pruned rules. Nonetheless, they

fail in discovering patterns characterizing the
singularities present within each particular dataset
when considering redundancy; the patterns employed
and the deduction mechanism (closure computation)
are fixed in the algorithm code.

More general approaches have also been attempted.
A series of induction mechanisms were introduced in
[12, 17, 28], showing techniques for the induction of
“queries” on itemsets that mine associations from
frequent itemsets; the queries acting as a compact
representation of the rules. Those approaches,
however, fail in real compaction. The presence of all
itemsets with their respective frequencies is
necessary for reconstructing the rules from the
induced queries.

In this paper, we present a different approach. Since
the relation among defeasible logic [3] and semantic
web applications is closer, from the descriptive side
[26], and from the normative side (particularly when
e-commerce is involved [13]), we believe that the
addition of association rules to those settings is worth
exploring. This is the subject of this work.

We present therefore an algorithm that produces a
compact representation of the given set of association
rules through a defeasible logic program [3, 4], a
triplet formed upon:

a) a set of associations, atomic formulae formed
upon association predicates on pairs of terms
denoting itemset classes, which represent,
semantically, association rules that are present in the
given set;

b) a set of assumptions, Horn clauses of associations
with itemset variables, that represent particular
inference rules that characterise the given set;

c) a set of defeaters, counter-arguments to asso-
ciations that can be wrongly implied from
associations and assumptions, and semantically
represent a set of association rules that are not
present in the given set.

A linear-time framework for non-monotonically
reasoning with programs is defined, in a manner that
the set of all derived ground instances (associations)
can be computed, and a PTIME induction algorithm
is then presented for inducing a compaction from the
given set of associations, used here as “positive
examples”, in a machine-learning terminology. All
and only all the given associations can be inferred
from the induced program; the program showing
therefore a compaction principle, in the sense that
assumptions entail implicit associations.

Our approach is closer to the spirit of [14, 19]. The
difference relies in scope. While the cited works have
the identification of legal (meta-)defeasible rules for
reasoning on legal argumentation as a goal, our
approach only aims at producing a compaction. The
difference is significant, because in the cited

approaches an association is regarded as a defeasible
sentence, thus turning the approach more oriented to
discover nested defeasible rules [29]. Moreover, an
optimal is searched there, thus leading to intra-
ctability and the consequent use of heuristics, in that
case on the legal domain which is not ours.

1.2. Compaction by Induction

Example 2: Let us have the association rules shown
in Table 1, mined from a real set provided by the
branch of a major banking institution, with ≥ 0.6 as
threshold for confidence and ≥ 0.05 as threshold for
support.
1-A⇒B 11-BC⇒G 21-G⇒BC

2-A⇒C 12-BG⇒C 22-H⇒C

3-A⇒I 13-C⇒A 23-H⇒I

4-A⇒CI 14-C⇒I 24-H⇒CI

5-AB⇒H 15-CG⇒B 25-I⇒A

6-AC⇒I 16-CI⇒A 26-I⇒C

7-AI⇒C 17-CI⇒H 27-I⇒AC

8-B⇒C 18-CH⇒I 28-I⇒H

9-B⇒G 19-G⇒B 29-I⇒CH

10-B⇒CG 20-G⇒C 30-IH⇒C

We observe a frequent pattern to hold on the rule-set
that tells us the following: if this is the case that the
antecedent (the left side of the association) of some
rule r (the pattern body to match) is the union of two
disjoint itemsets i1 and i2, then it is likely to find
within the set a rule r' (the pattern head to conclude)
with its antecedent equal to one of the itemsets i1 or i2
and the consequent (the right side of the association)
equal to the consequent of rule r. We notice that 12
rules in the set can be concluded from the pattern
head once the pattern body has matched another rule
in the set, and also notice 5 counter-examples.
Henceforth the pattern can be used here for safely
pruning the rules concluded from the head; provided
a deductive mechanism exists that allows the pruned
rules to be deduced through the application of the
pattern to the appropriate remaining rules, with
account of the discovered counter-examples. On this
basis, we can safely prune, in the order that follows,
rules 3(6), 14(6), 2(7), 26(7), 9(11), 8(12), 20(12),
19(15), 13(16), 25(16), 28(17), 23(18) (the rule
number in parenthesis denoting the rule matching the
pattern body). On the other hand, we notice that
rules: A⇒H, B⇒H, C⇒G, C⇒B and C⇒H are not
members of the set of rules and are although deduced
from the pattern. The reconstruction mechanism must
account for them as counter-examples, in order to
avoid deduction inaccuracies.
According to Example 2, if we could induce, with an
appropriate induction mechanism, the meta-rule:
“For any 3ary-tuple of itemsets X, Y, and Z,
whenever a rule from X union Y (X and Y disjoint)
to Z holds with a confidence ≥ 0.6 and a support ≥
0.05, conclude that a rule from X to Z also holds

with the same confidence and support thresholds” we
could safely prune rules from the set of rules, with no
information loss; the pruned rules could always be
inferred, in the classical sense, from the meta-rule
and the associations remaining in the pruned set.
Since rules A⇒H, B⇒H, C⇒G, C⇒B and C⇒H
would be also classically – and wrongly – inferred,
our induction mechanism should produce counter-
arguments of the form “do not conclude rule r with a
confidence ≥ 0.6 and a support ≥ 0.05”, for each
wrongly inferable rule r, in order to defeat its
classical derivation. The inference mechanism
needed should thus produce defeasible conclusions;
they must be abandoned whenever a stronger
counterargument is present. In addition, the example
shows that, if we count non-pruned rules, meta-rules
and defeaters as plain rules, the information
presented to the client is smaller in number than the
whole set of the given associations. We have just
produced a compaction of the set.

Example 3: The meta-rule encountered in Example 2
can be encoded in an rdf-style, and added to a

descriptive document as follows:

Example 4: The first counter-example can also be
added as follows:

Meta-classes in Example 3 are class variables, names
denoting classes generically. Intersection of meta-

Table 1 Set Example

<def-ar:metaClass rdf:ID="X"/>
<def-ar:metaClass rdf:ID="Y"/>
< def-ar:metaClass rdf:ID="Z">
< def-ar:metaClass rdf:ID="XandY">
 < def-ar:intersectionOf >

 < def-ar:metaClass rdf:resource="#X"/>
 < def-ar:metaClass rdf:resource="#Y"/>

 </def-ar:intersectionOf>
</def-ar:metaClass>
< def-ar:metaRule def-ar:support="5.100"
 def-ar:confidence="60.100">
 < def-ar:antecedentRule>
 <rdf:Description rdf:about="#XandY">
 <def-ar:subclassOf rdf:resource="#Z" >
 </rdf:Description>
 </def-ar:antecedentRule>
 < def-ar:consequentRule>
 <rdf:Description rdf:about="#X">
 <def-ar:subclassOf rdf:resource="#Z" >
 </rdf:Description>
 </def-ar:consequentRule>
< def-ar:metaRule>

<owl:Class rdf:ID="A"/>
<owl:Class rdf:ID="H"/>
<def-ar:Defeats def-ar:support="5.100"
 def-ar:confidence="60.100">
 <rdf:Description rdf:about="#H">
 <def-ar:subclassOf rdf:resource="#A"/ >
 </rdf:Description>
</def-ar:Defeats>

classes corresponds to intersection among the classes
substituting the variables. The counter-example in
Example 4 is encoded as defeating a potential
subsumption with appropriate values for support and
confidence. It is rather a general claim than a
particular one.

The fragment shown in Example 3 together with all
counter-examples found on Example 2 encoded as in
Example 4, plus the non-pruned rules from Example
2 coded as shown in Example 1 constitute a
document that results a compaction of the set of all
rules exhibited in Table 1, providing that there exists
a closure notion from a reasoning device capable of
reconstruct the entire given set if needed.

If the induction mechanism is sufficiently aware in
detecting non-straightforward meta-rules, as the
meta-rule encoded in Example 3, the pruning
mechanism could be applied as a complement of the
reduction mechanism based on cover computation
defined in [24, 25], and the reduction mechanism of
redundant rules in the sense of [31], producing more
reduction. Our reduction mechanism is able to
identify general inference rules (as those of [24, 25,
31]) and prune all general redundant rules in
consequence, and may also identify patterns present
only within the given particular set, as the meta-rule
identified in Example 3, not considered in any of the
reduction schemes from [24, 25, 31], showing
therefore a stronger compaction power.

1.4. Paper Organization

The rest of the paper proceeds as follows. In section
2, we present formally the logic for reasoning on
association rules. In Section 3, we present an
algorithm for inducing a program - in the presented
logic - from a set of association rules mined from
data. In Section 4, we show experimental results that
assess the effectiveness of our framework with
respect to the compaction goal. In Section 5, we
discuss our approach from an implementation
perspective, and in Section 6 we conclude.

2. Formal Framework

We have explained in the introduction that our
approach relies on inducing a theory in some logic of
formulae with an interpretation on association rules.
For a formal definition of the semantics of
association rules, the reader is referred to [1].

A family of non-monotonic logic formalisms for
defeasible reasoning on incomplete knowledge with a
well defined sceptical reasoning process has been
defined [3]. A defeasible logic theory is a collection
of rules, formed upon a set of atoms as a body and an
atom as a head, that allows the reasoning on sets of

given facts. In defeasible logic, the rules constituting
a theory represent assertions whose truth is
indisputable, and assertions whose truth is
problematic. As a consequence, two sorts of
conclusions are obtained from the reasoning process:
indisputable or defeasible.

More formally, a defeasible logic theory is composed
of a set of strict rules (rules that are indisputably
true), defeasible rules (rules whose application is
considered problematic), defeaters (counter-
arguments to defeasible conclusions), and a
superiority relation among rules (as a disambiguation
mechanism).

It was shown that the problem of deciding if an atom
is a member of the extension of a defeasible theory
can be efficiently implemented since it demands
linear time and space [22]. Besides, it has been
shown that the absence of a superiority relation does
not compromise the expressive power of defeasible
logic [4]. Within our approach, thus, we are
interested in defeasible rules and defeaters only, and,
since our targets for reasoning are association rules,
we incorporate a notion of threshold covering to the
reasoning process; if an association rule is concluded
with some threshold values for support and confi-
dence, the same association is concluded for any
smaller value down to 0, provided there is no
defeater for the rule with a value in-between. In the
example above, the association rule 3 (A ⇒ I) is
concluded upon the association rule 6 (AC ⇒ I) with
≥ 0.6 as confidence and ≥ 0.05 as support, according
to the "defeasible rule" pattern encountered in the
example. Thus, A ⇒ I is also (implicitly) concluded
with ≥ 0.5 as confidence and ≥ 0.03 as support.
However, if a defeater for rule A ⇒ I is
simultaneously asserted with ≥ 0.04 the A ⇒ I would
not be concluded with ≥ 0.5 as confidence and ≥ 0.03
as support.

This choice is important for better understanding of
the theories obtained. Within our approach, we
consider defeasible rules that allow us to conclude
that an association rule defeasibly holds, with
independence of the conformance with given support
and confidence thresholds, provided that other
association rules also hold conforming the
thresholds. Defeaters are included here to prevent the
erroneous conclusion of an association not
conforming the given thresholds.

2.1. Logic for Associations

We want to represent the set of all given association
rules among itemsets through a defeasible theory.
Thus, the domain on which formulae in our logic are
built is founded structurally on the set of all itemsets
formed upon the set of items involved, with

exception of the null itemset. This way, terms in our
logic (constants and variables) represent itemsets
with a certain number of items.

Definition 1 (Itemset Term): An itemset term is a
construct of any of the forms:

- i1… in, a ground itemset term, where i1…in is a non-
empty list of items.

- Vm,M, a variable itemset term, where Vm,M is an
itemset variable, 0 ≤ m ≤ M. The pair m, M indicates
the class of itemsets involved – with size between m
and M –.When the pair is absent, the pair (0, ω) is
assumed.
- t1 ∪ … ∪ tn, a itemset union term, where t1 ,…, tm is
a non-empty list of itemset terms, and ∪ is an itemset
infix function name with set union as fixed
interpretation. t1 ∪ … ∪ tn implies that all ti, i=1..n,
are mutually disjoint.

Definition 2 (Association): Within our logic, an
association a is an atom of the form:

a: S ⇒(σ,δ.) T,
where (_ ⇒(σ,δ.) _) is an association predicate on
two itemset terms (that fill the _ positions): S, or
alternatively Ant(a), the antecedent of a, and T, or
alternatively Cons(a), the consequent of a.
Association predicates are parametric. The pair (σ,δ),
which is a part of the predicate signature, is a pair of
parameters: σ, the support threshold, and δ, the
confidence threshold. Both parameters must be
rational numbers. This way, there would be as many
association predicates (countable infinite) as pairs of
(σ,δ) of parameters could be formed in the logic. An
association S ⇒(σ,δ.)T in our logic always implies that
the atom S ∩ T = ∅ holds.

Finally, we call a schema an association with at least
one itemset variable.

Definition 3 (Assumption): An assumption α is a
clause of the form:

α: B(α) ⊢ H(α) where:
• B(α) (the body of assumption α) is a non-empty
list of association schemas with no arithmetic
operators used in thresholds.
• H(α) (the head of the assumption α) is a non
empty list of association schema, such that every
variable appearing in H(α) also appears in B(α).

An assumption is head-relevant if each atom in the
body shares at least one non-ground term with the
head or has a ground itemset term with a non-empty
intersection with a ground itemset term in the head.

Example 5: The following assumption α1

corresponds to the meta-rule induced in Example 2:
α1: X1,1 ∪ Y1,1⇒ (0.05, 0.6) Z1,1 ⊢ X1,1 ⇒ (0.05, 0.6) Z1,1

where X1,1, Y1,1and Z1,1are itemset variables of item-
size = 1.
Assumption α1 is head-relevant.

Definition 4 (Defeater): A defeater d is a construct
of the form:

d: X ⇏(s, p) Y

where X ⇒(s, p) Y is an association. A defeater asserts
that the association X ⇒(s, p) Y cannot be concluded
in the logic. In the context of a proof system, a
defeater has priority over conclusions obtained from
the application of assumptions.

Example 6: The defeater d1: A ⇏ (0.05,0.6) H

corresponds to the first counter-argument introduced
in relation with Example 2.

2.2 The Reasoning Framework

In order to reason appropriately with programs made
of associations, assumptions and defeaters, a non-
monotone inference mechanism is presented, and
theories are defined on it. Programs in this
framework are inspired from [3], and can be
translated in linear-time on the number of their
ground instances into definite programs of clausal
logic [4], with a linear-time ground inference
procedure [15] on the same basis.

Definition 5 (Compaction Program): A compact-
tion program ρ is a 3ary-tuple (AR, Das, Dft), where
AR is a set of associations, Das is a set of
assumptions, and Dft is a set of defeaters.

Definition 6 (Closure): We say that an association
a: S ⇒(σ,δ..)T is derivable from a compaction program
ρ : (AR, Das, Dft), if and only if there exists a
sequence of ground associations π, recursively
satisfying the following:

and an index k ≥ 1, such that π [k] = S ⇒(σ,δ.)T. A
closure Cl(ρ) for a compaction program ρ : (AR,
Das, Dft) is a set AR+, where AR+ is the set of all
ground associations derivable from program ρ.

For all 0 ≤ i ≤ k – 1
if π [i + 1] = X⇒(σ,δ.)Y then

1) X ⇒(σ',δ'.)Y ∈ AR, for some σ’≥ σ, δ’≥ δ
 and ∄ X ⇏ (s,p)Y ∈ Dft,
 for any p, s | 1 – s ≤ σ, 1 – p ≤ δ; or

 2) ∃ some ground instance β of α ∈ Das
. | H(α) = X ⇒(σ',δ')Y,

for some σ’≥ σ, δ’≥ δ
and ∄ X ⇏ (s,p)Y ∈ Dft,

for any p, s | 1 – s ≤ σ, 1 – p ≤ δ
and for each V ⇒(σ",δ'")W in B(α),

∃j, 1 ≤ j ≤ i, π [j] = V ⇒(σ",δ'")W,
for some σ’≥ σ”, δ’≥ δ”. (1)

3. Inductive Defeasible Compaction

In this section we present the main result of our
paper: we present the notion of inductive defeasible
compaction of a set of association rules and an
algorithm for finding such compaction of a given set
of discovered associations. The input is assumed a
complete set of associations, with maximum values
for confidence and support thresholds; no holding
association rule should miss to be interpreted by an
association atom in the input set, and, for all
association atom in the input set, no association rule
holds with support and confidence greater that the
thresholds given in the atom.

Definition 7 (Inductive Defeasible Compaction):
Given a constant k > 0 and a set of ground
associations AR, complete for a given database D, a
tuple (σ, δ,...) of parameters, an inductive defeasible
compaction of the set AR is a program ρ: (ARmin,
Das, Dftmin), with a set Das of head-relevant
assumptions, with no more than k atoms in the
bodies, that satisfies that:

i) Cl(ρ) = AR;
ii) #ARmin + #Dftmin + #{atoms(α) | α ∈ Das} <

#AR; and
iii) there not exists a program ρ’ : (AR’, Das,

Dft’) such that Cl(ρ’) = AR, and AR’ ⊂ AR
or Dft’ ⊂ Dft. (2)

3.1 The Induction Algorithm.

A PTIME algorithm that computes a compaction of a
complete set of ground associations by inducing a set

Das, and producing appropriate sets ARmin and Dftmin

for the induced set Das is presented in Figure 1. We
discuss here the underlying ideas, and details related
with its correctness and time complexity.

The algorithm begins with a procedure, detailed in
Figure 2, that greedily tries to produce all ground
head-relevant assumptions, increasing the possible
body size, variable j in the algorithm, from 1 to k.
Each association in AR is considered there the head
of a potential ground assumption, and all groups with
a body size that equals j are considered as potentially
bodies, provided the union of the itemsets that appear
in the antecedent and the consequent of all members
of the group covers the union of the itemsets of the
antecedent and the consequent of the selected head
rule.

Next, the procedure proceeds to build, for each
ground assumption, a set of forests of trees of itemset
terms, with 1) one forest for the head, with one tree
for the antecedent and one tree for the consequent;
and 2) one forest for each potential body, with a tree
for the antecedent and consequent of each atom in
the body. The leaves of the trees in the forests
contain the subsets that are produced from the
complete intersection of the prospective head of the

Form a graph G with one vertex for each rule a in AR and
 an edge (a, b) for each pair of vertices a and b of G, such

that itemsets(a) intersects itemsets(b).
Form an ordered list L of all items in vertices of G;
For each vertex a of G

Create a pair of indices pointing to the first and the last
items of vertex a in list L;

For j=1..k
 For each vertex a of G

For each group g of j vertices of G adjacent to a
s.t. there exist a sequence of vertices b1,…,bj
 s.t. last(bi, L) ≥ first(bi+1, L), for 1≤i≤j-1, and
 first(b1, L) ≤ first(a, L) and
 last(a, L) ≤ last(bj, L)

Form a disjoint partition P(a, g, j) of the union of all
 itemsets in a and all itemsets in each rule b in g
Form a forest head(a, g, j) with two trees,
 headAnt(a, g, j) and headCons(a, g, j),
 with itemsets Ant(a) and Cons(a) as roots
 and each subset of itemsets Ant(a) and Cons(a)
 in P(a, g, j) as their respective sons
For each vertex b in g,
form j forests body(a, g, i), 1≤ i ≤j, with two trees,
 s.t. bodyAnt(a, g, i) and bodyCons(a, g, i),
 with itemsets Ant(b) and Cons(b) as roots
 and each subset of itemsets Ant(b) and Cons(b)
 in P(a, g, j) as their respective sons
Assign to each leaf l of trees bodyAnt(a, g, i) and

bodyCons(a, g, i), 1≤ i ≤j,
a fresh variable Vm,M, m, M = size(itemset(l)).

Assign to each leaf l of tree headAnt(a, g, j)
the variable assigned to itemset l
in some leaf of some tree bodyCons(a, g, i),
labelled before.

Fig. 1: Induction Algorithm

For 1 ≤ i ≤ k
Derive forests from all head-relevant ground assumptions
with body size not > k, forming a dependency graph from
body rules into head rules of each assumption:
Find all clases of isomorphic forests generalising
isomorphic forests into classes of candidate assumptions
Das, generating a fresh variable per leaf in each forest
class and a substitution per leaf in each instance of the
forest class;

Loop
Search for a set Dftmin of defeaters for assumptions in
Das, attaching all substitutions and candidate – conflict-
ting – assumptions used for inferring each defeater;

Loop
adjusting the classes by variable sizes and confidence and
support, reducing the number of defeaters in Dftmin;

Choose a maximal elimination order for the rule depen-
dency graph;
Prune rules in the order produced;
If the compaction criterion is fulfilled

exit the algorithm returning Das, ARmin and Dftmin;
If there is no conflicting assumptions

exit the algorithm returning failure;
Choose a conflicting assumption to prune from and delete
it from Das;

Fig. 2 Forests Derivation

assumption and the prospective bodies, considering
the antecedent and the consequent of each rule
separately.

Then, fresh variables are assigned to leaves; the
forest becoming a structural representation of an
assumption, candidate for the set Das.

Note that the time complexity of the procedure
detailed in Figure 3 is then O(nk), n the number of the
given rules.

The next step consists in finding isomorphisms
among the forests, with the linear time algorithm of
[2], leaving one assumption per isomorphic class in
the set Das; the step demanding O(m2) tests, m the
number of forests. We preserve all ground instances
of each class on a list attached to the class, in a
manner that the substitutions applied to each variable
can be deduced from them easily.

The algorithm proceeds next to find defeaters, the set
Dftmin, from the set of assumptions – forest classes -,
applying them greedily to the given associations,
according to the condition in (1). The assumptions
used in inferring an atom to be defeated are then
attached to the defeater with the substitutions
applied. The method employed works satisfying the
property iii) in (2) for set Dftmin because a minimal
set of defeaters can always be obtained using the
assumptions and the complete given set AR; the
defeaters inferred from Das is independent of the
level of pruning applied to AR, provided no
information loss occurs in that pruning. This step
takes O(nk), n the number of associations. An
optimisation is attempted for set Das, with the
reduction of the number of defeaters in Dftmin as a
goal. The algorithm loops, trying to find the better set
of assumptions, by successive adjustments. The
substitutions applied to form ground assumptions are
contrasted with the substitutions applied to form
defeaters. Adjustments in variables’ sizes – hitherto
unlimited – and in thresholds of the assumptions are
operated, producing if possible: 1) intervals of sizes
of variables that exclude the size of variables of
defeaters; 2) a maximum of confidence and support
thresholds for bodies in the assumptions that prevent
the formation of one or more defeaters. It is easy to
see that the step is polynomial in the size of set AR.

The pruning of AR is then accomplished. A candidate
for pruning results any association that appears as
head of a ground instance of an assumption in Das
(recall they were attached to assumptions in step
one). Since the rule dependency graph may have
cycles, cycles are identified and broken by
eliminating one node of each cycle. An elimination
order is therefore produced, by a systematic remove
of ears in the graph, considering only nodes
candidate for pruning. Associations are then pruned
from AR in the elimination order, forming the set

ARmin. Note that this technique ensures properties i
and iii to hold for set ARmin. Finding cycles in a
graph, the hard part of this step is known to have a
polynomial time complexity in the number of nodes,
so it is this step in the number of given associations,
since the nodes in the graph are the associations
themselves.

Finally, the test: #ARmin + #Dftmin + #{atoms(α) |
α ∈ Das} < #AR is made. If the answer is positive
the algorithm ends successfully – the program
returned satisfying property ii (in addition to i and
iii). If the answer is negative, an assumption among
those contributing in producing a defeater is chosen
for elimination (the most employed when producing
defeaters is chosen first), and the process loops
finding defeaters for the new set Das. If there are no
assumptions to prune, the algorithm ends with
failure. This step has constant time, provided the
sizes has been stored, and the number of loops, if
they resulted necessary, cannot exceed O(nk)
iterations.

4. Experimental Results

Our approach has been experimented on three
different highly correlated transaction database cases:
case 1: (PtC), case 2: (DSP) and case 3: (Arry), each
from a different domain of e-commerce companies
respectively, with a total of 2.9, 3.2 and 0.22 millions
of records each, a number of 10502, 4135, and 1550
items.

Conf. #rules #pruned #dftrs

 PtC

0.5 6604 2985 1114

0.6 2697 2081 25

0.75 1867 1606 10

0.8 1266 1176 0

0.95 892 866 1

0.98 705 699 1

 DSP

0.5 2473 1168 268

0.6 1696 869 64

0.75 1509 844 89

0.8 1290 1030 29

0.95 1032 889 15

0.98 759 723 1

 Arry

0.5 770 492 82

0.6 520 353 60

0.75 472 327 39

0.8 408 287 22

0.95 361 255 25

0.98 314 243 30

Table 2: Experimental Data

Pruning at Support = 0.25

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

0,7 0,8 0,9 0,95 0,99

Confidence

P
ru

n
in

g
 L

ev
el

 _
_

Case 1

Case 2

Case 3

The experiments were developed running the
algorithm A-Priori on each of the sets, varying the
support down from 0.25 to 0.1, and confidence down
from 0.7 to 0.99. Our induction algorithm was then
launched for each combination of thresholds. We
show in Table 2 the results produced for k=3, support
0.5 and confidences d between 0.5 and 0.7, and the
effectiveness of our method when applied to low
confidences.

Finally, we note that our scheme eliminates all
redundant rules in the sense of [25, 31], that is those
association rules that are not in the covers. All the
meta-rule deductive schemes implicitly included in
[25] and [31] are induced by our method. The
percentage of pruning, thus, outperforms [25], and is
shown in Figure 3. Notice that the percentage of
pruning achieved diminishes as the confidence is
superior to 0.8. Nevertheless, the pruning is effective
with confidence of 0.99 in the majority of cases. The
pruning performed by algorithm A-priori is improved
here.

5. Discussion and Challenges

It is important to discuss the technique presented here
with focus on the purpose the technique pursues: to
produce semantic recommendation.
The reader should have noticed that the algorithm
presented relies strongly on "choice". For instance,
the algorithm chooses ears in the graph to form an
order for elimination, and the choice is arbitrary.
This strategy is essential to maintain low complexity
(polynomial), and to turn our approach feasible and
practical. Nevertheless, a warned reader may
conclude that this arbitrary choice implies that there
are many compactions to produce and therefore the
approach as a whole does not show to produce an
optimal solution. And the reader is right in this
conclusion. To complete the whole view, we describe
how web service descriptions are complemented with
the association rules as recommendations. In effect,
under our scheme, the document describing the web
service is augmented with a set of OWL/RDF/S

triples that only incorporate the non-pruned rules
with the format of Example 1, that is, the set ARmin of
the compaction program obtained by our algorithm,
together with the thresholds applied to the mining
process and a registered URI of a registered
description service. The assumptions and defeaters
are not added to the web service description. If the
associations encoded in the triples are not sufficient
for the client (a search engine, for instance), the
client may request a widening of the response to the
description service identified by the given URI, and
then the assumptions and defeaters are produced. The
reasoning task to derive all the implicitly published
rules is the client responsibility. Under this scheme,
the rules that appear as members of the set ARmin is
irrelevant, the only important issue is the size of this
set. The developed scheme also supports an
extension of the algorithm that admits the assignment
of priorities to rules and to itemsets, in order to allow
the user to produce a more controlled program as
output. Nonetheless, the importance of the extension
has not been already tested, and therefore it is
beyond the subject of the present paper. It would be
also interesting to design a scheme that supports
queries where the client provides an itemset class and
values for support and confidence and the engine
produces a maximal class of inferred associated
itemsets as a response. This scheme is under
development, so we have not discussed this aspect
here.

6. Conclusion

In this paper, we have presented a defeasible logic
framework for managing associations that helps in
reducing the number of rules found in a set of
discovered associations. We have presented an
induction algorithm for inducing programs in our
logic, made of assumption schemas, a reduced set of
association rules and a set of counter-arguments to
conclusions called defeaters, guaranteeing that every
pruned rule can be effectively inferred from the
output. Our approach outperform those of [17],
because all reduction compactions presented there
can be expressed and induced in our framework, and
several other patterns, particular to the given
datasets, can also be found. In addition, since a set of
definite clauses can be obtained from the induced
programs, the knowledge obtained can be modularly
inserted in a richer inference engine. Abduction can
be also attempted, asking for justifications that
explain the presence of certain association in the
dataset.
The framework presented can be extended in several
ways:
- Admitting defeaters to appear in the head of as-
sumption, to define user interest.

Fig. 3 Pruning experiences at support 0.25

- Admitting arithmetic expressions within assume-
ptions, for adjustment in pruning.
- Admitting set formation patterns as itemset cons-
tants.
- Extending the scope, to cover temporal association
rules.

7. References
[1] R. Agrawal, and R. Srikant: Fast algorithms for mining
association rules. In Proc. Int’l Conf. Very Large Da-
tabases. (1994).
[2] A. V. Aho, J. E. Hopcroft, J. Ullman. The design and a-
nalysis of computer algorithms, Addison-Wesley, 1974.
[3] G. Antoniou, D. Billington, G. Governatori, M. J.
Maher, A. Rock: A Family of Defeasible Reasoning Logics
and its Implementation. ECAI 2000: 459-463.
[4] G. Antoniou, D. Billington, G. Governatori, M. J.
Maher: Representation results for defeasible logic. ACM
Trans. Comput. Log. 2(2): 255-287 (2001).
[5] A. Basel, A. Mahafzah, M. Al-Badarneh: A new
sampling technique for association rule mining, Journal of
Information Science, Vol. 35, No. 3, 358-376 (2009).
[6] R. Bayardo and R. Agrawal: Mining the Most Interes-
ting Rules. In Proc. of the Fifth ACMSIGKDD Int’l Conf.
on Knowledge Discovery and Data Mining, 145-154,
(1999).
[7] R. Bayardo, R. Agrawal, and D. Gunopulos: Cons-
traint-based Rule Mining in Large, Dense Databases. Data
Mining and Knowledge Discovery Journal, Vol. 4, Num-
bers 2/3, 217-240. (2000).
[8] A. Berrado, G. Runger: Using metarules to organize
and group discovered association rules. Data Mining and
Knowledge Discovery. Vol 14, Issue 3. (2007).
[9] S. Brin, R. Motwani, J. Ullman, and S. Tsur: Dynamic
itemset counting and implication rules for market basket
analysis. In Proc. ACM-SIGMOD Int’l Conf. Management
of Data. (1997).
[10] L. Cristofor and D.Simovici: Generating an
nformative Cover for Association Rules. In ICDM 2002,
Maebashi City, Japan. (2002).
[11] Y. Fu and J. Han: Meta-rule Guided Mining of
association rules in relational databases. In Proc. Int’l
Workshop on Knowledge Discovery and Deductive and
Object-Oriented Databases. (1995).
[12] B. Goethals, E. Hoekx, J. Van den Bussche: Mining
tree queries in a graph. KDD: 61-69. (2005).
[13] G. Governatori, D. H. Pham, S. Raboczi, A. Newman
and S. Takur: On Extending RuleML for Modal Defeasible
Logic. RuleML, LNCS 5321, 89-103. (2008).
[14] G. Governatori and A. Stranieri. Towards the
application of association rules for defeasible rules
discovery In Legal Knowledge and Information Systems,
JURIX, IOS Press, 63-75. (2001).
[15] J. Han, J. Pei and Y. Yin: Mining frequent patterns
without candidate generation. In Proc. ACM-SIGMOD
Int’l Conf. Management of Data. (2000).
[16] C. Hébert, B. Crémilleux: Optimized Rule Mining
Through a Unified Framework for Interestingness
Measures. DaWaK: LNCS 4081, 238-247. (2006).

[17] E. Hoekx, J. Van den Bussche: Mining for Tree-
Query Associations in a Graph. ICDM 2006: 254-264.
[18] R. Huebner: Diversity-Based Interestingness
Measures For Association Rule Mining. Proceedings of
ASBBS Volume 16 Number 1, (2009).
[19] B. Johnston, Guido Governatori: An algorithm for the
induction of defeasible logic theories from databases.
Proceedings of the 14th Australasian Database Conference,
75-83. (2003).
[20] P. Kazienko: Mining Indirect Association Rules For
Web Recommendation. Int. J. Appl. Math. Comput. Sci.,
Vol. 19, No. 1, 165–186. (2009).
[21] M. Klemettinen, H. Mannila, P. Ronkainen, H.
Toivonen, and A. Verkamo: Finding interesting rules from
large sets of discovered association rules. In Proc. 3rd Int’l
Conf. on Information and Knowledge Management.
(1994).
[22] M. J. Maher, A. Rock, G. Antoniou, D. Billington, T.
Miller: Efficient Defeasible Reasoning Systems. Interna-
tional Journal on Artificial Intelligence Tools 10(4): 483-
501 (2001).
[23] C. Marinica, F. Guillet, and H. Briand: Post-
Processing of Discovered Association Rules Using
Ontologies. The Second International Workshop on
Domain Driven Data Mining, Pisa, Italy (2008).
[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal:
Closed sets based discovery of small covers for association
rules. In Proc. BDA'99 Conference, 361-381 (1999).
[25] N. Pasquier, R. Taouil, I. Bastide, G. Stume, and L.
Lakhal: Generating a Condensed Representation for As-
sociation Rules. In Journal of Intelligent Information
Systems, 24:1, 29-60 (2005).
[26] P. Pothipruk, G. Governatori: ALE Defeasible
Description Logic. Australian Conference on Artificial
Intelligence. 110-119 (2006).
[27] J. Sandvig, B. Mobasher Robustness of collaborative
recommendation based on association rule mining,
Proceedings of the ACM Conference on Recommender
Systems (2007).
[28] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo:
Metaqueries for data mining. In Fayaad, U. et al. Eds.
Advances in Knowledge Discovery and Data Mining.
(1996).
[29] I. Song, G. Governatori: Nested Rules in Defeasible
Logic. RuleML, LNCS 3791, 204-208 (2005).
[30] H. Toivonen, M. Klemettinen, P. Ronkainer, K.
Hatonen, and H. Mannila: Pruning and grouping disco-
vered association rules. In ECML Workshop on Statistics,
Machine Learning and KDD. (1995).
[31] M. Zaki: Generating Non-Redundant Association
Rules. In Proc. of the Sixth ACMSIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, 34-43, (2000).
[32] w3c. OWL Ontology Web Language Reference. In:
http://www.w3.org/TR/2004/REC-owl-ref-20040210.
[33] w3c. RDF/XML Syntax Specification. In:
http://www.w3.org/TR/rdf-syntax-grammar//.
[34] w3c. RDF Schema. In: http://www.w3.org/TR/rdf-
schema/.

