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Abstract
Correct operation of neuronal networks depends on the interplay between synaptic excitation and inhibition processes leading to
a dynamic state termed balanced network. In the spinal cord, balanced network activity is fundamental for the expression of
locomotor patterns necessary for rhythmic activation of limb extensor and flexor muscles. After spinal cord lesion, paralysis
ensues often followed by spasticity. These conditions imply that, below the damaged site, the state of balanced networks has been
disrupted and that restoration might be attempted by modulating the excitability of sublesional spinal neurons. Because of the
widespread expression of inhibitory GABAergic neurons in the spinal cord, their role in the early and late phases of spinal cord
injury deserves full attention. Thus, an early surge in extracellular GABA might be involved in the onset of spinal shock while a
relative deficit of GABAergic mechanisms may be a contributor to spasticity. We discuss the role of GABA A receptors at
synaptic and extrasynaptic level to modulate network excitability and to offer a pharmacological target for symptom control. In
particular, it is proposed that activation of GABA A receptors with synthetic GABA agonists may downregulate motoneuron
hyperexcitability (due to enhanced persistent ionic currents) and, therefore, diminish spasticity. This approach might constitute a
complementary strategy to regulate network excitability after injury so that reconstruction of damaged spinal networks with new
materials or cell transplants might proceed more successfully.
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Synaptic Inhibition Is an Important
Component of Spinal Locomotor Networks

In mammals, rhythmicmotor tasks such as locomotion require
balanced network activity based on the coordinated interac-
tion between synaptic excitation and inhibition [1–3]. While
inhibition typically dampens neuronal excitability, its overall
impact traditionally depends on the reciprocal coupling to
excitation in a “push-pull fashion,” whereby inhibition de-
clines as excitation rises and neuron excitability grows, and
vice versa [4]. Studies of spinal networks have, however,

indicated that, in certain circuits impinging upon motoneu-
rons, synaptic inhibition remains operative even during exci-
tation, suggesting that there are multiple sources of inhibitory
inputs beyond the mutual interaction between excitatory and
inhibitory local circuits [3]. These observations support the
concept of recurrent connectivity [5] that should include a
robust component of recurrent inhibition to prevent network
instability and ensure multifunction flexibility [6]. In this
framework, an important role is played by the neurotransmit-
ter gamma-aminobutyric acid (GABA) that controls not only
locomotor cycles but also network assembly during early de-
velopment [7]. These properties are particularly expressed by
a spinal circuit termed central pattern generator (CPG; [8, 9]
that can produce rhythmic locomotor activity independent
from sensory inputs). Such a process is readily replicated with
a model system like the isolated rodent spinal cord which
generates alternating rhythmic patterns termed fictive locomo-
tion because of the absence of muscle targets [10]. While
excitation is primarily mediated by glutamate and its pharma-
cological block arrests locomotion [11], blocking inhibition
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evoked by amino acid transmitters like GABA and glycine
suppresses alternation of motor output by the CPG and replaces
it with slow rhythmic motor discharges detected synchronously
in ventral roots. This phenomenon is exemplified in Fig. 1 in
which the fictive locomotor patterns elicited by co-applied N-
methyl-D-aspartate (NMDA) and serotonin (5HT, see Fig. 1a)
and recorded from ventral roots (VRs) are converted into slow
synchronous discharges (Fig. 1b).

It should be noted that the GABA receptor antagonist
bicuculline [13] is selectively blocking a distinct class of
GABA receptors termed GABA A receptors (GABA ARs)
known to mediate fast synaptic inhibition [14, 15] as well as
to modulate neuronal excitability through extrasynaptic
GABA receptors [16, 17]. The term “fast” inhibition, there-
fore, refers to the short time course underlining the loss of
excitability mainly caused by hyperpolarization of the neuro-
nal membrane (for less than 100ms; [18]). Data in Fig. 1b also
indicate that strychnine, a potent glycine receptor antagonist,
contributes to block fast inhibition and suggests that, in addi-
tion to GABA, glycine is an important mediator of locomotor
activity [19, 20].

Indeed, intrasegmental GABAergic and glycinergic inter-
neurons with short axons have been found in ventral laminae
where locomotor circuits are located [21]. On in vitro spinal
networks, application of strychnine alone evokes irregular and
asynchronous discharges while application of bicuculline per
se produces a more structured repetitive activity [22, 23]. It
may also be suggested that when one type of synaptic inhibi-
tion is blocked, the other one can at least in part expand its role
because the circuitry is not arrested in a state of sustained
excitation. It is noteworthy that the persistent rhythmic activ-
ity evoked by the convulsants strychnine and bicuculline is
not associated with extensive neuronal or glial death [24, 25],
indicating that spinal networks are far more resistant than
brain networks to seizure-evoked neurodegeneration [26].

Principal Properties of GABAergic
Mechanisms in the Spinal Cord

GABA is produced by decarboxylation of L-glutamate by
glutamic acid decarboxylase (GAD), of which two isoforms

Fig. 1 During locomotor patterns, fast synaptic transmission is essential
to allow the sequential activation of antagonistic motor pools innervating
flexor and extensor hindlimb muscles. a A stable locomotor-like rhythm
is induced in the spinal cord isolated from a neonatal rat by co-application
of the glutamate agonist NMDA plus 5HT. The rhythm reflects the basic
pattern of activation of lower limbmuscles during real locomotion, which
is composed of electrical discharges characteristically alternating between
right (r) and left (l) ventral roots (VRs, exemplified in this figure at the
second lumbar segment; L2) and between flexor (L2)- and extensor (L5)-

related ventral roots on the same side of the cord (shown in this figure as
the left L2 and L5). b On the same preparation, strychnine plus
bicuculline are further applied to block glycinergic and GABAergic fast
inhibitory transmission, respectively. Starting from 30 s after drug
application, the double alternating pattern is replaced by a stable and
slower rhythm that becomes synchronous among all ventral roots
(unpublished traces, replicating results originally reported by Beato and
Nistri, [12])
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exist: the transiently activated GAD65, which synthesizes
vesicular GABA to be released by exocytosis, and the
constitutively active GAD67, responsible for cytosolic
GABA released by paracrine diffusion [27, 28]. In the
spinal cord, GAD67 immunostaining has been found in
cell bodies and fibers, while GAD65 is mainly located at
synaptic terminals [29]. In addition to GABA locally
released by spinal neurons and glial cells, GABAergic
descending projections from the ventromedial medulla
of the brainstem reach ventral and dorsal horns
[30–32]. The development of the spinal GABAergic sys-
tem is guided by several descending projections and the
perinatal interruption of these projections impairs the
regulation of GABA synthesizing enzymes [33] and re-
ceptors in the spinal cord [34]. For instance, interruption
of descending serotoninergic input disrupts maturation of
spinal GABAergic systems [34].

GABA acts on multiple ionotropic receptors, namely the A
subtype, which drives a fast synaptic inhibition and the C
subtype, whose role in the spinal cord is however limited,
even if functionally expressed in the postnatal mammalian
spinal cord [35]. Moreover, GABA acts as mediator of
presynaptic inhibition by activating the G protein–
coupled B receptor involved in a slower neuromodulating
action particularly at presynaptic level via inhibition of
calcium conductances [15, 18].

In adult neurons, GABAA receptor–mediated inhibition is
due to the permeation of Cl- (and HCO3

-) through an intrinsic
channel that drives an influx of Cl- into the postsynaptic cell
(Fig. 2a) [36, 37]. Conversely, in the first postnatal days of
life, the opening of GABA ARs coincides with the Cl- elec-
trochemical gradient (driving force) set at the less negative
value and, thus, it drives Cl- efflux across the neuronal mem-
brane. This phenomenon decreases intracellular negative
charges with consequent cell depolarization from resting po-
tential. It should also be noted that the opening of Cl- channels
reduces membrane resistance and temporarily determines a
conductance short-circuit (shunting), which limits further de-
polarization by incoming excitatory inputs. Thus, GABA-
mediated depolarization exerts an inhibitory function in neo-
natal spinal neurons [37]. An action similar to GABA on
neonatal neurons is displayed by afferent terminals throughout
their maturation and adult stages, due to the high concentra-
tions of intracellular Cl- in Dorsal root ganglions (DRGs) [38].

It is important to emphasize that, in the neonatal spinal
cord, the functional outcome of GABA-mediated activity
may depend on the location of GABAergic synapses on post-
synaptic neurons and their Cl- equilibrium potential [39] be-
cause the shunting effect is briefer than the membrane depo-
larization that, if prolonged, may facilitate excitation [39].

Noteworthily, there is also a subpopulation of extrasynaptic
GABA ARs with distinct subunit composition and high affin-
ity to GABA [16, 17, 40], generating tonic modulation of

sensory transmission [41]. As exemplified in Fig. 3a, b, for
the strong distribution of GABAergic GAD67 neurons in the
dorsal horn, the corresponding expression of GABA ARs is
intense in inner dorsal laminae (II, III), around the central
canal (X), and the ventral horns (VII-IX), where GABA
ARs are found at axo-axonic contacts and extra-synaptic sites
[43, 44].

Fig. 2 GABA-mediated inhibition at the cellular and network levels. a
Schematic representation of two prototypical GABAergic synapses
mediating pre (left)- and post (right)-synaptic inhibition, respectively.
The main cellular and molecular players relevant to a spinal cord injury
are depicted as discussed in this review. b Simplified wiring diagram of
the basic GABAergic circuits involved in presynaptic inhibition of
afferent input. NS, nociceptive-specific projection neuron; MN,
motoneuron
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Neuronal Chloride Homeostasis in the Spinal
Cord is Regulated by Two Transporters

The synaptic action of GABA and glycine depends on the
intracellular concentration of Cl- that is primarily maintained
by cation-chloride co-transporters [45]. Among the most
important families of Cl- transporters, the Na+-K+-2Cl−

cotransporter 1 (NKCC1) and KCC2 reciprocally control
the intracellular Cl- concentration whose efflux causes, for
instance, primary afferent-mediated depolarization with de-
pression of excitatory inputs [46, 47]. Cl- transport into the
cell is mostly due to NKCC1 activity, whereas KCC2 ex-
trudes Cl- via a fast and concentration-dependent process
generated by Na+/K+-ATPase [46, 47]. Previous studies
have demonstrated that Cl- transporter expression and Cl-

homeostasis are regulated by developmental changes that
include gene transcription modification, posttranslational
and trafficking alterations [47–49]. NKCC1 expression is
widespread in neurons, glial, blood vessels, and other epi-
thelial cells in the developing and mature central nervous
system [50]. On the contrary, KCC2 is restricted to the
somatodendritic membrane of mature central neurons and
is almost absent in neuronal axons, peripheral neurons, and
non-neuronal cells [51, 52]. Due to the broad NKCC1 dis-
tribution, NKCC1 null mice have been used to examine the

transporter expression and its impact to induce abnormal
GABA responses by DRG [53] and cortical neurons [54].

The strength of postsynaptic inhibition, related to Cl-

homeostasis, is hampered in several pathophysiological
conditions [55] such as seizure, epilepsy, stroke, and ische-
mic injury [33, 56] and proprioception disorders [57].
Indeed, impaired excitation/inhibition balance due to
changed NKCC1 or KCC2 expression was also related to
chronic stress [58], brain or peripheral injury [47, 59], and
locomotor activity after spinal cord injury [60, 61] or de-
velopmental changes [62–64].

In rodent models of spinal cord injury, the role of intracel-
lular chloride concentration and the modulation of cation chlo-
ride co-transporter expression have been amply investigated
[65, 66]. In particular, synaptic inhibition, KCC2 and NKCC1
expression, and functional recovery were reportedly improved
by programmed exercise or bumetanide, a pharmacological
antagonist of NKCC1, 28 days after spinal cord transection
in rats [67]. Similarly, a reduction in tissue damage and edema
was observed by using bumetanide in a spinal cord contusion
model [68]. A recent study has shown that the application of
anodal trans-spinal direct current stimulation plus bumetanide
administration downregulated the expression of NKCC1 after
spinal cord contusion with significant amelioration of spastic-
ity and locomotor muscle tone [69]. This is strong evidence

Fig. 3 Expression of GABAergic neurons in the spinal cord and real-time
glutamate release from spinal cord following experimental spinal cord
injury (SCI). a Typical neuronal staining with neuronal nuclear protein
(NeuN; red) restricted to the spinal cord tissue region in a spinal cord slice
of a GAD67-glial filament protein (GFP) expressing mouse (green).
Example of 22 DIV slice with two regions of interest (ROIs), namely a
dorsal and a ventral horn, and a dorsal root ganglion (DRG). b
Histograms showing the number of GAD67-positive cells (light green

columns) or NeuN-positive cells (orange columns) at 22DIV, in control
slices. Inset with the circle chart showing the percentage of GAD67 from
NeuN-positive cells (redrawn from Mazzone and Nistri, 2019). c
Examples of the time-course of endogenous glutamate release detected
by glutamate biosensor in cultures that were treated with 0.5 mM kainate
(blue traces, mean ± SD, n=5 slices). Glutamate concentrations in micro-
dialysis samples collected after spinal cord injury, filled circles (redrawn
from [42])
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that modulation of chloride homeostasis by NKCC1 pharma-
cological regulation during pathological conditions such as
spinal cord injury can favor locomotor network improvement.

Presynaptic GABAergic Inhibition
and Neuropathic Pain

Depolarizing axo-axonic synapses on primary afferent fibers
filter incoming input from the periphery via membrane
shunting and Na+ channel inactivation [38]. This basic wiring
scheme fulfills multiple functions in sensory-motor networks.
Indeed, a first mechanism to gate pain signals is represented
by touch-sensing fibers depolarizing nociceptive primary af-
ferents, thus causing pre-synaptic inhibition of nociceptive
input. Furthermore, presynaptic primary afferent depolariza-
tion also contributes to shaping motor reflexes and efficiently
modulates rhythmic motor behaviors, such as stepping and
scratching, in response to proprioceptive input about joint po-
sition. Descending commands targeted to local interneurons
control the efficiency of presynaptic inhibition triggered by
peripheral inputs (Fig. 2b). Although this key frame is com-
plicated by additional neuronal elements that release several
types of neurotransmitters and neuropeptides onto primary
afferents, the role of GABAergic interneurons remains crucial.

Based on the expression of transcription factors, different
subtypes of spinal interneuron with distinct settling positions,
neurotransmitter expression, and profiles of connectivity have
been identified [70], among which a few have an inhibitory
phenotype [9]. In particular, an adenovirus vector including a
neuropeptide Y promoter has been recently used to discover,
in the superficial dorsal horn, a subset of inhibitory
GABAergic interneurons (AAV-NpyP) with the ability to pre-
vent the conversion of touch-sensing signals into pain-like
behavioral responses [71]. This class of interneuron receives
mono- or polysynaptic excitatory inputs from touch-sensing
fibers and uses GABA for transmitting inhibitory signals to
lamina I neurons that project to the brain, thus avoiding ab-
normal excitation following innocuous mechanical stimula-
tions (Fig. 2b). Dysfunctions of GABAergic transmission at
the level of dorsal microcircuits impair the mechanisms of
presynaptic inhibition, resulting in neuropathic pain states
[72]. Neuropathic pain is one of the most frequent complica-
tions in paraplegics, with an incidence of 53% [73], and is
often treated with GABAergic drugs [74, 75].

Indeed, the severity of neuropathic pain states following an
experimental SCI [76] and other neurologic disturbances [77]
is correlated to a reduced GABAergic tone, as the loss of
GABAergic inhibitory interneurons in the superficial dorsal
horn is verified by the reduction in GAD65/67 immunostain-
ing. Thus, interventions for restoring the impaired production
of GABA and GADs in the dorsal horns also alleviate pain
states [77].

NKCC1 is crucial for the accumulation of Cl- in DRG neu-
rons, leading to depolarizing GABA responses on primary af-
ferents. Different studies demonstrated a transient upregulation
of NKCC1 at DRG neurons after nerve injury indicating that
Cl- efflux contributes to presynaptic inhibition and neuropathic
pain induction [78–80]. Consequently, transgenic knockout
mice lacking NKCC1 show impairments of presynaptic inhibi-
tion and significant alterations in locomotor and pain behaviors
[53, 81]. Recently, disruption of NKCC1/KCC2 balance and
chloride gradient below the injury site were found after spinal
cord cervical contusion demonstrating the contribution of Cl-

homeostasis for spasticity and chronic pain [82]. Indeed, in a rat
model of neuropathic pain, the use of the extrusion enhancer
CLP257, a KCC2-selective analog that lowers Cl- intracellular
concentration, can alleviate hypersensitivity [83]. Hyperalgesia
and allodynia were improved by using bumetanide for 2 weeks
following sciatic nerve lesion, demonstrating the role of cation
chloride co-transporter expression to modulate nociceptive
pathways [84]. These data demonstrate that neuronal GABA
neurotransmission is dependent on precise regulation of the
level of intracellular chloride, which is determined by the co-
ordinated activities of cation chloride co-transporters and could
open new perspectives to prevent or alleviate neuropathic pain
and functional recovery after SCI.

Collectively, these data show notably similar features be-
tween SCI and neuropathic pain, as they may both originate
from alterations of presynaptic GABAergic mechanisms,
which in turn broaden the potential translation of novel ap-
proaches to redress the tilted balance between excitation and
inhibition in either neurological conditions.

Glycine Is a Fast Inhibitory Transmitter
in the Spinal Cord

In adult rats, GABAergic axon terminals represent only 20%
of the inhibitory input converging onto lumbar motoneurons,
while the remaining 80% are glycinergic [85].

Glycine is a fast inhibitory transmitter on spinal moto-
neurons [19, 86], and it might be co-released with GABA at
certain synapses [87]. However, not all synaptic boutons on
motoneurons have both inhibitory neurotransmitters, but
rather a strong prevalence of glycine alone [88] .
Postsynaptic GABA A and glycine receptors are often, al-
beit not necessarily, co-localized [89] and aggregated in
clusters formed by the submembrane scaffolding protein
gephyrin [90, 91].

The glycinergic system is relatively insensitive to
spinal transection [92]. Indeed, both the density of glycine
receptors on motoneurons and the kinetics of glycine-
mediated currents remain unchanged [34]. In accordance
with these observations, the concentration of glycine, as
determined by HPLC on spinal cord homogenates (2–12 h
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after spinal cord contusion), is preserved [93]. Only much
later (3 weeks from transection), the expression of glycine
receptors is temporarily decreased with subsequent recov-
ery and re-emergence of physiological reflexes [94]. After
complete spinal transection, the comparatively well-
preserved glycinergic system at segmental level below
the lesion may represent one significant component for
neurorehabilitation protocols [92].

Since the main focus of the present review manuscript is
the dysfunction of GABAergic mechanisms in damaged spi-
nal networks, we refer the reader to previous work to examine
the role of glycine after SCI [34, 92, 94–97].

Early Peak of GABA Immediately after SCI

Mechanical impact to the spinal cord massively increases the
extracellular concentration of several neurotransmitters in-
cluding GABA. Experimentally, a strong increase of GABA
at the lesion site has been observed shortly after an SCI in vivo
[42] following the very early rise in glutamate concentration
(Fig. 3c). The increased extracellular concentration of GABA
rapidly declines following SCI and later recovers to the pre-
trauma levels [42, 93, 98]. The peak of GABA after SCI orig-
inates from not only the destruction of the membrane of
GABAergic and glia cells but also the synaptic release at the
site of injury [99] facilitated by spreading depolarization along
the injured tissue [100]. The contribution of circulating
GABA leaking through the impaired blood-spinal barrier is
probably a minor one as GABA concentrations in the plasma
[101, 102] are far below the ones found at the lesion site.
Nevertheless, there might be enough GABA to activate highly
sensitive extra-synaptic GABA receptors such as the ones
incorporating the δ subunit [40]. An additional contribution
to the peak in extracellular GABA immediately after SCI
comes from the reversed function of membrane GABA trans-
porters that depend on Na+ concentrations. In both neurons
and glia, physiological reuptake of GABA is coupled to Na+

and Cl- inflow into the cell [103]. The increased concentration
of intracellular Na+ (and Cl-) caused by spreading depolariza-
tion following an acute injury reverts the transport systems to
extrude GABA [104]. At the same time, downregulation of
the vesicular GABA transporter caused by SCI [105] in-
creases the amount of cytosolic GABA available for
extrusion.

The peak of GABA corresponds to the onset of a tran-
sient depression of spinal reflexes below the level of injury
named spinal shock [106] typically present after severe spi-
nal contusions in rats [107], although rarely found after
surgical transection of the cord [108]. We, therefore, pro-
pose a role for GABA in spinal shock alongside a similar
role for glycine [96].

Fast Synaptic GABAergic Transmission Is Early
Affected by Spinal Cord Injury

The excitation/inhibition balance ensures physiological
motor responses executed by healthy spinal cords and
may be directly altered by SCI. Future studies are required
to clearly identify the components of the locomotor systems
primarily altered after SCI and their impact on the
excitation/inhibition balance. In broad terms, changes in
excitation/inhibition balance might originate from an alter-
ation in cellular mechanisms and/or disruption and rewiring
of local networks. Hence, in response to spinal damage,
GABAergic cells show particular vulnerability, as their
number decreases [109]. One reason for their vulnerability
might be their location because important members of the
spinal GABAergic population are commissural interneu-
rons, which cross the midline and project ventrally, thus
offering a long section liable to injury [110]. Furthermore,
the ventral region is vulnerable to SCI because of its dense
vascularization prone to produce large hemorrhage and
neuronal loss [111]. In addition, in the acute phase of SCI,
complex neurodegenerative events develop to generate a
secondary injury that amplifies and spreads damage to the
neighboring tissue [112]. Our former studies have provided
a comparative description of the different neuronal cell
types with particular vulnerability to injury [25, 113,
114]. In the early phases of experimental SCI, significant
reduction in GABAergic GAD65 expression occurs at the
injury site [115].

One important contributor to secondary injury is the over-
activation of glutamate receptors, leading to a massive influx
of calcium ions into spinal cells and contributing to the release
of free radicals from mitochondria, such as reactive oxygen
and nitrogen species, in turn triggering intracellular toxic cas-
cades (excitotoxicity; [25, 113, 116–118]).

The oxidative stress occurring during secondary damage is
one important cause for the impairment in GABAergic neu-
rotransmission, because reactive oxygen species increase syn-
aptic release of GABA [119, 120] that desensitizes GABA
ARs [121]. Reactive oxygen species also alter the function
of GABA A receptor-gated Cl- channels due to a reduced
driving force for Cl- because of failure of its transport [122].
In addition, free radicals alter the binding characteristics of
GABA, possibly by affecting redox-sensitive receptor sites
or via peroxidation of membrane lipids surrounding the recep-
tor [122].

GABAergic descending inputs that control motoneuron
excitability are also damaged by SCI contributing to function-
al motor deficits and other disabling consequences. In the
majority of people with chronic SCI, paralyzed muscles are
often accompanied by involuntary contractions (spasticity),
increased resistance to passive stretch (muscle hypertonia),
and exaggerated motor responses to light peripheral

3774 Mol Neurobiol (2021) 58:3769–3786



stimulation (hyperreflexia; [123]). Indeed, despite the reduced
excitability of axons at the periphery [124], a brief sensory
stimulation (< 20 ms) evokes a prolonged depolarization
(~ 1 s) of single motor units apparently without efficient
synaptic inhibition. Conversely, the same light afferent
stimulus applied to neurologically intact subjects gener-
ates a sustained depolarization interposed by an inhibitory
phase [125]. The increased amplitude that characterizes
motor responses after SCI and the lack of inhibitory con-
tributions have been associated with multiple neuronal
mechanisms at both cell and network levels. While the
increased excitation should be, at least in part, attributed
to the activation of Na+ and Ca2+ persistent inward cur-
rents (PICs) in motoneurons [126–130], a pivotal role in
reduced inhibition has been ascribed to depression in
GABAergic transmission [92, 131]. Indeed, at pre-
synaptic level, despite the increased size of GABAergic
synapses, the lower number of vesicles in the active zone
[132] determines less neurotransmitter available for re-
lease. At the same time, an SCI also produces aberrant
hyper-connectivity among GABAergic interneurons, with
the formation of new axo-axonic synapses [132] that,
along with changes in Cl- transporter isoforms, might con-
tribute to the disinhibition reported after SCI [133].

Noteworthily, dysregulation of the balance between exci-
tation and inhibition may also result from changes in other
components of the spinal network after injury. For instance,
aberrant sprouting of primary afferents or expansion of inter-
neuronal receptive and projective fields after SCI may aug-
ment the excitatory drive to spinal networks [134]. On the
other hand, inhibition is affected by the interruption of sero-
toninergic descending tracts, which modulate inhibitory
interneurons, like Renshaw cells [135, 136]. Moreover,
Renshaw cell recurrent circuitry might become disconnected
from motoneurons [137] suppressing their excitatory drive to
Renshaw cells, in turn reducing the GABAergic inhibitory
feedback. Also, changes in long-term gene expression, such
as upregulation and phosphorylation of several signaling pro-
teins in spinal ventral horns, have been linked to early and
long-term changes in spinal excitability, leading to spasticity
states after spinal trauma [138].

Furthermore, circuit reorganization after spinal cord injury
occurs also at the supraspinal level. The strength of brainstem
reflexes is enhanced as a result of increased excitability and
reduced GABA-mediated inhibition in the brainstem circuits
that project to spinal interneurons [139].

Table 1 shows interventions aimed at normalizing the
altered excitability after injury from multiple experimental
settings. Pharmacological manipulations, transplants of dif-
ferent cell lineages, and activity-dependent protocols have
been applied in the acute and chronic phases of SCI to
exploit GABA-related mechanisms and rescue homeostasis
between excitation and inhibition.

Despite the plethora of experimental approaches, restoring
physiological spinal inhibition in the clinic remains a timely
and demanding challenge that requires further studies. Indeed,
potentiating the GABAergic system, when not carefully
timed, might even hinder activity-based rehabilitation and
electrical neuromodulation protocols for motor recovery, by
depressing synaptic transmission [149] and reducing excit-
ability of locomotor spinal circuits [150].

Pharmacological Neuroprotection by GABA
Modulation after Experimental Lesion

Several GABAergic mechanisms targeted at restoring func-
tional homeostasis and rescuing neuronal loss after injury
have been explored with different experimental models
(Table 1). For their part, reduced preparations from neonatal
rodents suggest that a large rise in extracellular glutamate is
responsible for the excitotoxicity arising early after SCI (Fig.
3c). In this model, excitotoxicity is produced by transient ap-
plication of the powerful glutamate analog kainate [151].
While glutamate excitotoxicity can be attenuated with agents
that decrease its release [152–156], a distinct approach is to
boost inhibition to render spinal neurons less excitable. Thus,
neuroprotection by general anesthetics like methoxyflurane
and propofol indicates that this process effectively counteracts
excitotoxicity [157–159] albeit through distinct molecular
mechanisms. In fact, while methoxyflurane primarily acts by
hyperpolarizing motoneurons via opening a voltage-
independent K+ channel [159], propofol enhances GABA
ARs activity by binding to a discrete allosteric site [158].
The implication of these results is that neuronal inhibition,
regardless of its effector mechanisms, is an important factor
to contrast excitotoxicity. Nevertheless, using general anes-
thetics as a neuroprotective drug is complex and prompts the
search for alternative approaches. In line with this strategy,
more direct investigation into the effects of GABA receptor
agonists and antagonists on experimental spinal damage has
shown that modulation of extrasynaptic GABA ARs could
prevent excitotoxic death of spinal organotypic cultures
[143]. In particular, the allosteric GABA A modulator mid-
azolam and the GABA agonist 4,5,6,7-tetrahydroisoxazolo
[5,4-c] pyridin-3-ol (THIP; preferentially acting on
extrasynaptic receptors) are powerfully effective [143]. In ad-
dition, the GABAAR antagonist bicuculline prevents the neu-
roprotective effect of propofol via GABA AR function, sug-
gesting the importance of GABA receptor activity in modu-
lating excitotoxicity [157]. Endogenous neurosteroids can al-
so induce neuroprotection by upregulating GAD67 enzyme
level [160] or GABA AR function [161]. Thus, even if tran-
sient changes in GABAergic synaptic transmission after SCI
might not be immediately translated into neuroprotection, oth-
er GABAergic targets are available to perform this role.
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Interestingly, cultured motoneurons show that the excitotoxic
action of glutamate is limited by direct application of GABA
agonists [162, 163].

The neuroprotective role of GABA as well as the activation
of different GABA receptors following insults to the CNS [15]
may represent potential targets to limit damage and develop
innovative and selective therapeutical approaches.

However, side effects of current pharmacological therapy
for other neurological disturbances, as epilepsy, suggest po-
tential risks from potentiating GABAergic mechanisms [164].
Likewise, the use of the anticonvulsant baclofen determines
muscle weakness and sedative effects [165], along with a
baclofen-withdrawal syndrome, with a psychotic status when
the drug is abruptly discontinued [166]. However, since
GABA BRs are less prone to receptor desensitization, the
abovementioned adverse effects are likely to be more pro-
nounced than interventions targeted to GABA ARs.

Neurons and Astrocytes May Counteract
Excitotoxicity via GABAergic Mechanisms

One key element to modulate synaptic transmission and neuro-
nal network activity seems to be the presence of astrocytes and
the type of neuron involved [167]. It is now widely accepted
that astrocytes can modulate neuronal activity through the tri-
partite synapse [168]. Thus, cells immunoreactive to S100β (a
cytoplasmic calcium-binding proteinmainly expressed by glia),
may take part in tissue protection and repair, as well as they are
useful biomarkers for brain or spinal cord injury [169]. These
cells are the most abundant astrocyte cell type in the ventral
horn area and less abundant in the dorsal horn [170]. The dif-
ferential distribution of glial cells within the spinal cord regions
might be an important factor in considering the high vulnera-
bility of neurons to excitotoxicity [25, 113, 114].
Accumulating evidence demonstrates the role of astrocytes
in GABA synthesis and release, as well as in the activation
of GABA receptors on neighboring neurons [60]. During
synaptic transmission, GABA release triggers astrocytic re-
lease of calcium from the endoplasmic reticulum via the
inositol 1, 4, 5-trisphosphate pathway [171]. As pointed
out by Christensen and collaborators [172], in the dorsal
horn of adult turtle, astrocytes coordinate calcium-
mediated excitation and tonic inhibition by GABA ARs to
induce phasic release of GABA. Finally, lampreys show
spontaneous functional recovery and neuroprotection after
complete SCI that depends on astrocytes properties related
to GABA accumulation and neurotransmitter uptake [173].

Although promising for the design of novel interventions
to rescue cellular loss after spinal damage, these results must
be considered with caution and must be supported by compel-
ling new studies to validate any translation to clinical use.
Potential limitations can originate when interpreting results

coming from different species, genders, age, phases of lesion,
and injury protocols (Table 1). In fact, the distribution of
GABA ARs and their binding properties might vary among
different strains [174], while also circulating sex hormones
affect the sensitivity of GABA ARs to the allosteric endoge-
nousmodulator allopregnanolone in females [175].Moreover,
mechanical properties of the spinal cord change with size,
making it hard to compare the severity of experimental inju-
ries among studies of animals at different developmental
stages [176].

Prolonged Dysfunction of Fast GABAergic
Transmission after SCI

After spinal cord transection, the number of GABA ARs in-
creases in fast flexor motoneuronal pools and synaptic clus-
tering augments as a consequence of subunit overexpression.
This latter feature is reversed to control after step training and
aids functional recovery [177]. Furthermore, long-term chang-
es in protein and mRNA levels of GAD67 (but not GAD65)
have been found after a chronic transection, possibly leading
to increased GABA production in spinal neurons below the
site of injury [29]. Interestingly, GAD67 is the predominant
form in ventral horn neurons around motoneuronal pools
[178] and the recovery of locomotor functions in SCI rats
corresponds to a return of GAD67 toward baseline levels
[179].

Enhancement in motoneuron excitability stems from their
dysregulation of intracellular Cl- caused by the spinal lesion
itself [180]. In lumbar motoneurons, thoracic SCI reduces the
expression of KCC2 which co-transports potassium and Cl-

outside the cell [181]. The switch of GABA A from inhibition
to excitation contributes to the spasticity of hind limbs [182].
In fact, upregulation of KCC2 after transection restores some
locomotor activity in the mouse [140].

The interaction between excitation and inhibition at chron-
ic stages of SCI remains an incompletely understood process
as much as the relative weight of GABA and glycine mediated
transmission. In fact, although glycine receptor operation is
also sensitive to intracellular Cl- [183, 184], the kinetics of
glycinergic currents are not affected after spinal transection
[34] and the administration of glycine continues to produce
inhibitory effects and limit spasticity after SCI [95].
Pharmacological block of both GABA A and glycine recep-
tors prolongs spasms in chronically transected animals,
confirming that a degree of fast inhibition remains efficacious
even after lesion [95, 185]. In keeping with these observa-
tions, optogenetic activation of spinal inhibitory interneurons
silences spasms evoked by electrical afferent stimulation
[185]. Conversely, Edgerton and Roy [186] have proposed
low doses of pharmacological blockers of Cl--mediated inhi-
bition for recovery of gait in injured animals. Antagonism of
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inhibitory transmission has been claimed to facilitate locomo-
tion by limiting excessive inhibition following SCI [97, 187,
188].

In sum, after SCI, the excitability of spinal networks at rest
is changed at distinct nodes of the pre-motor neuronal circuitry
by the appearance of complex contributions with a very fine
balance among them. On the one hand, GABA-mediated
depolarizing signals result from the reversed Cl- gradient
[182, 189]. On the other hand, supplementary GABA-
mediated inhibitory input arises from upregulation of GABA
synthesis [178], overexpression of GABA AR subunits [34,
177], and a greater activation of inhibitory interneurons [185].
Ultimately, whether synaptically released GABA can either
inhibit or facilitate excitatory inputs depends on the time
course of the event and its membrane topography on the post-
synaptic neuron [39]. Hence, the longer lasting the effect of
GABA is, the higher is the likelihood of inducing neuronal
excitation.

Factors Regulating the Excitability
of Motoneurons after SCI

First, chronic changes in motoneuronal excitability after human
SCI depend on how close these cells are to the site of spinal
injury. Namely, while perilesional motoneurons are hypo-ex-
citable, those farther from the lesion epicenter show increased
excitability [190]. In line with this finding, in subjects with
incomplete SCI, corticospinal pathways evoke aberrantly high
facilitation of motor output distant from the epicenter of the
lesion. Conversely, no change is reported at the level of injury
and nearby segments [191]. Animal experiments indicate that
sustained depolarization of sacral motoneurons below the le-
sion [192] is accompanied by hypertonia, hyperreflexia, and
clonus [193, 194]. Other studies have demonstrated aberrant
membrane properties of lumbar motoneurons underlying hind
limb spasticity after thoracic spinal lesions in rodents although
direct evidence for the excitability of motoneurons close to the
contusion site is still missing [181, 189]. While motoneuron
properties (essential to support motoneuron firing) slowly re-
cover to their preinjury state, their corresponding receptive
fields remain broad so that sensory input to even a small area
of the limb can trigger widespread excitation capable of gener-
ating whole-limb spasms [195]. Further studies are eagerly
awaited to explore whether different states of excitability of
motoneurons proximal and distal to an SCI are related to the
early transient changes in extracellular GABA concentrations at
the epicenter of injury. Potentially, these findings might bring
novel pharmacological interventions to acutely modulate
GABAergic transmission below the lesion [196] with the time-
ly goal of preventing the onset of spasticity in addition to the
widely-used administration of the GABA BR agonist baclofen
[197]. In particular, an important issue is whether activation of

spinal GABA ARs may be able to counteract the upregulation
of the persistent sodium current of motoneurons typically ob-
served after lesion [198]. This conductance is considered to be
the target for neuromodulation, a phenomenon in which GABA
is expected to play a role [199]. PICs which comprise sodium as
well as calcium conductances [126–130, 200] contribute to the
nonlinearity between the level of network excitation and motor
output [201]. As spinal neurons possess strong plasticity during
recovery after SCI [202], GABA AR currents display more
powerful control over PIC activation than glycinergic currents,
an effect attributable to their slower kinetics [196]. Additionally,
extrasynaptic GABA ARs (with their high sensitivity to even
low GABA concentrations) may represent a further mechanism
to downplay neuronal excitability even when synaptic transmis-
sion has failed after SCI. Nevertheless, the functional outcome
of modulation by GABA receptor activity may also depend on
the shifting balance between hyperpolarizing and depolarizing
action of GABA due to post lesional changes in chloride trans-
membrane gradient [140, 180–182, 189] and their timing as
discussed earlier.

In conclusion, restoration of locomotor network activ-
ity after injury depends on the correct interplay between
excitation and inhibition and recovery of the fine balance
between synaptic and non-synaptic GABA AR activity.
These goals are eminently suitable for pharmacological
investigations.

We suggest that this is a complementary strategy to concur
with the use of new materials and cell transplants to a success-
ful repair or reconfiguration of damaged locomotor networks
that need a suitable functional milieu to reestablish their cor-
rect operation.
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