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A B S T R A C T   

The development of open computational pipelines to accelerate the discovery of treatments for emerging diseases 
allows finding novel solutions in shorter periods of time. Consensus molecular docking is one of these ap-
proaches, and its main purpose is to increase the detection of real actives within virtual screening campaigns. 
Here we present dockECR, an open consensus docking and ranking protocol that implements the exponential 
consensus ranking method to prioritize molecular candidates. The protocol uses four open source molecular 
docking programs: AutoDock Vina, Smina, LeDock and rDock, to rank the molecules. In addition, we introduce a 
scoring strategy based on the average RMSD obtained from comparing the best poses from each single program to 
complement the consensus ranking with information about the predicted poses. The protocol was benchmarked 
using 15 relevant protein targets with known actives and decoys, and applied using the main protease of the 
SARS-CoV-2 virus. For the application, different crystal structures of the protease, and frames obtained from 
molecular dynamics simulations were used to dock a library of 79 molecules derived from previously co- 
crystallized fragments. The ranking obtained with dockECR was used to prioritize eight candidates, which 
were evaluated in terms of the interactions generated with key residues from the protease. The protocol can be 
implemented in any virtual screening campaign involving proteins as molecular targets. The dockECR code is 
publicly available at: https://github.com/rochoa85/dockECR.   

1. Background 

Open initiatives for drug discovery purposes have become a priority 
to tackle neglected and emerging diseases affecting vulnerable pop-
ulations [1,2]. From a computational perspective, various initiatives are 
available to analyze public information and predict outcomes useful 
from a biological and chemical viewpoint [3–5]. Fields such as chem-
informatics and chemogenomics, allow the assessment of molecular 
candidates based on their physico-chemical properties and potential 
mechanism of action towards a target of interest [6,7]. Many of these 
methods rely on curated data and open source software to plan, perform 
and share the results with the community. In critical situations, the 
massive sharing of scientific findings around novel treatments, or 
repositioning of known alternatives is crucial to advance in the fight 
against the causative agents [8–10]. 

In this scenario, alternatives like molecular docking are useful to 
screen and rank chemical libraries in a fast and massive way [11,12]. 
With molecular docking it is possible to find the most favorable position, 
orientation and conformation (pose) for the binding of a molecule to, for 
example, a protein target, assigning a score that is the estimate of the 
likelihood of binding of each molecule and pose [13]. However, the 
ability of docking software to accurately predict the docking pose can be 
affected by system-bias effects provided by parameter training or 
over-fitting [14]. To overcome this limitation, the exponential 
consensus ranking (ECR) methodology was proposed, which can also 
include the flexibility of the biological target to increase the success rate 
of virtual screening in systems where little information is known [15]. 

Other protocols for consensus docking and scoring have been re-
ported in the literature. One example is the DockBox, a package that 
facilitates the implementation of multiple docking programs and scoring 
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functions for virtual screening purposes [16]. The protocol proposes the 
score-based consensus docking as an alternative to classic consensus 
docking, with reported higher success rates on predicting poses based on 
enrichment factors of known active and decoy molecules. Similarly, 
other methodologies have implemented multiple docking approaches to 
filter a major range of false positives during virtual screening campaigns 
[17,18], as well as combining multiple scoring functions with trajec-
tories obtained from molecular dynamics (MD) simulations for similar 
purposes [19]. However, the ranking methodologies can discard mo-
lecular actives that are not necessarily detected by all the programs 
included in the consensus. Additionally, when ranking the molecules 
using traditional scoring functions, only the score and not the pose 
predicted by the docking program is taken into account. Therefore, we 
are implementing the already validated ECR method [15] to provide a 
different metric to combine the results of widely used docking programs, 
and a metric based on the RMSD of the best ranked poses in a protocol 
publicly available for the community. 

Here we present dockECR, an open source consensus docking and 
ranking protocol for virtual screening campaigns. The code allows the 
parallelisation of the docking runs for multiple ligands, and applies the 
ECR method to find the most promising candidates. A set of active/de-
coys benchmarks of the protocol are included using 15 protein targets 
from the DUD-E dataset [20]. As an application, we implemented the 
protocol with the main protease from SARS-CoV-2. A total of eight 
molecules were prioritized as an effort to share the computational 
findings with other researchers working in the field. 

2. Methods 

2.1. Molecular docking and consensus ranking protocol 

The consensus molecular docking used by dockECR was configured 
with four open source docking programs: LeDock [21], rDock [22], 
Smina [23], and AutoDock Vina [24]. Each program has a different 
scoring function and search algorithm, and the combination of their 
results by means of a consensus ranking can avoid the bias given by the 
training set of each docking program [15]. Other studies, inspired by the 
consensus docking, have also included the docked poses as a criterion to 
rank the molecules [16,17,25]. For that reason, and in addition to the 
docking scores, we created the RMSD-based scoring (RBS), a metric to 
rank the molecular candidates based on the docking poses. This involves 
calculating per molecule the RMSD by pairs between the best poses 
obtained by the different molecular docking software. The average 
RMSD is calculated to rank the molecules according to the most 
conserved pose (i.e. the lower the average RMSD value the better). The 
RMSD is calculated using the RDKit package in python (https://www. 
rdkit.org/) between each pair of molecules. 

dockECR uses the ECR method to combine the results of the different 
docking programs/scoring functions, and considers the effect of the pose 
prediction by including the results of the RBS in the consensus. The 
result of the virtual screening given by each docking program/scoring 
function (j) consists of a ranking in which the molecules are sorted ac-
cording to their docking score. For each scoring function, the molecules 
predicted to have a higher affinity for the target will have a position at 
the top of the rank. The ECR takes the position in the rank of each 
molecule (i) to assign a score p(rj

i), using the rank of the molecule (rj
i) 

given by each individual docking program, p(rj
i) = 1

σj
x%

exp( − rj
i

σj
x%
). The 

parameter σj
x% can be different for each scoring function j and can be 

interpreted as the weight assigned to each scoring function in the 
consensus. This parameter is set to the desired x% percentage of filtered 
molecules at the end of the screening, for instance x = 5% of the dataset 
(i.e., for a dataset of 10000 molecules where we want to prioritize -filter- 
only 5% of the data as a result of our consensus docking and scoring, we 
set σj

5% = 500). With this approach, the final score of each molecule i is 

defined as the sum of all of the scores p(rj
i): 

P(i) =
∑

j
p(rj

i) =
1

σj
x%

∑

j
exp(−

rj
i

σj
x%
) . (1) 

We remark that the notation for σ in eq. (1) is slightly different from 
Ref. [15], to emphasize the possibility of giving different weights to the 
scoring functions, a possibility that had not been explored before. The 
score obtained with the ECR is used to make the final ranking and to 
prioritize the best candidates for further steps. A summary of the pro-
tocol implemented by dockECR is shown in Supplementary Fig. S1. 

2.2. Code organization and benchmark systems 

The code is available as a python script with calls to the system 
through Shell commands. This means the protocol has been configured 
to be run under a Unix terminal. Each docking run is calculated using a 
single core, with all the runs controlled by the multiprocessing module 
available in python [26]. In this sense, the code uses the parallel CPU 
architecture available in the computer or server where it is located. The 
results are stored in different folders, including the poses obtained from 
the docking programs and the calculated ranks of the ligands. A flow-
chart of dockECR is shown in Fig. 1. 

The script was configured to run the virtual screening using one 
single target or multiple targets based on a merging and shrinking 
methodology [27,28] with multiple ligands, all of them in PDB format 
[29]. Third-party tools are provided in an auxiliary folder available at 
the GitHub repository (https://github.com/rochoa85/dockECR). How-
ever, it is recommended to install the docking programs according to the 
source instructions to guarantee the correct localization of the required 
libraries. Finally, to submit a run, a configuration file should be provided 
with all the necessary parameters for the docking search box defined 
based on the target binding site of interest. An example of the configu-
ration file options and the dockECR folder architecture is provided in the 
README file of the code repository. 

The consensus protocol used by dockECR was validated in a previous 
publication with multiple protein targets having available bioactivity 
data [15]. Here, we extend the applicability of the method by imple-
menting only free docking software into the dockECR pipeline. More-
over, we added the possibility to combine the rankings obtained through 
the scoring functions with the information related to the best pose 
predicted by the docking software, including the RBS metric into the 
ECR. 

To evaluate the impact of the new protocol code based on known 
active and decoys of studied molecular targets, we selected 15 protein 
systems: angiotensin-converting enzyme (ace), beta-lactamase (ampc), 
caspase-3 cysteine protease (casp3), coagulation factor VII (fa7), fatty 
acid binding protein adipocyte (fabp4), human immunodeficiency virus 
type 1 protease (hiv), heat shock protein HSP 90-alpha (hsp90a), 
hexokinase type IV (hxk4), leukocyte adhesion glycoprotein LFA-1 alpha 
(ital), human thymidine kinase (kith), tyrosine-protein kinase (lck), 
neuraminidase (nram), phospholipase A2 group IIA (pa2ga), poly [ADP- 
ribose] polymerase-1 (parp1) and trypsin I (try). For all the systems, a 
number of active and decoy molecules from the DUD-E decoy database 
[20] were docked using the consensus protocol. The numbers of mole-
cules per system are provided in the Supplementary Table S1. All the 
files are publicly available in the DUD-E database: http://dude.docking. 
org/targets. 

The docking parameters for each program were set as follows: The 
docking box size for all the programs was set to 30 × 30 × 30 Å, and the 
box centroids were defined based on the coordinates of a co-crystallized 
ligand of reference (see Supplementary Table S2). 50 poses per molecule 
were requested for each of the docking programs. After the docking we 
collected a ranking from each program/scoring function sorting the 
molecules according to the docking score of the best scored pose. Then, 
we combined all the rankings using the ECR method to obtain a single 
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final rank. The only external parameter needed to use the ECR is the σ 
value in eq. (1). Taking into account that σj

x can represent the weight 
assigned to each scoring function j, we tested the effect of the inclusion 
of the RBS metric under 3 different scenarios, using values for σRBS

x with 
x = 0, 2.5 and 5% of the total number of molecules in the dataset. In all 
cases, the σ value for the other scoring functions x was kept as 5% of the 
database. Enrichment factors (EF) of the screening were calculated using 
2% and 5% of the database to assess how dockECR can benefit the 
overall results. The calculated EF are the ratio of actives/decoys found in 
the top-2% and top-5% of the virtual screening ranked results in com-
parison with the original dataset. 

2.3. Application of dockECR with the SARS-CoV-2 main protease Mpro 

2.3.1. Selection of ligands and Mpro representative structures 
A library of 60 fragments obtained from the XChem screening 

experiment at Diamond, combined with a mass spectrometry screen of 
covalent fragments in the London Lab at the Weizmann Institute (Israel), 
was the motivation to select a list of non-covalent fragments to combine 
and optimize novel molecular entities against the SARS-CoV-2 main 
protease. Specifically, a new library was constructed based on the visual 
inspection and thorough interaction analysis of a list of 21 non-covalent 
fragments within the active site of the enzyme. We designed a molecular 
scaffold based on key features and the interaction patterns observed for 
the fragments 161, 426 and 434 reported on the website (https://covid. 
postera.ai/covid). 79 derivatives were then constructed based on ob-
servations reported in the literature and different strategies to achieve 
better drug-like physicochemical and pharmacokinetic properties. More 
details about the library construction are provided in Results section 
3.3.1. Regarding the Mpro structures, two strategies were followed up to 
obtain a structural representation of the flexibility in the protease 
binding site. The first involved the selection of four distinct Mpro crys-
tals, including one apo form (PDB id 6y2e), and three others in complex 
with potential inhibitors (PDB ids 5re4, 6fv2, 6lu7). The multiple con-
formations were used to capture fluctuations of key amino acids within 
the region of interest. As a second alternative, a MD simulation was run 
to obtain representative snapshots of the protein during the trajectory. 
Specifically, the apo crystal structure with PDB id 6y2e was used as 
initial configuration for the protein. 

2.3.2. Preparation of protease and MD setup 
The system was prepared as follows. The tautomeric states of the 

histidines were estimated employing the Gromacs software [30], which 
performs a hydrogen bond net analysis to determine the most probable 
tautomer. Special attention was given to His41 and His163, based on 
their roles in the catalytic mechanism and protein-ligand interactions, 
respectively. The system was solvated with the TIP3P water model [31] 
in a truncated octahedric box, extending 10 Å from the protein. A 
physiological salt concentration of 0.15 M was used, employing Na + an 
Cl− ions. Finally, hydrogens were added using the Tleap module of the 
Amber simulation suite [32]. 

The simulation was performed using the PMEMD cuda module of the 
Amber simulation suite, and consisted of the following steps: an initial 1 
picosecond (ps) run with a 0.01 femtosecond (fs) timestep to eliminate 
bad contacts, followed by an energy minimization; heating from 0 to 
10K over 10 ps with a 0.1 fs time step with strong restraints (50 kcal/ 
mol/Å2) on the protein residues, and then from 10 to 300K over 90 ps 
with a 0.5 fs timestep and weaker restraints (10 kcal/mol/Å2). The 
system was then equilibrated for 400 ps at constant temperature and 
pressure with weak restraints on the CA atoms of the protein (1 kcal/ 
mol/Å2). The Langevin thermostat was used with a collision frequency 
of 2.0 ps− 1 [33], the SHAKE algorithm was used to constrain bonds, 
allowing a 2 fs timestep, and an 8.0 Å cutoff was used for non-bonded 
interactions. Finally, a 100 nanoseconds (ns) production simulation 
was performed under the NPT conditions described above, and ten 
equidistant snapshots from the second half of the simulation were saved 
as representative protein structures for the virtual screening process. 

2.3.3. Consensus docking and ranking 
We used dockECR on the mentioned groups of Mpro structures. For 

Smina, the Vinardo scoring function was used [34]. The sampling space 
for docking was defined after aligning the target structures, placing the 
center of the box in the catalytic site region between domains I and II, 
where ligands have been previously co-crystallized. The box size 
remained the same for all programs: 30 × 30 × 30 Å, except for rDock, 
which does not allow the definition of a search box, but takes as the 
docking volume the free space that a ligand can occupy in the binding 
pocket. The rDock docking site was built automatically using the 
ligand-based method [22], where we randomly selected the best ranked 
pose for one of the molecules studied (molecule 5) to build the docking 

Fig. 1. Flowchart of the dockECR protocol, describing the required input data, the molecular docking steps, and the ranking using the ECR approach.  
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space. All other sampling parameters were taken as default. 
After screening the database over each target structure, we used the 

merging and shrinking strategy to obtain a unique rank per scoring 
function for each molecule. We combined the rankings obtained for each 
crystal structure and selected the best rank per scoring function and the 
RBS. We repeated the same process for the MD frames. The best 20 
molecules from the two final rankings were selected. The molecules 
present in both final lists were prioritized for further analysis. 

3. Results and discussion 

3.1. Open source software and reproducibility 

Thanks to the large amount of open source software and the sharing 
of protocols and best practices, it is possible to configure code projects 
that can be useful in the search of novel therapeutic alternatives to 
tackle emerging diseases as quickly and rationally as possible. In this 
work, we focused on a structure-based open source protocol, dockECR, 
which implements a consensus docking and ranking approach to pro-
pose novel molecular entities. The protocol can be easily reproduced by 
other researchers based on the provided code. A list of the open software 
used and the versions implemented for this project is available in 
Table 1. 

The ECR method for consensus ranking implemented in dockECR is a 
novel approach that uses similar docking software than other consensus 
docking and ranking alternatives [35,36]. However, as discussed in 
Ref. [15], the simple mathematical formulation of the ECR avoids bias 
due to the training-set dependencies and requires less computational 
resources than other consensus strategies that have recently been pro-
posed based on machine learning [35, 36]. Additionally, besides the 
similarities with other consensus strategies regarding the docking pro-
grams implemented, we aim to provide a fully efficient code, including 
the ECR as a method able to prioritize candidates with an overall better 
performance than individual docking programs for large compound li-
braries. To reproduce the results of our benchmark and application, we 
provide the code to run the consensus docking analysis with the sub-
sequent rankings by the ECR method. The code is available in the GitHub 
repository: https://github.com/rochoa85/dockECR. 

Regarding the computational time, one advantage of dockECR is the 
possibility to parallelize the runs in one single core jobs, which expands 
depending on the available infrastructure. In addition, the four docking/ 
scoring software selected are very fast, and using the consensus instead 
of only one program scales the required resources linearly. For example, 
running a consensus docking campaign of 6000 molecules can take 
around 6 h in a 24 core server. In the following section, we describe the 
results of the dockECR benchmarking study using different systems with 
a list of active/decoy molecules available. 

3.2. Benchmark analysis 

3.2.1. Comparison with single docking programs 
We tested the implementation of the consensus method used by 

dockECR with and without the inclusion of the RBS metric, and 

compared the results by means of the enrichment factors using the top- 
2% of the virtual screening ranking. The higher the enrichment factors, 
the more hits are prioritized using the selected protocol. A list of the EF 
for the top-2% of the 15 diverse target systems for the RBS, and for the 
ECR using different weights (σ) in the consensus to include the RBS 
metric, are shown in Table 2. The EF values for the single scoring 
functions are also included, and a similar table with all the calculated EF 
for the top-5% is available in Supplementary Table S3. 

The diversity of the targets allows observation of system-bias effects 
and overfitting that can be present in the individual docking programs, 
as some programs show outstanding results for some systems, but poor 
results for others. For instance, rDock shows an enrichment of the 
dataset for ampc and nram targets, where all the other docking programs 
show very poor performance, while all the other programs outperform 
rDock for ace, casp3, kith and try systems. Given this dependency of the 
outcome of the docking programs on the target, the ECR method allows 
the combination of the results of different scoring functions, and re-
trieves a new score based on the rank of the molecules, which has the 
advantage of being independent of the variable units, scales and offsets 
of the different scoring functions. 

We show that using ECR avoids the problems of individual docking 
programs with respect to the dependency of the performance on the 
target. We noted that, from the individual docking programs, Smina has 
the best results. However, if we compare the EF2% of the consensus 
including the four scoring functions and the RBS metric, we found that 
our method is better for 8 of the 15 targets with respect to Smina. Now, if 
we compare the EF values with the consensus using the top-5% (the ones 
from Table S3), the consensus is better for 9 of the 15 targets included. In 
such cases where the EF is better for the consensus, the values are much 
greater than those from Smina. If we use only the Smina scoring function 
we will have 3 targets with EF2% = 0 (ampc, hsp90a, nram), while using 
the ECR (with and without including the RBS) only 2 targets present no 
enrichment, and when giving more weight to the RBS (ECR-σRBS

2.5%) all the 
targets present enrichment. 

Consensus docking and scoring strategies aim to provide an enrich-
ment of the dataset independently of the target, docking programs, or 
molecular libraries used in the virtual screening. Even if we get good 
performances for this set of targets with Smina, the use of a single 
docking program/scoring function limits the outcome. By using the ECR, 
we increase the probability of getting enrichment for most of the targets, 
even if in some cases the EF slightly decreases. 

3.2.2. Impact of the RBS metric in the consensus 
Considering the conservation of the best ranked pose among the 

docking programs by means of the RBS metric, a correlation is observed 
between the scores given by all the scoring functions and the predicted 
pose. Table 2 shows the EF2% for the RBS in the last column. Interest-
ingly, the RBS scoring displays an enrichment of the top-2% of the 
dataset for nram, ampc and hsp90a, where at least 2 of the other scoring 
functions have EF2% < 1. This justifies its inclusion in the ECR pro-
cedure to improve the results, especially for these difficult targets. 

To test the impact of adding the RBS results in the consensus ranking, 
we started by using the ECR including only the scoring function of the 
docking programs (ECR-noRBS in Table 2). As expected, the ECR metric 
presents an enrichment for most of the benchmark systems. The same 
tendency can be seen in the EF5% (see Supplementary Table S3), and in 
the enrichment plots of Fig. S2, where it is possible to analyze the results 
for other percentages of the dataset. The only two cases where the ECR 
presents no enrichment are those where most of the programs fail in 
discriminating between active molecules and decoys (EF2% < 1), which 
lead to poor results even after the consensus. 

Taking into account that the RBS present an enrichment for those 
systems where most of the programs present poor performance, we 
compared the results of the ECR without and with inclusion of the RBS 
scoring function (ECR-noRBS and ECR-σRBS

5% in Table 2, respectively). In 

Table 1 
List of open source software implemented by the dock-
ECR protocol and the reported application.  

Name Version/Year 

AutoDock Vina 1.1.2 
rDock 2013.1 
LeDock 2015 
Smina 1.0 
Gromacs 5.1.4 
RDKit 2020.03.1 
BioPython 1.77 
OpenBabel 2.3.2  
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general, we found an improvement in the EF2% by including the RBS 
metric in the ECR. Additionally, given the different nature of the RBS 
result in contrast to the docking score given by a docking program, we 
can exploit a feature of the ECR not tested before: the use of different 
weights for a given scoring function. This weight can be set by changing 
the σj

x% value for its ranking (j) in eq. (1). We assigned a higher weight to 
the RBS metric inside the ECR, using σRBS

2.5% and keeping σj
5% for all the 

other scoring functions (j = LeDock, rDock, Smina, Vina). By giving 
more weight to the RBS function, we find a significant improvement in 
the enrichment for ampc and nram systems. However, for most of the 
other systems, the enrichment factor is lower for this case. 

3.2.3. General advantages of the dockECR consensus method 
Overall, we find that the setup that best performs for most systems is 

given when we use the ECR and include the RBS metric with the same 
weight as the other docking programs. This finding shows that even if all 
the docking programs find a similar pose for a molecule, the score 
assigned, and therefore the rank of the molecule, can be uncorrelated 
with the docking pose, and in general, its inclusion is relevant to 
incorporate the impact of the poses in the formation of the interactions 
and the calculated scores. Despite having similar results in the bench-
mark with one of the scoring functions (Smina), the overall advantage of 
using consensus docking for a given system is the statistical assurance 
that a better, no-biased outcome, is achieved using consensus when 
applied to less known systems. We also highlight that the docking pro-
grams implemented so far in dockECR are diverse, free and easy to use. 
However, we noted that for DUD-E targets, better enrichment factors are 
possible to obtain using other docking programs [20]. This is why we 
provide the option to add different docking software in the dockECR 
pipeline, depending on the application in hand. 

This makes dockECR a suitable and easy-to-use alternative to obtain 
a good enrichment during docking campaigns for three main reasons: i) 
the combination of the results of several docking programs through the 
ECR improves the outcome and avoid system-bias dependencies in 
comparison with single programs, ii) the RBS metric allows the inclusion 
of docking pose effects in the consensus ranking, which can be important 
for systems where several individual docking programs present no 
enrichment and, iii) dockECR uses only open software which make it 
more accessible with an implementation that saves computational time 
by using parallel computations. We also compared the ECR results with a 
Z-score [37] obtained from the calculated scores, and a basic average 
ranking using the four docking programs plus the RBS. We found that 
the ECR method was superior against the average for 13 of the 15 targets 
based on the EF2%. Regarding the Z-score, the performances are very 
similar but with a slight improvement for the ECR method (see Sup-
plementary Table S4). 

In addition, the results of dockECR with the hiv protease and the 

cysteine protease casp3 (see Table 2), motivates the application of the 
protocol with the main cysteine protease from SARS-CoV-2 (Mpro), 
given that casp3 is from the same protease family of Mpro [38], and the 
hiv protease is also expressed as a viral protein [39]. Based on this, we 
can rank a set of molecules with the potential to modulate the enzymatic 
activity through reported interactions obtained from 
experimentally-resolved structures. 

3.3. Application: SARS-CoV-2 main protease Mpro 

The coronavirus disease 2019 (COVID-19), caused by the Severe 
Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2), is a 
pandemic disease affecting millions of people around the world [40,41]. 
The availability of structural data regarding virus-related proteins and 
human receptors has motivated the implementation of in silico alterna-
tives to accelerate the search for new inhibitor scaffolds and hits 
[42–44]. This is the case of the 3CL protease or main protease (Mpro) 
characterized for SARS-CoV-2, which since its description in literature 
has motivated the publication of various studies aiming to understand its 
mechanism of action and screening for potential inhibitors [45,46]. 

The SARS-CoV-2 main protease is structurally organized in three 
domains; with the substrate binding site located between domains I and 
II surrounded by six stranded anti-parallel B-barrels. Domain III is a 
cluster of five helices involved in the enzyme dimerization that is crucial 
for enzyme activity [45]. Public consortia are providing valuable in-
sights into the search of molecules that would interact with the binding 
site, including an international project that published a set of crystal 
structures of Mpro bound to covalent and non-covalent fragments 
(https://covid.postera.ai/covid). In order to design powerful inhibitors, 
one challenge is to implement in silico approaches to combine these 
fragments and propose better candidates. A summary of the dockECR 
strategy for Mpro is shown in Fig. 2. The main results per step are 
explained in the following sections. 

3.3.1. Generation of libraries 
After a visual inspection of the 21 Mpro-fragments crystals, the 

fragments were classified into three groups according to their position 
inside the active site (Fig. 3), in order to combine fragments from 
different groups to maximize the interaction with the protein. 

From the interaction analysis performed, fragments 161, 426 and 
434 were chosen as the basis for the design of the library. The fragments 
within the active site of Mpro and their main interactions are shown in 
Fig. 3. The position of the pyridine ring in fragments 426 and 434 was 
conserved, possibly due to a hydrogen bond interaction with His163, 
whereas the benzene ring in fragments 434 and 161 were next to each 
other. Based on these observations, we propose molecule 1 (see Sup-
plementary Fig. S3) as an inhibitor candidate. The fluorobenzene ring in 

Table 2 
EF2% for the RBS, the single docking programs and the consensus ranking. The ECR strategies were calculated for a σ threshold equal to the 5% of the database for all 
the scoring functions, except the RBS where we used σRBS

5% and σRBS
2.5%, i.e., thresholds of 5% and 2.5%, respectively.  

Targets ECR-noRBS ECR-RBS ECR-weighted Vina Smina LeDock rDock RBS 

ace 14.61 14.23 13.1 11.52 15.14 8.36 1.13 0.98 
ampc 0 0.81 1.61 0.81 0 0 4.03 1.61 
casp3 3.01 2.29 1.86 2.15 4.73 2.15 0.72 0.29 
fa7 12.16 13.24 10.81 6.76 7.57 9.19 1.62 1.89 
fabp4 19.3 20.18 18.42 20.17 21.05 5.26 2.63 2.63 
hiv 3.15 3.19 2.44 3.44 4.62 0.47 0.89 1.25 
hsp90a 2.4 2.8 2 0 0 2.40 7.20 2.8 
hxk4 3.15 1.97 1.18 0.79 3.94 7.87 0 0 
ital 3.65 3.22 2.79 0.64 4.08 2.15 0.21 1.29 
kith 4.17 4.17 3.77 2.98 4.56 3.97 0.19 3.18 
lck 12.37 12.88 12.23 5.19 9.81 9.59 3.37 5.86 
nram 0 0.45 2.48 0 0 0 2.70 4.05 
pa2ga 6.69 11.02 14.17 1.18 7.87 2.76 3.54 11.42 
parp1 12.6 14.08 15.43 11.46 8.56 4.38 4.04 7.14 
try 7.39 6.14 4.95 4.22 5.08 8.11 0.39 0.79  
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fragment 426 was replaced by a hydroxycyclohexyl group to avoid 
molecular staking and aggregation, and the two benzene rings were 
linked by a methylene group to gain flexibility. Several derivatives were 
then constructed from molecule 1 based on observations reported in the 
literature and different strategies to achieve better drug-like physico-
chemical and pharmacokinetic properties. 

Despite the library being small and less diverse than those from the 
benchmark systems, we looked to design a specific library that can 
satisfy the interactions found in the available crystal structures. With 
this hypothesis, we can increase the chances of finding an active com-
pound derived from the most promising fragments. 

3.3.2. Preparation of targets and MD simulations 
The availability of multiple Mpro structures in apo form, or bound to 

different ligands, allows us to include flexible changes within the active 
site in our study, which are crucial to prioritize compounds maintaining 
key interactions. In this case, we observed subtle changes in amino acid 

orientations in the binding site for the four crystals included. 
Simulations were run using a single monomer of the protease. 

However, the interactions and inferences can be contextualized in the 
form of the active dimer previously reported [45]. After 100 ns MD 
production, the protein remained stable with RMSD values below 2.5 Å 
(Supplementary Fig. S4B), so an equidistant set of frames was chosen for 
the consensus docking analysis. Most Mpro fluctuations were associated 
to domain III, which is responsible for mediating the dimerization 
(Supplementary Fig. S4A). 

3.3.3. Consensus docking results 
Two ECR rankings using (i) the pool of crystal structures and (ii) the 

pool of MD frames were constructed, and the molecules present in the 
top20 of both rankings were prioritized for further analysis (Fig. 4). The 
SMILES representations of the selected structures are reported in the 
Supplementary Table S5 along with the resulting rankings after applying 
the consensus strategy with the ECR in Supplementary Tables S6 and S7. 

Fig. 2. General methodology of the protocol. (A) Analysis of single fragments and proposal of new molecular entities based on the combination of some fragments. 
(B) Selection of Mpro crystal structures and frames from MD simulations of the apo form. (C) dockECR approach using four open source docking programs, with a 
subsequent ECR ranking of the ligand library. 
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The docking pose of compounds 2, 20 and 40 along with their pre-
dicted interactions are shown in Fig. 5. These compounds reported 
suitable docking scores and interactions with several residues involved 
in the Mpro activity: the catalytic dyad His41 and Cys145 [47], and 
residues Gly143, His164, Met165, Glu166, Leu167, Arg188, Gln189, 
Thr190 and Gln192, which are reported as playing significant roles in 
substrate binding [48], and Phe140, identified as important for Mpro 
dimerization [48]. Specifically, interactions with Glu166, a key residue 
that is known to have an effect on shaping the S1 pocket and keeping the 
enzyme in the active conformation [45] were conserved in all the top 
candidates. 

4. Conclusions 

Open source alternatives to accelerate the discovery of novel drugs 
and vaccines is crucial to tackle multiple diseases, including those 
caused by the emerging viruses. Among the multiple tools available to 
identify novel hits, the use of consensus open approaches for docking 
and ranking ligands in virtual screening campaigns, helps to prioritize 
molecular candidates that can be openly shared with the scientific 
community. In this work we describe the protocol called dockECR, 
which is able to perform consensus docking with a previously published 
exponential consensus ranking to reduce the number of false positive 
hits. Moreover, dockECR permits inclusion of the RBS metric in the 

Fig. 3. Fragments 161, 426 and 434 within the active site of Mpro. Interactions with the residues inside the cavity are shown as 2D plots. The colored areas 
correspond to the zone-classification made for the fragments, according to their position within the active site: group 1 (blue area), group 2 (red area) and group 3 
(yellow area). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. Chemical structures of the eight molecules resulting from the combination of the two strategies implemented with the consensus docking analysis.  
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consensus, which helps to consider the docking pose in the ranking of 
the molecules and improves the overall performance of the method over 
the benchmark systems. The computational method is reproducible 
based on the scripts provided to run similar analysis with any protein 
system of interest. 

For our application with SARS-CoV-2, we found eight molecules that 
based on the literature and the chemical foundations of ligand in-
teractions with the Mpro enzyme, can become interesting starting points 
for further optimization steps. 
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