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Spinal Cord Injury (SCI) can elicit a progressive loss of nerve cells promoting disability,
morbidity, and even mortality. Despite different triggering mechanisms, a cascade of
molecular events involving complex gene alterations and activation of the neuroimmune
system influence either cell damage or repair. Effective therapies to avoid secondary
mechanisms underlying SCI are still lacking. The recent progression in circular RNAs
(circRNAs) research has drawn increasing attention and opened a new insight on
SCI pathology. circRNAs differ from traditional linear RNAs and have emerged as
the active elements to regulate gene expression as well as to facilitate the immune
response involved in pathophysiology-related conditions. In this review, we focus on the
impact and possible close relationship of circRNAs with pathophysiological mechanisms
following SCI, where circRNAs could be the key transcriptional regulatory molecules to
define neuronal death or survival. Advances in circRNAs research provide new insight on
potential biomarkers and effective therapeutic targets for SCI patients.
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INTRODUCTION

Circular RNAs (circRNAs) are endogenous single-stranded RNA molecules produced by
circularization events (Guo et al., 2014; Wang et al., 2014), shown to be very stable and conserved
functional molecules, highly expressed in the central nervous system (CNS; Memczak et al.,
2013; Rybak-Wolf et al., 2015). circRNAs play crucial regulatory roles in gene expression at the
posttranscriptional level (Zhang et al., 2013; Chen, 2020) and are closely associated with multiple
neurodegenerative diseases, especially at the level of the neuro-immune pathways (Qu et al., 2020;
Xu et al., 2021). Therefore, it is possible that circRNAs may also play important role in molecular
events involved in spinal cord injury (SCI) pathology.

SCI is a common and serious neurological condition with social and economic consequences
(Sweis and Biller, 2017). Either traumatic or non-traumatic, SCIs start with primary insult, followed
by subsequent secondary pathological events that amplify spinal neurodegeneration (Quadri et al.,
2020). Current treatments exhibit limited efficacy for complete functional recovery after SCI
(Martirosyan, 2021), mostly because of the poor understanding of molecular events underlying
secondary injury.
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circRNAs have been recently shown to be involved in the
pathogenesis and promotion of neuro-inflammation, including
the altered expression of circRNAs in critical stages of SCI
physiopathology (Qin et al., 2019; Zhou et al., 2019). The
aim of this review is to highlight the intriguing expression of
circRNAs after SCI where they could play a paramount role in
neurodegeneration and offer new therapeutic targets.

CHARACTERISTICS OF circRNAs

Despite knowing about circRNAs for at least 20 years,
recent bioinformatic tools have allowed a rediscovering their
endogenous role (Patop et al., 2019) in a wide spectrum of
biological (Rybak-Wolf et al., 2015; Mahmoudi and Cairns, 2019)
and pathological conditions in CNS (Kumar et al., 2017; Qu
et al., 2020). circRNAs are well conserved and exhibit cell-type or
tissue specificity across the animal kingdom (Jeck and Sharpless,
2014; Rybak-Wolf et al., 2015). Most circRNAs are generated
by back-splicing events with a wide range of sizes (from 100 nt
to over 10,000 nt), arising from exonic, intronic, intergenic
untranslated regions (UTRs) or tRNAs (Jeck et al., 2013; Noto
et al., 2017). They represent covalently closed circles with neither
5′ to 3′ polarity nor a polyadenylated tail, giving more resistance
to degradation by exonucleases with half-lives exceeding 48 h
(Chen and Yang, 2015; Xiao et al., 2020). Most circRNAs do
not undergo translation (Guo et al., 2014), though some studies
have provided evidence for a subset of circRNAs which can
be efficiently translated (Legnini et al., 2017; Pamudurti et al.,
2017; Bagchi, 2018). circRNAs have been involved in modulation
of alternative RNA splicing or transcription (Salzman, 2016)
by competing for endogenous RNAs (ceRNAs; Li et al., 2017),
sequestering miRNAs (Hansen et al., 2013), acting as protein
scaffolds (Salvatori et al., 2020) and regulating gene expression by
interacting with RNA binding proteins (Kristensen et al., 2019).

circRNAs IN CNS

The circRNAs that are widely expressed in the mammalian
brain (Rybak-Wolf et al., 2015; Hanan et al., 2017) have
been suggested to participate in neurodevelopment (Hansen
et al., 2013; Memczak et al., 2013), neuronal proliferation, and
differentiation (Chen and Schuman, 2016; Yang et al., 2019;
Suenkel et al., 2020). For example, a significant increase of
certain circRNAs has been associated with myelination and
neural maturation in the brain and spinal cord during postnatal
development (Di Agostino et al., 2020), revealing the key
role of circRNAs also in motoneuron development in cortex,
brainstem, or spinal cord. These results indicate circRNAs as
possible valuable therapeutic targets for different degenerative
motoneuron diseases (Vangoor et al., 2021). Interestingly,
exosomal circRNAs (exo-circRNAs) have been also indicated as
novel gene expression regulators and cell-to-cell communicators,
with a possible role in physiopathological processes in CNS
(Zhao et al., 2018; Wang et al., 2019; Zhang et al., 2019). Indeed,
cell type differentiation and development are highly regulated
processes mediated by circRNAs (Gapp et al., 2014; Meng et al.,
2019). Recent investigations have shown that circRNAs regulate

neuronal and glial lineages (astrocytes, oligodendrocytes, and
microglia) by functioning as gene transcription regulators
(Curry-Hyde et al., 2020; Salvatori et al., 2020; Suster and
Feng, 2021). Another role of the circRNAs has been reported
during development of the neocortex where they regulate
spontaneous neuronal differentiation and are important to
maintain the pool of cell progenitors (Suenkel et al., 2020).
The spatiotemporal expression and function of lineage-specific
circRNAs partly underlie the regulation of transcription factors
to induce neuronal and glial differentiation and proliferation
(Yang et al., 2019). Moreover, since circRNAs exhibit differential
expression in different brain cells and areas, they could also
represent a valuable tool for the development of novel targeted
markers for gliomas progression and tumorigenicity (Sun et al.,
2020).

On the other hand, several studies have demonstrated that
circRNAs are closely related to human diseases. For example,
the best characterized and most expressed circRNA in the
mammalian brain, known as CDR1as/ciRS-7, was reported as
the first miRNA sponge and negative regulator of the miR-7,
showing developmental and tissue stage-specific expression
(Memczak et al., 2013). Early reports showed that CDR1as/ciRS-
7 is highly expressed in brain tissue, neuroblastoma, astrocytoma
(Hansen et al., 2013; Panda, 2018), and that strongly regulated the
progression of Parkinson and Alzheimer disease (Lukiw, 2013).
Recently, in post-mortem brain analysis it was demonstrated
that the levels of circRNAs were increased at the substantia
nigra region of healthy but not of Parkinson disease patients,
showing the age-dependent accumulation, while the circRNAs
levels were increased related to oxidative stress, with a unique
tissue-specific profile (Hanan et al., 2020). Indeed, by performing
deep RNA-seq of brain tissues from substantia nigra, amygdala,
and medial temporal gyrus of Parkinson disease patients and
controls, the long noncoding RNAs (lncRNAs) candidates
with high relevance to disease pathology highly correlated to
p53 expression (Simchovitz et al., 2020), a core transcription
factor that can regulate the expression of several noncoding
RNAs (Marín-Béjar et al., 2013). These interesting results
highlight the possible regulatory functions of lncRNA in aging
and neurodegeneration disease. Moreover, a significant increase
of circRNA expression has been associated with myelination
and neural maturation processes in the brain and spinal cord,
during a critical period of postnatal development (Di Agostino
et al., 2020). In summary, circRNAs are indicated as important
regulators in the brain and spinal cord development, aging,
and neurodegenerative diseases and are suggested as potential
biomarkers and drug targets (Chen B. J. et al., 2019).

circRNAs IN SCI

By GO (Gen Ontology) and KEGG (Kyoto Encyclopedia
of Genes and Genomes) analysis, dysregulation of circRNAs
expression profiles have been found during the immediate,
intermediate, and acute phases of secondary traumatic SCI
(Qin et al., 2019; Zhou et al., 2019; Liu et al., 2020; Chen
et al., 2021; Xu et al., 2021). Indeed, the potential function of
circRNAs after acute traumatic SCI in rats were predicted by
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bioinformatic analysis on the three criteria (cellular components,
biological process, and molecular functions), revealing the
upregulated circRNAs were associated with nuclear proteins
while downregulated circRNAs to proteins active in the
cytoplasm (Zhou et al., 2019) and proposing that circRNAs
may participate through different molecular mechanisms in SCI
pathology. Moreover, the potential circRNA-miRNA-mRNA
crosstalk has been proposed to regulate pathologic mechanisms
after traumatic SCI. Thus, the circRNA.7079 has been related
to apoptosis in an early phase of SCI in mice, via mmu-miR-
6953-p sponge (Zhou et al., 2019). Peng et al. (2020) tried to
elucidate the role of circRNAs in SCI, through the construction of
circRNA-miRNA-mRNA network by microarray data and Gene
Expression Ominibus (GEO), identifying the circRNA_014620 to
be significantly upregulated after traumatic SCI, together with
the expression of miR-223-3p and miR-182 in the final circRNA-
miRNA-hub-gene-axis. Among the hub genes are DDIT4 (DNA
damage-inducible transcript 4), related to neuroprotective or
toxic effects under ischemic injury and oxidative stress (Li et al.,
2017), EZR (ezrin), and STAT3 (signal transducing activator
of transcription-3; Renault-Mihara et al., 2017), suggesting
their participation in the inflammatory response and nerve
regeneration (Peng et al., 2020). Another study showed that the
cicRNA.7079 knockdown enhanced apoptosis in NSC-34 motor
neurons (Yao et al., 2020).

Through KEGG analysis the enriched circRNAs following
SCI were related to Peroxisome Proliferator-Activated Receptors
(PPAR) and Extracellular Matrix-receptor (ECM) interaction
pathways and glycosphingolipid biosynthesis (Zhou et al., 2019;
Yao et al., 2020). Furthermore, the enriched circRNAs-miRNAs
networks have been involved in the modulation of signaling
pathways after SCI, such as the AMP-activated protein kinase
(AMPK; Qin et al., 2019), as well as calcium-related, JAK-STAT,
and MAPK signaling pathways (Liu et al., 2020). Many of these
pathways play a pivotal role in the regulation of cell energy
homeostasis, signal neuronal transduction, neuron apoptosis,
differentiation, proliferation, long-term potentiation, immunity,
and inflammation (Wang et al., 2018; Qin et al., 2019; Zhou
et al., 2019; Liu et al., 2020). It is also very promising that
knockdown of circRNA_01477 significantly inhibited astrocyte
proliferation and migration after experimental SCI in rats (Wu
et al., 2019) and that disrupting circRNA-2960 expression
promoted recovery of tissues affected by secondary SCI damage
(Chen et al., 2021). Nonetheless, the potential mechanism
by which circRNAs impact SCI is not fully understood.
Recent studies reveal the interesting role of non-coding RNA
that influence several aspects of cell development at the
cortex, brainstem, or spinal cord and may comprise valuable
therapeutic targets for different degenerative disease (Hanan
et al., 2020; Simchovitz et al., 2020; Vangoor et al., 2021).
Although altered circRNAs have been closely linked with
miRNA-mRNA networks in biological processes and signaling
pathways during SCI progression in rodents, future research is
necessary to clarify the cell-specific inflections, especially related
to neurodegeneration and neuroinflammation in humans.

Interestingly, several reports have shown differential
expression profiles of circRNAs after SCI, showing the

complexity of the issue. Namely, it is important to consider
that the dynamic time-course changes in circRNA profiles may
be influenced by diverse factors: (i) the type of SCI model (rat
or mice); (ii) the site of lesion; (iii) the method of detection
(microarray, RNA-seq and/or bioinformatic analysis); and (iv)
the specific time points post-trauma when the circRNAs are
monitored. These factors could modulate the circRNAs levels,
indicating the different regulatory roles of circRNAs in the
physiopathology of SCI (Weng et al., 2019; Wu et al., 2019; Zhou
et al., 2019; Li et al., 2020; Liu et al., 2020; Peng et al., 2020; Yao
et al., 2020; Zhao et al., 2020; Peng et al., 2021). In this sense, to
our knowledge, Wu et al. (2019) published the first study about
the expression changes of circRNAs after SCI in rats (days 0,
1, 3, 7, 14, 21, and 28). The systematic evaluation by RNA-seq
analysis, showed the 360 circRNAs being differentially expressed,
94% of which decreased from day 3 onward. In fact, according to
the reports published on humans and rats, the switching event
that mostly influences the circRNAs changes usually happens at
3–5 days post-injury, when neutrophil infiltration and microglia
activation prevail (Fleming et al., 2006; Kjell and Olson, 2016;
Bradbury and Burnside, 2019; Wu et al., 2019). Moreover, Wu
et al. (2019) reported that the circRNA_01477/miR-423-5p
network may be a key regulator in the regeneration mechanism
following SCI (Wu et al., 2019).

The altered expression of circRNAs has been also reported
to occur in the cerebral cortex after traumatic brain injury
(TBI), where the upregulation of circRNAs (chr8_87, 859,
283–87, 904, 548) promoted neuro-inflammation by increasing
the CXCR2 protein by sponging miRNA mmu-let-7a-5p (Chen
Z. et al., 2019). Also in the cerebrovascular Moyamoya disease
(MMD), the significant alterations in circRNAs expression were
evident (Dai et al., 2014; Zhao et al., 2017; Lee et al., 2019).
In the case of cerebral ischemia-reperfusion injury (IRI), the
upregulation of mmu-circRNA-015947 has been predicted and
found in IRI patients, while the role of sponge mmu-circRNA-
015947 is still unclear and require further studies (Liu et al., 2017;
Lee et al., 2019).

The recent results have shown that circRNAs can regulate
alternative splicing and modulate gene expression by sponging
miRNAs. Therefore, the altered expression of circRNAs after SCI
and other neurodegenerative diseases may be a key factor to
modulate translation and protein production by competitively
capturing miRNAs (Memczak et al., 2013; Li Z. et al., 2015;
Salzman, 2016).

circRNAs IN SCI NEUROINFLAMMATION

Neuroinflammation is a complex process that varies with
different types of injury and is promoted by proinflammatory
factors released by resident glia, endothelial cells, and
peripherally derived immune cells (Okada, 2016; Bloom
et al., 2020). Following SCI, excessive neuroinflammation is
considered as a key factor that contributes to neuronal damage.
Recent studies have shown that circRNAs may participate
in the modulation of neuroinflammation after SCI through
chemokine/cytokine signaling pathways during the acute SCI
(Chen X. et al., 2019; Xie et al., 2020). Li et al. (2020) reported that
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FIGURE 1 | Participation of circRNAs as key active regulators in diverse physiopathological mechanisms in the spinal cord. circRNAs are a special type of
endogenous ncRNAs formed by back-splicing events via protein-coding exons. Differentially expressed circRNAs (cytoplasmic or nuclear) are implicated in biological,
cellular, molecular processes and gene expression modulation at post-transcriptional level in the spinal cord. Whereas, dysregulated circRNAs (up or downregulated)
have been associated with acute stages following spinal cord injury (SCI), acting as a sponge of miRNAs, suppressing or activating signaling pathways related (e.g.,
NF-κB, PI3K-AkT) to signal transduction, neuroinflammation, and apoptosis but to promote regeneration. Indeed, even if 94% of cirRNAs decreased after 3–5 days
post-spinal injury, circRNA_01477/miR-423-5p is a key circRNA to control regeneration. Created with Biorender.com.

the down-regulated Circ0001723 related to miR-380-3p-HIF-1α

induces pro-inflammatory effects 1 day after experimental SCI
in rats, via NF-κB signaling pathway suppression, including the
expression of NLPR3 inflammasome and caspase-1 proteins.
In vitro SCI studies in rats have shown that the upregulation
of Circ0000962 decreased inflammation, via down-regulation
of miR-302b-3p and subsequent modulation of PI3K/Akt and
NF-κB signaling pathways (He et al., 2020). The high expression
of circRNA-2960 was able to promote the secondary injury by
sponging the miR-124, exacerbating the inflammatory response
and inducing apoptosis (Chen et al., 2021). Similar to SCI, the
involvement of circRNAs in relation to neuroinflammation have
also emerged by studying the acute ischemic stroke (AIS). Thus,
it has been shown in both in vitro and in vivo cerebral ischemia
models that the circ-HECTD1 knockdown regulates TRAF 3
(tumor necrosis factor receptor-associated factor 3) by miR-133b
sponge in neuronal cells, improving cerebral infarction volume
and neuronal apoptosis (Dai et al., 2021). In another report, it
has been shown that circ-HECTD1 inhibits astrocyte activation

both in vivo and in vitro, decreasing the infarct areas and
neuronal deficits, due to circ-HECTD1 sponged miR-142 to
upregulate TIPARP (tetrachlorodibenzo-p-dioxin inducible
poly[ADP-ribose] polymerase), that inhibits astrocyte activation
via autophagy (Han et al., 2018b). Besides, upregulation of
circDLGP4 has been shown to attenuate infarct areas and blood-
brain barrier damage in the transient middle cerebral stroke
(tMCAO) model (Bai et al., 2018). In summary, these studies
revealed that dysregulated circRNAs are closely correlated to
immune reactions, which makes them possible therapeutic
targets to modulate neuroinflamation and neuronal death after
SCI and other brain diseases.

circRNAs AS BIOMARKERS

It is obvious that circRNA can regulate CNS function in health
and disease and that they are potential biomarkers for the
diagnosis and prognosis of different CNS diseases and disorders,
alone or in combination with other biomarkers and imaging
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tools (Lu and Xu, 2016; Han et al., 2018a; Zhang et al., 2018;
Xie et al., 2020). In addition to being considered as possible
therapeutic targets to promote recovery after injury, circRNAs
from blood or cerebrospinal fluid are suggested as potential
non-invasive tools to indicate cellular damage after CNS injury
or disease and are thus good candidates as biomarkers, due
to their high stability, abundance and specificity in CNS
(Li Y. et al., 2015; Lu and Xu, 2016; Han et al., 2018b; Xu et al.,
2021). However, more studies are required to explore the way in
which the exo-circRNAs participate at different stages of SCI to
enable their use as biomarkers in SCI diagnosis and prognosis.
Since neuroinflammation is a common pathophysiology process
occurring in many different CNS disorders and diseases,
including SCI, ischemic stroke, and neurodegenerative diseases
(Lu and Xu, 2016), further studies on the distribution and
transcriptional profiles of the circRNAs and comprehensive
circRNAs expression profile analysis are needed to find shared
or different circRNA changes. Only then, particular circRNAs
could be identified as potential clinical biomarkers for specific
CNS disorders and conditions, changing specific expression only
in certain circumstances.

PHARMACOLOGICAL INTERVENTIONS
AND circRNAs

It has been shown that pharmacological interventions
can seriously modulate circRNAs expression in brain and
spinal cord, and subsequently lead to complex compensatory
changes, including drug tolerance. For example, recent studies
demonstrated that prolonged use of opioids can alter circRNAs
expression in the spinal cord of morphine tolerated rats
and that changed circRNAs were related to glutamatergic
transmission, MAPK signaling pathway, and axon guidance
(Weng et al., 2019). Furthermore, it was shown that several
circRNAs binding sites at opioid receptor gene (Oprm1)
are involved in modulation of circRNAs expression after
chronic morphine treatment in the brain and spinal cord
of adult male CD-1 mice (Irie et al., 2019). Other opioid
receptor genes including δ, κ, as well as nociceptin receptor
genes can also be involved in circRNAs metabolism after
chronic morphine treatment (Irie et al., 2019). Recently,
an interesting study of regulatory networks using graphene
quantum dots, a novel bio-imaging and bio-sensing delivery
system for novel drugs, could be an approach with the potential
to be used also to study the role of circRNAs in signaling

pathways related to toxicity and inflammation (Wu et al.,
2021). These data open the need for further investigations
of the changes in circRNAs expression induced by drugs
in the CNS, creating the possibility of interfering with the
pharmacodynamics of neuromodulatory drugs which could also
be used to treat SCI.

CONCLUSIONS

SCI causes life-long disability which often results in high
rehabilitation costs and reduced patient’s quality of life. No
current effective therapies for SCI are available, in part because
of limited understanding of molecular events underlying SCI.
Also, the biomarkers to follow injury severity are lacking.
circRNAs are ncRNAs that interact with different target genes
and proteins that are dysregulated after SCI with the possible
consequences on different cellular and molecular processes,
including neuroinflammation, leading to neuronal death or cell
survival (Figure 1). The contribution of circRNAs and their
functions in the critical stages of SCI have barely been identified
using in vitro and or in vivo animal models. The high abundance
in body fluids make circRNAs potential non-invasive clinical
biomarkers to improve diagnosis and prognosis after SCI, as well
as they represent possible targets for the development of new SCI
therapeutic strategies.
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