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The kidney-heart relationship has raised interest for the medical population since

its vast and complex interaction significantly impacts health. Chronic kidney disease

(CKD) generates vascular structure and function changes, with significant hemodynamic

effects. The early arterial stiffening in CKD patients is a consequence of the interaction

between oxidative stress and chronic vascular inflammation, leading to an accelerated

deterioration of left ventricular function and alteration in tissue perfusion. CKD amplifies

the inflammatory cascade’s activation and is responsible for altering the endothelium

function, increasing the vascular tone, wall thickening, and favors calcium deposits

in the arterial wall. Simultaneously, the autonomic imbalance, and alteration in other

hormonal systems, also favor the overactivation of inflammatory and fibrotic mediators.

Thus, hormonal disarrangement also contributes to structural and functional lesions

throughout the arterial wall. On the other hand, a rise in arterial stiffening and volume

overload generates high left ventricular afterload. It increases the left ventricular burden

with consequent myocardial remodeling, development of left ventricular hypertrophy and,

in turn, heart failure. It is noteworthy that reduction in glomerular mass of renal diseases

generates a compensatory glomerular filtration overdriven associated with large-arteries

stiffness and high cardiovascular events. Furthermore, we consider that the consequent

alterations of the arterial system’s mechanical properties are crucial for altering tissue

perfusion, mainly in low resistance. Thus, increasing the knowledge of these processes

may help the reader to integrate them from a pathophysiological perspective, providing a

comprehensive idea of this two-way path between arterial stiffness and renal dysfunction

and their impact at the cardiovascular level.
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INTRODUCTION: THE ROLE OF VASCULAR INJURY IN THE
KIDNEY AND CARDIAC DISEASE INTERACTION

A robust functional relationship exists between the kidneys and the cardiovascular system, and this
vast and proven interaction has acquired progressive notoriety.

The evidence from population studies clearly shows that renal and cardiac diseases are strongly
associated (1, 2). This evidence includes the different clinical situations where structural lesions
(tissue, cellular, and subcellular) develop simultaneously with both organs’ progressive functional
deterioration (3–5).
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Of particular interest is the relationship between the heart and
kidneys when both are functionally insufficient. This interplay is
known as the cardiorenal syndrome, and the most relevant are
chronic types 2 and 4 of the original description by Ronco et al.
(6). This interaction is also known as “the cardiorenal link” (7).

The pathophysiological and histopathological concepts
involved, including the graphics and figures, are designed to
understand better the kidney and the heart’s role as principals
organs involved.

However, these conceptual proposals do not define the precise
role or sequence of the macro and microcirculation structures
in this process. Therefore, we tried to analyze the process
of vascular injury in CKD (8–10), giving the central role it
plays and its interaction with different tissue injuries leading
to the cardiorenal syndrome’s progression. The leading role
of the circulation (macro and micro) and its interaction with
the kidneys different pathophysiologic hypotheses on intrarenal
hemodynamics changes that they generate.

General Concepts of Vascular Behavior
The essential objective of blood traveling through the arterial
system is the perfusion and oxygenation of peripheral tissues.
Under normal conditions, the cardiac pump discharges the
systolic volume (SV) of blood received by the large-caliber elastic
arteries, mainly the aorta. However, ∼50% of the previously
mentioned SV is dampened due to the compliance of its walls.

The remaining 50% of the SV continues its way to the
peripheral arteries. Once the aorta returns to its initial caliber in
diastole, its elastic capacity, if it is healthy, sends the remaining
volume forward, transforming the arterial flow from pulsatile
to continuous in the peripheral circulation. This fact is known
as the “Windkessel Phenomena” in comparison to the old fire
extinguishing pump.

At the distal level, the arteries have a structural component
mainly integrated by smooth muscle cells coupled “in series”
with collagen fibers, all influenced by neural and hormonal
factors. This massive parallel resistance system is responsible
for peripheral vascular resistance and the dissipation of at least
two-thirds of the cardiovascular system’s pulsatile energy. This
fact allows arterioles to adapt to different situations, organs,
and pathophysiological circumstances. However, this regulable
system loses efficacy because of aging (normal or accelerated)
and other conditions—such as high blood pressure, diabetes, and
CKD—that cause a decrease in arterial compliance due to the
loss of the vessel’s elastic components. The half-life of elastin, the
main factor responsible for the aorta’s elasticity, is measurable in
years. Continuous and intermittent distension of the aorta with
each heartbeat and during the lifespan causes fatigue and fracture
of the elastin fiber, leading to increasing stiffening of the aorta’s
wall (11). In this scenario, the accumulation of different collagen
types that are stiffer than the initial one, and other substances
like Advanced Glycation End Products (AGEs) occur, conducting
the loss of compliance of the elastic arteries (11, 12). When this
loss of arterial compliance, or its opposite, an increase in arterial
stiffness, evolve faster than expected by normal aging, we are in
the presence of “early vascular aging” (EVA). Certain metabolic
disorders and diseases cause this EVA phenomenon to accelerate

and appear in earlier stages or with greater severity. Kidney
disease is a frequent cause and one of the most representative
examples of this phenomenon.

ONE WAY: FROM CHRONIC KIDNEY
DISEASE TO VASCULAR INJURY

During the development and progression of CKD, the aortic
compliance decreases, reducing SV’s buffering capacity, resulting
in an exaggerated increase of the systolic pressure (SP) and a drop
of the diastolic pressure (DP).

The pulse pressure (PP) or pulsatility is the difference between
SP and DP in mmHg. Hence, it is an easy parameter to
be observed during the medical examination when measuring
blood pressure.

A stiff aorta produces the loss of its properties as a second
pump, or “second heart” (a consequence of the lack of elastic
recoil of a distensible aorta), with the consequent drop in the
diastolic vascular flow and pressure. Aortic stiffness also increases
the pulsatility in the peripheral vessels and their irrigated tissues.
Due to these conditions, the SV is no longer buffered and
continues toward the periphery.

On the other hand, arterial wall stiffening increases the pulse
wave velocity (PWV), the speed at which the pulse wave travels
through the large arteries’ wall, and is currently considered the
gold standard for arterial stiffness measurement. It is also an
independent prognostic marker of CVE (13, 14). The increase
in SP results in increased heart afterload, augmented work of
the left ventricle (LF), and increased oxygen consumption by
the myocardium. Over time, the persistent imbalance favors the
development of left ventricular hypertrophy (LVH) and heart
failure (HF).

Another physiological phenomenon is related to the highest
speed of the PWV. Under physiological conditions, the incident
wave, generated from the systolic discharge, propagates through
the arterial system to the reflection points. These sites are the
arterial bifurcations or regions of the most significant change
in the arterial wall’s viscoelastic components. A reflected wave
returns in the opposite direction during late systole and adds
to the new incident wave, giving rise to the augmentation
wave phenomenon, measured as “augmentation index” (Aix)
(Figure 1A).

In situations of increased arterial stiffness, as occurs in
CKD, through mechanisms described in this review, the wave’s
reflection occurs earlier and arrives prematurely, worsening
the Aix, considered an marker of arterial stiffness (Figure 1B).
Therefore, an additional increase in central aortic pressure (CAP)
contributes to increasing cardiac work and oxygen consumption,
both of which provoke further activation on the pathways and
mechanisms leading to LVH and HF.

A direct relationship stands between renal function
impairment with CAP and Aix. Thus, the more
significant the CAP and Aix are, the more influential
they are on renal function deterioration and death,
as was demonstrated by Towsend et al. in the CRIC
study (15, 16). Recent data confirmed that Aix was
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FIGURE 1 | Changes in pulse wave by arterial stiffness. (A) Elastic arteries. (B) Stiff arteries.

FIGURE 2 | Main mechanisms responsible for the structural and functional changes of the arteries in CKD.

independently associated with mortality in CKD patients
after adjusting for additional confounders, including
inflammation (17).

In other words, the increase in arterial stiffness -represented
by the rise in PWV- is usually associated with an increase in
the SP with consequent LV overload. In addition, the increase in
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PWV and vascular stiffness speeds up the pulse wave’s reflection,
generating an increase in the aortic augmentation that further
increases the CAP, and therefore, left ventricle contractile effort.

So, EVA is a consequence of cardiovascular risk factors
(CVRF), amplified by CKD, and this cluster of factors lead
to premature cardiovascular events (CVE) (18–20), as well as
accelerate the damage of various tissues and their functions,
including a faster decline of kidney function.

Association Between Inflammation and
Arterial Stiffness
The different tissue lesions associated with CVRF are also related
to the activation of diverse inflammatory ways. Initially, they act
as a protective response of the organism to control the cause,
but finally, they turn into a disease. The inflammatory response
to stressors acts on the endothelium and vascular smooth
muscle; therefore, serum and tissue inflammatory markers are
tools that help to predict cardiovascular disease (CVD) (21–
23). Figure 2 summarizes the primary inflammatory mechanism
associated with vascular stiffness in several clinical situations,
particularly CKD.

The association between chronic inflammation and arterial
wall disease is complicated and multifactorial (24). Initially,
the circulation of inflammatory mediators favors leukocytes’
migration into the arterial wall (25). Then, macrophages
activation by different factors, including metabolic and
electrolytic disturbances associated with catecholamines,
renin-angiotensin-aldosterone system (RAAS), and endothelin
disarrangement associated with cytokines and reactive oxygen
species (ROS), amplify the inflammatory reaction.

The subsequent transformation of these macrophages
within the arterial wall into foamy cells predisposes to their
necrosis; when the necrotic nucleus appears in the plaques,
the amplification of the inflammatory stimulus favors the
progression of already advanced vascular lesions (26).

This inflammatory cascade also alters the endothelium’s
function that interacts and conditions the remodeling of the
tunica media and changes of the artery’s mechanical properties
(23). Endothelial cells decrease the usual production of nitric
oxide (NO) and increase endothelin (E1), favoring arterial
stiffness. In turn, arterial stiffness subsequently alters the
endothelium, thus generating a vicious circle (27, 28).

Simultaneously, the increase in arterial stiffness and the
dysfunctional endothelium activate adhesion molecules like
MCP-1 and cytokines favoring thrombotic events (21, 29, 30).
Dendritic cells and T-lymphocytes play an essential role in
synthesizing pro-atherogenic cytokines (IL-2, IL-18, and IFN-
gamma), responsible for the installation and progression of
atherosclerotic plaques (31).

Vascular inflammation enhanced by CKD promotes the
vessel’s stiffening by stimulating fibrosis and proliferation of the
vascular smooth muscle cells (VSMC) (23).

Role of CKD in the Inflammatory State and
Vascular Injury
CKD, defined as a structural and functional alteration of
the kidney for more than 3 months (32). CKD is a low-
grade chronic inflammatory state associated with a significant

increase in morbidity and mortality (33). CKD and a set
of factors—chronic acidosis, recurrent infections, and altered
microbiota—generate increased cytokine production, oxidative
stress, and inflammation.

CKD resembles an experimental oxidative stress model
which produces severe alterations in many cells (nuclear and
mitochondrial DNA deletion, telomeric shortening), tissues,
serum, and urinary markers. Oxidative stress is an initial
and central contributor to endothelial dysfunction and the
inflammatory process, conducting atherosclerotic vascular
injury, premature aging, and CVD (34). A decrease in anti-aging
defenses (like Klotho and Fetuin-A activity) increases pro-aging
mediators such as angiotensin II, aldosterone, and phosphate,
generating a clear discrepancy between chronological and
vascular biological age (35, 36).

Inflammation that accompanies kidney disease seems to play
a significant role in telomeric shortening and mitochondrial
dysfunction (37). Additionally, Galvan et al. have shown a low
number of mitochondria, also dysfunctional, in most of the
tissues of patients with CKD, representing a primary metabolic-
energetic alteration present in these patients from very early
stages (38). It is an essential component of the disease and the
primary source of increased reactive oxygen species production.
This inflammatory state also decreases the body’s resistance
to external stressors, thus conditioning a state of increased
vulnerability (33).

At the same time, the kidney itself is vulnerable to
this inflammatory process. The kidneys are intensely and
heterogeneously vascularized and regulated by hormones and
vasoactive molecules (like RAAS, prostaglandins, endothelin,
NO, and others) (39, 40). Systemic inflammation favors the
intrarenal inflammatory cascade associated with tubular and
glomerular injury and, therefore, generation and progression
of CKD.

Systemic inflammation eases the development of renal injury
and is co-responsible for the high morbidity and mortality
of these patients and the development of an accelerated
aging phenotype.

In CKD, calcification of the middle layer of the arteries is
a part of the accelerated EVA process. Therefore, the extent of
vascular calcium vascular deposits is related to vascular estimated
age. That is why in CKD, the age of the vasculature is practically
always older than the chronological age, at least partially, due to
an early and persistent inflammatory process.

Unlike what happens in individuals with preserved kidney
function, those with CKD have a process of accelerated cellular
and vascular senescence, tissue aging, persistent inflammation,
loss of muscle mass, osteoporosis, and early general fragility.

In other words, EVA in patients with CKD is part of the price
paid for the enormous allostatic load, a consequence of multiple
physical and inflammatory stressors associated with CKD.

The Partial Reversion of Vascular Changes
by Renal Transplantation
It is to point out that recovering kidney function with a kidney
transplant (Tx) decreases the mortality rate by 50% compared
to the same patient population submitted to dialysis treatment.
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Hence, it raises whether a kidney transplant may reduce the
described vascular changes suffered along with CKD.

Few studies have shown after transplant regression of the
large arteries remodeling; however, there is evidence about the
decrease of the PWV after Tx, which increases the patient and
the graft survival rate (41, 42).

The French Group Karras published the data of 161
consecutive Tx patients. The outcome was the arterial
parameters, measured at 3 and 12months after kidney transplant.
The results showed that mean PWV decreases from 10.8 m/s in
the 3rd month to 10.1 m/s after 12 months (p < 0.001). After the
multivariate analysis, the patients who received Tx living donor
allograft had a more significant decrease of the PWV (p < 0.001).
Furthermore, the patients who received deceased allograft with
standard donors had better vascular performance than those
who received allograft from donors with expanded criteria (older
donors and pre-establish cardiovascular disease). An interesting
point to highlight in this study is the non-relationship between
vascular function improvement and glomerular filtration level
(43). The progression of arterial stiffness after 12 months of
kidney Tx was also studied in 28 patients, as a control group
was studied, 23 hemodialysis patients. The decrease in the PWV,
measured with SphygmoCor, in Tx patients was higher than
patients under hemodialysis treatment (p < 0.0001) (44).

Korogiannou et al. recently confirmed the relevance of PWV
in the prognosis of Tx patients been a strong predictor for
cardiovascular events, renal events, and mortality in these
individuals (45).

Although scientific facts are clear enough, there are still
two significant aspects to consider. First, there are no clinical
trials about the impact of therapeutic interventions on arterial
stiffness and its consequence on the kidney Tx population. Also,
mechanistic studies are required to identify the best ways to
address arterial stiffness in Tx patients.

UREMIC TOXINS AS VASCULAR TOXINS

Hyperphosphatemia and its consequences: During CKD, an
imbalance between the inhibitors and inducers of vascular
calcification occurs (46).

The decrease in renal phosphate excretion increases serum
levels and promotes the calcification process by activating the
Toll-like receptor four and NF-Kappa B in VSMC (47). Also, in
the context of hyperphosphatemia, VSMC changes its phenotype
to osteoblastic-like cells via the expression of ossifying genes (48).
Likewise, phosphates also produce mitochondrial dysfunction,
with increased reactive oxygen species production, activation
of pro-inflammatory molecules, and increased tumor necrosis
factor (TNF).

CKD also alters hormonal processes that regulate phosphate
levels (Intestinal absorption, renal excretion by remaining
nephrons, bone metabolism modulated by vitamin D, fetuin-A,
Klotho, and fibroblast growth factor 23 (FGF-23) (49). Calcium
deposits concentrated in the tunica media and the vascular wall’s
subendothelium are an essential part of the problem. A detailed
description of the facts exceeds this manuscript’s objectives.

Uric acid increases in CKD due to the decrease excretion by
the failing kidney. This mentioned uric acid elevation decreases
endothelial Nitric Oxide Synthase (eNOS) activity, reducing the
production of NO, the proliferation of VSMC (50, 51), the
expression of COX-2, and the increase in the production of
angiotensin II, contributing to arterial stiffness.

Advanced glycation ends products (AGEs): AGEs
accumulate in CKD progressively as their production increases
and elimination decreases. Thus, significant accumulation may
occur even in non-diabetic patients. AGEs, among other things,
affect the activity of eNOS (52), favor the phenotypic change
of the VSMC, and the “cross-linking” of collagen (the changes
of its composition make the arterial wall less compliant). They
also activate NF Kappa B, favoring the activation of the vascular
inflammatory cascade and structural stiffening.

The same happens with the increase in asymmetric
dimethylarginine (ADMA) resulting from increased production
and less excretion, contributing to a significant reduction
of eNOS and consequent endothelial dysfunction. Increased
ADMA also causes sympathetic stimulation, inflammation,
vascular stiffness, and LVH (53–56).

Increment of endothelin-1 (E-1) level: E-1 is a potent
vasoconstrictor implicated in cardiovascular and renal diseases.
An increase of E-1 has the same origin as the increase of
ADMA and uric acid. It acts on receptors with antagonistic
function (ETA and ETB receptors), predominantly the action of
ETA receptor, which is responsible for: endothelial dysfunction,
increased vascular tone, inflammation, and calcification (57).

Renal ET-1 production increases associated with CKD
progression, and a cluster of conditions frequently present
in these patients, such as diabetes, insulin resistance, obesity,
immune system activation, atherogenic dyslipidemia, nitric oxide
deficiency, and oxidative stress (58).

Vascular Inflammation in Dialysis Patients
The dialysis procedure generates additional inflammation that
adds to those already described and known in CKD. All
inflammatory cytokines are markedly high in dialysis patients
(IL-1, IL-6, IL-23, and TNF alfa), as well as high-sensitivity
C-reactive protein and fibrinogen. Albumin, as an acute-phase
reactant, is decreased (59).

Frequent infections, thrombotic events, dialysate quality,
and its impurities are also powerful inflammatory stimuli.
Uremia increases intestinal permeability to bacteria, and this,
in turn, generates more inflammation. The diets indicated
in these patients (Low in potassium and phosphorous)
alter the microbiota, causing dysbiosis with significant
inflammatory effects. Dialysis patients usually have markedly
high inflammatory markers associated with severe arterial
injuries that, in turn, progress faster (60).

ARTERIAL STIFFNESS AND THE
BARORREFLEX FUNCTION

The baroreflex system regulates blood pressure changes, and
their proper function enables immediate regulation of it at
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practically constant values. Its appropriate process depends
mainly on arterial compliance. Vascular lesions are widespread
at the carotid and aortic levels and affect the baroreflex
system’s receptors. Receptors activation requires good arterial
compliance; potassium channels and sodium-potassium pump
regulated by a paracrine function, mainly by prostacyclin.

The combination of endothelial dysfunction and arterial
stiffness produces a decrease in prostacyclin production
and less arterial compliance. Consequently, less baroreflex
activation occurs, causing more significant variability in arterial
pressure (i.e., greater blood pressure drop when standing up).
Simultaneously, there is a greater renal afference toward the
central nervous system in CKD. An increase in the sympathetic
activity, a further increase in the vascular tone favors LVH, CVD,
and increased mortality (61). The high prevalence and severity of
baroreflex dysfunction in CKD patients were recently reviewed,
and how afferent and efferent pathways between kidney and
brain may deteriorate its function (62, 63).

From Arterial Stiffness to Myocardial
Dysfunction
Arterial stiffness and CKD volume overload generate myocardial
dysfunction directly proportional to the degree of renal
failure (64).

This myocardial involvement resulting from increased pre
and afterload is also associated with cardiac interstitial fibrosis,
alteration of the cardiac microcirculation, andmyocardial neuro-
humoral activation (65).

Themost common and earlier stage of ventricular dysfunction
in CKD patients is diastolic failure. It is also known as HF
with preserved ventricular function, the usual echocardiographic
finding in CKD patients (66).

These patients frequently have other risk factors for diastolic
failures, such as type 2 diabetes, high blood pressure, coronary
heart disease, and accelerated aging, all contributing to
maintaining and worsening diastolic dysfunction.

The structural changes of the heart in CKD include
myocardial hypertrophy and thickening of the intramural
arteries (67) as an adaptative response to changes in volume
and pressure. Finally, what was initially an adaptative response,
leads to myocardial fibrosis due to all the metabolic and neuro-
humoral disorders previously described.

Other CKD alterations that further aggravate myocardial
dysfunction are the over activation of systemic and intrarenal
RAAS, the anemia that characterizes patients with CKD, vitamin
D deficiency, and other mechanisms recently described, such as
activation of mTOR, G-protein activation, and T-cell activation
(7); all of them may influence cardiac structure and function.
In addition, the synergy of all these factors activates apoptosis
and autophagy pathways, which increase the production of
extracellularmatrix in themyocardium, and lead to decreased left
ventricular compliance since fibrotic tissue predominates over
the cardiac muscle.

The clinical consequence of all these processes is a shift
to the left of the pressure-volume curve. Small changes in
volume significantly increase intraventricular pressure due to

cardiac compliance loss and can cause pulmonary congestion.
Conversely, slight volume depletion can impair left ventricular
filling and cause a decrease in systolic volume, leading to
hypotension and hemodynamic instability (66).

In other words, patients with CKD have a low range of
tolerance to volume changes, extrapolated to body weight, to go
from volume overload to hypotension, generating an increase in
hospitalizations for decompensated heart failure. In addition, in
some patients, particularly the young, functional damage to the
left ventricle due to volume overload may not be evident, but it
will deteriorate cardiac function if overhydration persists (68).

In addition to the CKD-dependent changes in vascular
structure and function already described, we must add those
that depend on the diseases frequently associated. Those most
common are coronary artery disease, vascular injuries, and
remodeling that depends on high blood pressure, atherogenic
dyslipidemia, diabetes, and their associated metabolic disorders,
together with accelerated vascular aging to these pathologies.

The detailed description of these processes exceeds the
objective of this publication. Several reviews (69–75) are available
that deal extensively with these factors’ influence on vascular
changes and cardiac disease. Figure 2 shows a comprehensive
synthesis integrating the main mechanisms that generate the
systemic vasculature alterations in CKD.

THE OTHER WAY: FROM VASCULAR
INJURY TO CHRONIC KIDNEY DISEASE

Under a healthy vascular condition, the large arteries’ elasticity
moderates the cardiac pulse pressure, dampening its intensity,
achieving a continuous flow of blood, in most tissues, with a
low variation in arterial pressure between systole and diastole.
That means a low pulse pressure. This low arterial pulsatility
enters from the macrocirculation to the microcirculation, where
it receives additional attenuation in the arterioles and results
in microvasculature protection. However, in response to aging
(76), obesity, diabetes mellitus, and mainly CKD, an increased
arterial stiffening reduce the central arteries’ buffering capacity,
generating high pulsatile stress at the microvasculature level.

As a result, the high pulsatility introduced into the organs; of
particular interest are those tissues with high viscous components
such as the brain and the kidneys; both are characterized by
low resistance and high flow systems, thus receiving a high
volume of blood (77, 78). The main consequences of these
events will be functional deterioration with the development
or acceleration of cognitive disorders and renal function
impairment (79). Considering that high pulsatility causes damage
to the microvasculature, strategies to reduce it could slow the
progression of kidney disease and associated events (80).

Several renal diseases that reduce renal mass generate an
adaptive high filtration rate by a single nephron. This process
also happens in diabetes, obesity, hypertension, and aging.
These clinical conditions are of great interest due to their
high frequency.

Glomerular hyperfiltration (GHF) or single nephron
hyperfiltration is an increased glomerular filtration rate above

Frontiers in Medicine | www.frontiersin.org 6 November 2021 | Volume 8 | Article 765924

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Inserra et al. CKD, Vascular Structure, and Function

normal values due to increased filtration per nephron unit. There
is robust evidence that GHF is a risk factor for the progression
of chronic kidney disease and CV events, independently of
albuminuria and other factors. Remarkably, in patients with
GHF, an increase in PP was proved, measured during 24-h,
suggesting an association with increased large-artery stiffness
and vascular damage, leading to increased CV events (81, 82).

GHF can occur in individuals with high, normal, and low
GFR, as happens in most CKD patients moderate/severe stages
(83). In CKD patients with low GFR, the diagnosis of GHF
in the clinical practice is very challenging, but the association
exists in most patients. We had previously mentioned the
usual association of GHF with arterial stiffness and high PP
and pulsatility.

Pieces of evidence generated more than two decades
ago confirmed that pulsatile hypertension-induced glomerular
distention produces changes at a cellular level and the
extracellular matrix’s metabolism. The changes due to mesangial
cell mechanical strain occur in the remnant kidney and play an
essential pathogenetic role in renal lesions. These changes were
initially described in experimental diabetes and renal failure by
glomerular mass reduction as the experimental model of 5/6
nephrectomy (84, 85).

Of interest, renal blood flow increases together with dilation
of the afferent arteriole in the enlarged glomeruli of both models,
animals with diabetes, and subtotal nephrectomies. Therefore,
systemic blood pressure is transmitted into the glomerulus
without the usual regulation, generating a high pulsatile
stretching in the glomerular and surrounding structures. This
persistent pulsatile stretch, in turn, changes the phenotypes of
mesangial cells that increase the production of different cytokines
producing the recruitment of cells leading to inflammation and
kidney fibrosis (86, 87).

More recently, using Doppler devices, it is possible to
evaluate renal microvascular pulsatility. The pulsatility index

derived from pulsed-wave Dopplermeasurements correlates with
effective renal plasma flow in CKD patients and predicts renal
disease progression (88, 89).

These pathophysiological mechanisms described before are
in line with consistent epidemiological results that show the
association between arterial stiffness, microcirculation pulsatility,
and the incidence and progression of renal diseases, as well as
hard renal endpoints (90, 91).

Reducing or controlling GHF and restoring to normal
the disturbed glomerular hemodynamics has been the most
crucial strategy for glomerular protection and to slow the
progression of chronic kidney disease. Paradigmatic drugs in
kidney protection, such as those that block the renin-angiotensin
system (RAS inhibitors), or the new ones such as sodium-
glucose cotransport type 2 inhibitors (iSGLT2), and the GLP-1
receptor agonists (GLP-1), produces, by different mechanisms, a
consistent reduction of GHF (82).

In summary, a complex variety of mechanisms leading to
the damage of arteries in CKD patients, generating stiffness
in the aorta and central arteries and increased PP and CAP.
Additionally, a higher central pulsatility is transmitted into
the microcirculation of various tissues, including kidneys,

favoring and accelerating its deterioration. A better knowledge
of these pathways and processes leading to this vicious
circle of the two-way path between arterial stiffness and
renal dysfunction will give the medical community better
possibilities to improve preventive and therapeutic strategies
to reduce vascular injuries and CKD progression, and finally,
cardiovascular events.
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