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Abstract 

The expected cost of capital is a crucial component for most of the topics in 

corporate finance. Unfortunately in the presence of risky debt, it is 

systematically overestimated.  This bias is increasing in leverage and the 

volatility of cash flows. We show the existence of the bias and assess its size. 

We finally propose a novel methodology to obtain a direct unbiased estimation 

of the expected return on assets. This method avoids the computational error 

that is obtained from the estimation of the individual components.  
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The cost of capital is a crucial component in every corporate finance decision: it is 

mainly used to assess performance and to estimate value and provides a frame for the 

corporate decision-making process. In order to be sustainable, a firm would need to set the 

required return on operating assets –i.e. the cost of capital- equal to the return investors 

expect to derive from those assets. In theory, this figure should be linked to the probability 

distribution of the assets’ returns, but this is not observable. What can be observed is, at 

most, the probability distribution of the returns generated by the securities that the company 

issued to finance the assets; namely, debt and equity. Therefore, it is not surprising that the 

standard procedure to measure the cost of capital relies on the measurement of the market 

returns of debt and equity. 

Consider the situation of an all-equity firm; in this case the cost of capital is equal to 

the cost of equity, i.e. �� = ��, and since �� is observable it is easy to calculate the cost of 

capital of the firm. The problem arises when a firm is financed with debt and equity; in 

such a case, the return on assets is not observable. In this situation, the most common way 

to approach the cost of assets, �� is to compute it as the weighted average of the cost of 

equity ��, and the post-taxes cost of debt �� × (1 − 
); where the weights result from the 

market valued share of equity and debt. The following equation summarizes the estimation 

of the cost of capital.  

��	 = ��	 × 
� + 
 + �� × (1 − 
) × �� + 
 

  

However, the cost of equity, ��, and the cost of debt, ��, -at least as they are 

usually estimated- are quite different in nature. On one side, analysts and practitioners tend 

to use the promised return on debt instead of the expected return; this is not a minor 

difference since this estimation would only coincide in a risk-free scenario; in other words, 

the expected return on debt would equal the promised return on debt only if the probability 

of default is equal to zero.  It is therefore easy to see that the size of the bias introduced by 

this practice increases with leverage and the probability of default. 
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On the other side, the cost of equity, ��, usually estimated using the Capital Asset 

Pricing Model (CAPM) assumes that returns follow a normal distribution.
1
  As we will 

show in this paper, the presence of risky debt prevents normality of equity returns and 

therefore introduces a bias in the estimation of the cost of equity through the CAPM.  

Therefore, two issues need further examination. First, the traditional computation of 

the weighted average cost of capital, which nowadays combines two ununiformed 

parameters –a promised cost of debt and the expected return on equity. Second, the 

expected return on equity, which is typically estimated assuming normality; assumption 

that is not valid in the presence of risky debt. 

These issues have not been acknowledged in the finance literature for years. There 

are only few studies advancing some ideas on how to deal with the presence of risky debt.  

Kaplan and Stein (1990) mention the problem without providing a final answer, and more 

recently, Cooper and Davydenko (2007) discuss the same issue and propose a solution 

based on the Merton (1974) model. Unfortunately, we find their proposed solution to be 

misleading and confusing.   

This paper contributes to the corporate finance literature by acknowledging and 

restating the nature of the problem, by measuring the bias resulting from the usual standard 

estimation procedure, and by proposing a novel solution towards the correct measurement 

of the firm’s cost of capital. 

More specifically, we show how the presence of risky debt leads traditional 

computations to a systematic bias in the estimation of the cost of capital, and provide 

intuition to observe how this bias grows with the level of risk (i.e. it increases with leverage 

and with the volatility of the firm’s cash flows). After explaining the nature of the problem, 

we show the difference between the expected and promised cost of debt, the existence of 

the estimation bias, and a measure its relative importance using Montecarlo Simulation 

models.  Finally, using an analytical and numerical methodology, we provide an alternative 

                                                   
1
 The formal assumption in CAPM is the assumption of the mean variance portfolio theory: which is that 

investors’ utility function can be expressed in terms of mean and variance, i.e. higher moments are not taken 

into consideration by the investors.   Regardless of the investor´s utility function, if returns are normally 

distributed, the mean and variance contain all relevant information about the distribution. Thus assuming a 

normal distribution of assets is enough to meet the CAPM assumption. 
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–and correct- specification for obtaining the expected cost of capital –a direct estimation of 

the required return on operating assets. 

The remainder of the paper is as follows: in Section 1 we discuss the asymmetries 

embedded in the promised cost of debt and its importance for the estimation of the cost of 

capital; in Section 2 we analyze the similarities and differences in the case of the cost of 

equity.  In Section 3 we use Montecarlo Simulations to show the existence of the bias in the 

traditional estimation of the expected cost of capital, and in Section 4 we propose a novel 

methodology that estimates the cost of capital without the bias introduced by debt.  Finally, 

Section 5 concludes. 

 

1. The cost of Debt 

Asymmetries in corporate returns go hand in hand with the use of debt in the capital 

structure; that is, in all-equity firms assets and equity returns can be assumed to be 

symmetric. Debt contracts, in contrast, have two possible outcomes: they can be either 

performed via payment of the promised cash flow, or defaulted; thus, they have a non-

symmetric nature. It is important to notice that the lack of symmetry of debt returns is 

directly transferred to equity returns, since both should add up to symmetric assets returns. 

In other words, symmetric assets returns cannot be decomposed into a symmetric and a 

non-symmetric component. Therefore, a debt-equity firm has returns on assets that are 

assumed to be symmetric, which result from the combination of two non-symmetric 

components: debt and equity. 

The asymmetry of debt returns causes some problems when estimating the firm’s 

expected returns. These problems, however, are often overlooked. In fact, there are two 

common factual errors connected to this issue. First, in search of average returns, it is 

frequent to substitute the mean with the mode; mode and mean, however, only coincide in 

the case of symmetrical unimodal distributions. Second, taking for granted low 

probabilities of default, it is often assumed that the mode coincides with the promised 

payment to debt holders. Accordingly, mean returns are substituted by modal returns, 

which in turn are exchanged by promised payments. As a result, the promised (as opposed 
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to the expected) cost of debt is usually used as a proxy for the return on debt, typically 

referred as ��. 

Given its non-symmetric nature, a true expected return on debt should take into 

account not only the promised yield but also the expected default loss (probability of 

default times the recovery value of debt in default). The difference between expected and 

promised returns might be significant, since these two concepts only coincide if probability 

of default is equal to zero; otherwise, using the promised yield would overestimate the true 

cost of debt and, therefore, the true cost of capital.  The size of this bias increases with the 

level of risk associated to debt, and with the cost of default.  

This problem has been already acknowledged by Cooper and Davydenko (2007) –

henceforth  CD07–, who propose a solution for the estimation of the expected return of 

risky debt based on the Merton (1974) model. Even though we coincide in the general 

understanding of the problem, we find their solution somewhat incomplete and confusing.  

Our first objection stems from the fact that, in our view, their approach suffers from 

a circularity problem. The authors get on the estimation of the expected cost of risky debt, 

in order to be able to compute the expected return on assets, which they state to be 

unobservable. In this process, they suggest computing the cost of risky debt as a promised 

yield minus some portion of the spread which is directly associated to the expected default, 

δ. However, to achieve the estimation of δ, they use the risk premium on assets, π, as one 

of the basic inputs. Yet, by definition, adding π to the risk-free rate is already sufficient to 

obtain the unobservable return on assets (defined to be equal to �� + �); therefore, the 

estimation of the cost of risky debt, at least within this process, seems to be unnecessary.  

This first concern may appear of little relevance. In fact, the authors have delivered 

a direct method to estimate ��, by providing a formula that allows the computation of the 

risk premium on assets, π. Once π is obtained, one would simply need to add it to the 

corresponding risk-free rate. However, here comes the second difficulty: the estimation of 

the unobservable π. 
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The CD07 approach asserts that given that equity could be regarded as a call option 

on the firm’s assets (which directly connects with the Merton Model), both equity and 

assets have the same underlying source of risk. Therefore, it assumes that the risk premium 

on assets, π, and equity, πE, are linked by the following equation (summary of equation #10 

in the CD07 paper): 

��� = ����
���
�	��	����
�����
���
�	��	
���
� 

However, it is important to notice that this equation assumes the risk premium to be 

proportional to volatility (σ), which is not the regular assumption in standard single-factor 

capital asset pricing models.2 For example, the usual estimation of �  using the CAPM, 

assumes that �� = !� ×"#$ . Applying the same estimation to the assets, we end up with: 

��� = ! ×"#$!� ×"#$ = !!� 

By definition 

!% = &%,( )%)( 

Then  

��� = !!� = &( **+&�,( *,*+ = &( × )&�,( × )� ≠ ))� 

where MRP stands for market risk premium, ρ is the correlation coefficient and β is the 

usual beta estimate. 

Thus, under the CAPM, the CD07’s equation is only valid if the correlation between 

the returns of the asset and the market is equal to the correlation between equity and the 

market, which is clearly not true, since assets and equity behave completely different in 

case of default. The problem arises again from the asymmetry of debt contracts. Debt 

                                                   
2
 And the solution will be even more questionable if compared to multi-factor asset pricing models.  
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returns are non-symmetric; as stated before, if we assume that asset returns are symmetric, 

equity returns cannot be so.
3
 

There is and additional –and potentially more serious– concern with respect to 

Equation 10 (in CD07). Their approach is based on the Merton model, which emphasizes 

the idea that equity contracts should be understood as an option on assets. Therefore, the 

suggestion of estimating the cost of equity by adding an equity risk premium (πe) to a risk-

free return (rf) –which will then be used as a discounting factor– seems contradictory. In 

other words, it sounds odd to talk about the risk premium of an option. Therefore, the 

suggested estimation of π does not seem to provide the right answer, either. 

So far, we have observed that common practice estimates the Weighted Average 

Cost of Capital (WACC) combining an expected return on equity, ��, and a promised 

return on debt, ��; inconsistency that produces a figure that is neither an expected cost of 

capital nor a promised return. Before suggesting a potential solution to this problem, we go 

one step forward and show how the presence of risky debt also causes the estimation of the 

other parameter of the WACC –the expected return on equity– to be mistaken.  

We take advantage of this following section in order to introduce a simulation 

framework that will contribute to gain intuition. Nevertheless, the proposed methodology 

would not rely in the estimation of individual components of the WACC, rather, it will 

suggest computing a direct estimate of the discount rate on the firm’s operating assets. 

                                                   
3
 The inconsistency of equation (10) could also be shown using the WACC formula. 

Simplifying the risk-free rate and using CD07’s notation, the WACC formula becomes � = . × /0 + �� × (1 − /0) 
where /0��	
ℎ�	��2���3�	��
��. 
 

And using CD07’s formula (11)  � = 5,×(6789):(�;) , we obtain � = . × /0 + � × <(=6). 
Then, . = � >1 − <(=6)?/0  

Which is evidently different from CD07’s equation (12), according to which 

 

. = − @1AB × ln E�(57F)G ×< H−=6 − �� × √G*,J/0 +<K=L + ��√A)� MN. 
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2. The cost of Equity 

If we consider that equity rights can be viewed as a call option on the firm’s assets, 

with a strike equal to the amount of debt, we can notice that the distribution of equity 

returns can hardly be considered symmetric.4 Therefore, the fact that equity resembles 

option patterns makes unreasonable to use the CAPM to estimate the equity expected 

return.5 In other words, even if applying the CAPM to the return on equity when there is no 

debt seemed a plausible procedure; when leverage is significant, the behavior of the return 

on equity is quite different from a normal distribution, and applying the CAPM would lead 

to inconsistencies.  

 

2.1. The True Expected Return on Equity and the CAPM 

As we mentioned, equity returns of firms financed with debt and equity (as opposed 

to all-equity firms) are non-symmetric. At least, we could say that this is the case whenever 

there is limited responsibility (as we have in the case of incorporated firms).6 One should 

therefore estimate �� based on the asymmetric distribution of returns. The problem, 

however, is that empirical estimations are not directly obtained from these asymmetric 

distributions, but more generally based on the estimated beta and build-into the equity 

returns using the CAPM (�� = �� + ! ×"#$). The implicit assumption is that markets 

are in equilibrium and that the CAPM is a valid framework. 

Can we assume this computation to be an adequate estimation of truly expected 

returns? We present a simulation approach to show that this is not the case. Moreover, to 

assess the difference we run a simulation and obtain the empirical estimation of the true 

expected return on equity and compare it with the empirical estimation based on the 

CAPM. In both cases empirical estimation means that they are computations based on 

                                                   
4
 A profound solution to this issue requires a considerable change in standard practices –moving towards 

contingent claim analysis-, which are out of the scope of this paper. 
5
 Remember that CAPM is used to estimate the expected return assuming the market is in equilibrium. 

6
 If a company has unlimited responsibility, returns would not resemble option patterns; on the contrary, they 

would be indeed symmetric, assuming unlimited personal wealth. 
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simulated data. The basic process is as follows. Assuming return on assets are normally 

distributed, with a given asset beta and correlation coefficient –relative to market returns-, 

we obtain the expected return on assets, ��. Assuming an expected return on debt, ���, we 

obtain the necessary promised yields for different levels of risk –leverage-,��. The return 

on equity is then computed from the residual (given that the value of equity is the value of 

assets minus the value of debt), and through the estimation of the empirical levered beta 

and the use of the CAPM. We finally compare these results. 

2.1.1. The Simulation Setting: 

- Simulation of the capital market. We will assume the market index has a normal 

distribution, with mean of 11% and standard deviation of 20%.
7
 

- Simulation of the asset returns (��). Similar to the market, we assume assets 

returns to be normally distributed. We assume assets to have a β equal to 1 and correlation, 

ρ, equal to 0.5 with respect to the market returns. Under these assumptions we compute 

expected assets returns, KA = 11%, and standard deviation or volatility, σ = 40%. 

- Return of debt, ��. The return of debt will be equal to the promised payments, ��, 

if there is no default, or to a lower figure, in case of default. More specifically, 

�� = O								�� 																	��	(1 + ��) ≥ (1 + ��) × /0	(1 + ��)/0 − 1					��	(1 + ��) < (1 + ��) × /0  

where /0 is the leverage ratio, and the rest of variables as previously defined. 

 The simulation requires assigning different ��, according to different leverage 

ratios. We chose �� so that the expected return to debt ��� is maintained. That is, we 

consider the financial creditor to adjust �� at increasing risk levels so that the expected 

return remains constant. In our simulation we assume ���to be equal to 5.8%.
8
  

                                                   
7
 That is equivalent to assume a risk free rate, rf=5%, and the Equity Market Risk Premium, MRP=6%. 

8
 Obtained adding the rf rate (5%) to the corresponding spread; where the spread is proxy by the average 

spread of corporate bonds of non-financial institutions of the last 150 years, estimated by Giesecke, K., 

Longstaff, F. A., Schaefer, S. M., and Strebulaev, I. A. 2010. See Corporate Bond Default Risk: a 150-year 

Perspective. SSRN eLibrary). 
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- Simulation of the return on equity, �� . The value of equity will be the value of 

assets minus the value of debt. In case of default, such a value accounts to zero. That is, in 

default scenarios �� would be equal to -1. Formally, 

�� = R�� − �� × /01 − /0 	��	(1 + ��) ≥ (1 + ��) × /0						−1													��(1 + ��) < (1 + ��) × /0  

2.1.2. The Simulation 

We analyze the impact of debt on the proper estimation of equity returns: indeed, 

we are interested in computing the distortion that results when default scenarios are not 

negligible. We consider two extreme scenarios; one with minimum leverage and other with 

high leverage ratios.  

As a first step, we compute the simulated assets and equity expected returns 

(obtained from their corresponding simulated distributions; i.e. taking the arithmetic 

average of returns). Then, we estimate �� using the CAPM, taking as an input the beta 

estimation that we obtain from the generated sample (here referred as empirical beta). We 

refer to this cost of equity estimation as ��S. Finally, we compare these results. 

The first scenario considers a firm with a leverage ratio of only 1%. In this case, the 

probability of default is 0.30%-
9
 The �� to make ��� = 5.80% is 6.10%. 

                                                   
9
 In fact, the cumulative probability of having return on assets lower than -100% is of about 0,28 in our 

setting; therefore, this is fairly close. Actually, the fact that returns on assets cannot really be of less than -

100% means that we should truncate our distribution at that level of returns; this would consequently affect 

the expected average return. Nevertheless, given that under assumptions this is a small probability, we would 

not take this asymmetry into account in our analysis. 
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Figure 1. Distribution of debt return. Assuming 1% of leverage. Y axis has been truncated. 

We are initially interested in the comparison between the simulated expected return 

on equity and the estimation that would result based on the CAPM model. The former, 

gives an 11.09% return. To compute the CAPM based estimation, we take the generated 

sample and estimate the empirical β −1.0069
10−, which in turn corresponds to ��S =11.04%.  The difference between these two estimations is not substantial at this stage. The 

reason is that when leverage is non-significant, the resulting asymmetry and its effects, are 

negligible. 

                                                   
10

 This parameter is unstable and depends on correlations assumptions.  
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Figure 2. Distribution of equity returns. Assuming 1% leverage.  

Under the second scenario, we assume a leverage ratio of 60%. In this case, the 

probability of default is 13.07% and the required �� (to reach an expected return of 5.80%) 

is equal to 10.11%. The simulation output is presented in Figures 3 and 4. 

 

Figure 3. Distribution of debt return. Assuming 60% of leverage. Y axis has been truncated. 
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Figure 4. Distribution of equity returns. Assuming a 60% leverage.  

We compare again the simulated expected return on equity to the estimation that would 

result based on the CAPM model. The former gives 18.88% return; the latter 17.99% 

estimate (given that the generated sample produced a beta of 2.17). As we observe, the lack 

of fitness of the CAPM model is increasing in leverage (which is what causes the 

asymmetry of equity returns, and therefore, the deviation with respect to the model basic 

assumption). It is intuitive to see that this distortion will also be increasing in volatility. 

Depending on the calibration the deviation could be not very significant, numerically 

speaking, but the conceptual error is relevant, in our view.  

To finish presenting our concerns, and having also commented the problems behind 

the practice of computing the expected return on assets by combining a promised cost of 

debt and the expected return on equity as obtained with the CAPM model, we close this 

section by showing what this might imply in terms of deviation from a correct estimation 

of the expected return on assets. This will be indeed numerically significant. 

 

3. The Expected Return on Assets and the Traditional WACC 
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Now, let’s put everything together and get a sense of how large could be the size 

of the resulting bias. 

We will consider two extreme scenarios of low and high leverage (1% and 60%, 

respectively) and observe what happens with the estimated WACC using the standard 

practice, and how this result differs from the theoretical figure. To follow a more 

comprehensive analysis, we show not only the distribution of the returns on assets (blue 

line in the graph), but also the equity returns (red bars in the graph). 

In the 1% leverage case, we observe that the distributions of assets and equity 

returns look very similar; expected returns are 11.03% and 11.09%, respectively. There is 

also only a tiny difference between the corresponding resulting volatilities (40.29% and 

39.90%, respectively). All this is very natural, since this is almost an all-equity firm. 

 

Figure 5. Distribution of assets and equity returns. Assuming 1% leverage.  

Moreover, with the generated sample we obtained a beta estimate of 1.0069 and a 

corresponding ��S of 11.04%. If we combine this figure with the (promised) return of debt, 

Kd, 6.10%, we get to a WACC of 10.99%. Comparing this number with the theoretical 

return on assets (11%, which results from a risk-free rate of 5% plus a 6% of market risk 
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premium and β = 1), we observe the difference is fairly small. This is the case, given that 

the leverage ratio is immaterial and the asymmetry it causes is therefore negligible.  

If we move to the scenario of high leverage ratio, the asymmetry becomes more 

relevant, with a probability of default of 13.07%. As a consequence, the volatility of equity 

returns are now significantly larger than the volatility of asset returns (88.96% versus 

39.9%, respectively), and the mean return is more towards the right side, having reached 

11.03% for assets and 18.88% for equity returns.
11

  

 

Figure 6. Distribution of assets and equity returns. Assuming 60% leverage.  

To assess the distortive effect of asymmetries in the estimation of the expected 

return on assets, we can again compare the theoretical WACC versus the simulated 

empirical version. Theoretical WACC is equal to 11%, based on our initial assumptions. 

Now, from our empirical estimation we obtain a β estimate that used to estimate the ��, 

and combined with a �� of 10.11% produces a WACC of 13.27%; about 20% higher than 

the theoretical value.  

 

                                                   
11

 The small difference between 11 and 11.03% return on assets results from an asymmetry on assets returns 

that we decided not to explore here –being fairly small and outside the main scope in the discussion. 
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4. The Proposed Methodology 

Our solution arises from looking at the problem from a different perspective. Instead 

of trying to estimate �� as a weighted average of expected returns of debt and equity, we 

propose to identify the underlying normal distribution of asset returns, which is behind the 

observable distributions of debt and equity. 

We know that the expected returns of equity and debt are a function of the expected 

return on assets –in other words,  ��  and �� are functions of the random variable ��–, which 

in turn is known to have a normal distribution, with parameters �� and )�. Thus, any 

statistical function of ��  and �� are functions of �� and )�. The methodology we propose 

consists of solving for �� and )� in a system of equations that describes observable 

statistical functions of ��  and ��. 

Since the standard deviation of ��  is usually known –it is used to estimate !–, we 

may establish the first equation of the system based on its statistical definition of )� as
12

 

)� = 
(��L) − 
L(��Y) = Z ��L�(��)	=��[
7[ − KZ ���(��)	=��[

7[ ML 

where (��) = 6*√L5 �7>\]^_]?``a]̀  , the density function of the Normal distribution. 

Given values to the parameters as in the second scenario we described ()� =0.8897, �� = 10.11%	and	/0 = 60%	), we can obtain a solution for this part. 

Nevertheless, in order to find the solution for our two unknowns g��, 	)�h we need 

another equation. In this case, we assume the probability of default (.) to be known. The 

probability of default can be expressed as 

                                                   
12

 As �� is a function defined in segments we could restate the equation as  )� = Z �(��)	=��(6ijk)8976
7[ +Z @�� − ��/01 − /0 BL �(��)	=��[

(6ijk)8976− K−Z �(��)	=��(6ijk)8976
7[ +Z @�� − ��/01 − /0 B �(��)	=��[

(6ijk)8976 ML 
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. = Z �(��)	=��(6ijk)8976
7[  

which gives us a second equation involving our unknown variables. For this equation, we 

need to apply the same figures as before and add the probability of default obtained for the 

same scenario –i.e. . = 13.07%. 

The system of equations can be solved numerically to obtain the values searched. In 

the example of the second scenario (60% leverage ratio) we obtained the values: �� =10.99%	and	σn = 40.00%, which are almost identical to the original values we used to 

make example. 

According to this solution we do not need to estimate the discount rate of operating 

assets based on a combination of two observable inputs –returns on debt and equity-, since 

the asymmetry of debt returns leads to inconsistencies in such a procedure. Rather, this 

solution suggests using observable parameters of debt and equity returns to identify the 

underlying distribution of the return on operating assets. That is, we obtain a system of two 

equations that allows us to directly estimate the expected return on operating assets. The 

method requires to plug in the corresponding inputs into the system of equations –as 

provided above: the volatility of equity return, )�, the promised cost of debt, ��, the 

leverage ratio, /0, and the probability of default, .– and solve for the return on operating 

assets, ��, and the volatility of those returns, )�.  

 

5. Conclusions 

In this paper we discussed the implications of the asymmetries in the returns of 

risky debt for the estimation of the cost of capital. We highlight the difference between 

promised and expected returns to debt holders, and explain how the asymmetry of debt 

returns compromises the standard practice for the estimation of the cost of capital of the 

firm, in which the promised return to debt holders is used instead of the corresponding 

expected return. We continued by reporting how the asymmetry of debt causes a 

subsequent problem in the estimation of the expected cost of equity; more specifically, we 
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observe how the assumption of normal returns to equity holders is not fulfilled in the 

presence of risky debt. The conjunction of these two problems causes an upward bias in the 

estimation of the cost of capital performed using the standard procedures.   

After an intuitive and analytical discussion of the issue, we use Montecarlo 

Simulation models to give a sense of its quantitative relevance. We show that in the 

presence of risky debt the usual methodologies overestimate the cost of capital of the firm, 

and that this bias is increasing in leverage and risk. 

We conclude the paper by proposing a novel approach to solve this problem by 

taking a new perspective. We depart from the usual procedure of estimating the individual 

components of the weighted average cost of capital (i.e. cost of debt and equity), and 

attempt a direct estimation of the return on assets. The procedure suggests identifying the 

underlying normal distribution of the returns of the operational asset of the firm which is 

behind the observable distributions of debt and equity.  We developed an example that 

illustrates this proposal. 

The paper analyzes the problems behind the standard approach to the estimation of 

the cost of capital and suggests a new perspective.  More research is needed in order to 

operate this solution to alternative contexts. 
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